1
|
Goikuria H, Freijo MDM, Vega Manrique R, Sastre M, Elizagaray E, Lorenzo A, Vandenbroeck K, Alloza I. Characterization of Carotid Smooth Muscle Cells during Phenotypic Transition. Cells 2018; 7:cells7030023. [PMID: 29562638 PMCID: PMC5870355 DOI: 10.3390/cells7030023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are central players in carotid atherosclerosis plaque development. Although the precise mechanisms involved in plaque destabilization are not completely understood, it is known that VSMC proliferation and migration participate in plaque stabilization. In this study, we analyzed expression patterns of genes involved in carotid atherosclerosis development (e.g., transcription factors of regulation of SMC genes) of VSMCs located inside or outside the plaque lesion that may give clues about changes in phenotypic plasticity during atherosclerosis. VSMCs were isolated from 39 carotid plaques extracted from symptomatic and asymptomatic patients by endarterectomy. Specific biomarker expression, related with VSMC phenotype, was analyzed by qPCR, western immunoblot, and confocal microscopy. MYH11, CNN1, SRF, MKL2, and CALD1 were significantly underexpressed in VSMCs from plaques compared with VSMCs from a macroscopically intact (MIT) region, while SPP1, KLF4, MAPLC3B, CD68, and LGALS3 were found significantly upregulated in plaque VSMCs versus MIT VSMCs. The gene expression pattern of arterial VSMCs from a healthy donor treated with 7-ketocholesterol showed high similarity with the expression pattern of carotid plaque VSMCs. Our results indicate that VSMCs isolated from plaque show a typical SMC dedifferentiated phenotype with macrophage-like features compared with VSMCs isolated from a MIT region of the carotid artery. Additionally, MYH11, KLF5, and SPP1 expression patterns were found to be associated with symptomatology of human carotid atherosclerosis.
Collapse
Affiliation(s)
- Haize Goikuria
- Neurogenomiks Neuroscience Department, Faculty of Medicine and Nursing, Basque Country University, 48940 Leioa, Spain.
- ACHUCARRO Basque Center for Neuroscience, Basque Country University, 48940 Leioa, Spain.
| | | | | | - María Sastre
- Neurogenomiks Neuroscience Department, Faculty of Medicine and Nursing, Basque Country University, 48940 Leioa, Spain.
- ACHUCARRO Basque Center for Neuroscience, Basque Country University, 48940 Leioa, Spain.
| | | | - Ana Lorenzo
- Neurology Unit, Basurto University Hospital (BUH), 48013 Bilbao, Spain.
| | - Koen Vandenbroeck
- Neurogenomiks Neuroscience Department, Faculty of Medicine and Nursing, Basque Country University, 48940 Leioa, Spain.
- ACHUCARRO Basque Center for Neuroscience, Basque Country University, 48940 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Iraide Alloza
- Neurogenomiks Neuroscience Department, Faculty of Medicine and Nursing, Basque Country University, 48940 Leioa, Spain.
- ACHUCARRO Basque Center for Neuroscience, Basque Country University, 48940 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
2
|
Spray S, Johansson SE, Edwards AVG, Larsen MR, Radziwon-Balicka A, Povlsen GK, Edvinsson L. Alterations in the Cerebral Microvascular Proteome Expression Profile After Transient Global Cerebral Ischemia in Rat. J Mol Neurosci 2016; 61:396-411. [DOI: 10.1007/s12031-016-0875-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/29/2016] [Indexed: 11/29/2022]
|
3
|
An overview of potential molecular mechanisms involved in VSMC phenotypic modulation. Histochem Cell Biol 2015; 145:119-30. [DOI: 10.1007/s00418-015-1386-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2015] [Indexed: 12/21/2022]
|
4
|
Site-Specific Secretome Map Evidences VSMC-Related Markers of Coronary Atherosclerosis Grade and Extent in the Hypercholesterolemic Swine. DISEASE MARKERS 2015; 2015:465242. [PMID: 26379359 PMCID: PMC4561865 DOI: 10.1155/2015/465242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/29/2015] [Accepted: 06/23/2015] [Indexed: 12/20/2022]
Abstract
A major drawback in coronary atherosclerosis (ATS) research is the difficulty of investigating early phase of plaque growth and related features in the clinical context. In this study, secreted proteins from atherosclerotic coronary arteries in a hypercholesterolemic swine model were characterized by a proteomics approach and their expression was correlated to site-specific ATS stage and extent. A wide coronary artery map of secreted proteins has been obtained in high fat (HF) diet induced ATS swine model and a significantly different expression of many proteins related to vascular smooth muscle cell (VSMC) activation/migration has been identified. Significant associations with ATS stage of HF coronary lesions were found for several VSMC-derived proteins and validated for chitinase 3 like protein 1 (CHI3L1) by tissue immunoexpression. A direct correlation (R(2) = 0.85) was evidenced with intima to media thickness ratio values and ELISA confirmed the higher blood concentrations of CHI3L1 in HF cases. These findings confirmed the pivotal role of VSMCs in coronary plaque development and demonstrated a strong site-specific relation between VSMC-secreted CHI3L1 and lesion grade, suggesting that this protein could be proposed as a useful biomarker for diagnosing and staging of atherosclerotic lesions in coronary artery disease.
Collapse
|
5
|
Yu L, Huang X, Huang K, Gui C, Huang Q, Wei B. Ligustrazine attenuates the platelet-derived growth factor-BB-induced proliferation and migration of vascular smooth muscle cells by interrupting extracellular signal-regulated kinase and P38 mitogen-activated protein kinase pathways. Mol Med Rep 2015; 12:705-11. [PMID: 25738255 DOI: 10.3892/mmr.2015.3383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 01/02/2015] [Indexed: 11/06/2022] Open
Abstract
The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) leads to intimal thickening of the aorta and is, therefore, important in the development of arteriosclerosis. As a result, the use of antiproliferative and antimigratory agents for VSMCs offers promise for the treatment of vascular disorders. Although several studies have demonstrated that ligustrazine may be used to treat heart and blood vessel diseases, the detailed mechanism underlying its actions remain to be elucidated. In the present study, the inhibitory effect of ligustrazine on platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation and migration, and the underlying mechanisms were investigated. The findings demonstrated that ligustrazine significantly inhibited PDGF-BB-stimulated VSMC proliferation. VSMCs dedifferentiated into a proliferative phenotype under PDGF-BB stimulation, which was effectively reversed by the administration of ligustrazine. In addition, ligustrazine also downregulated the production of nitric oxide and cyclic guanine monophosphate, induced by PDGF-BB. Additionally, ligustrazine significantly inhibited PDGF-BB-stimulated VSMC migration. Mechanistic investigation indicated that the upregulation of cell cycle-associated proteins and the activation of the extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (MAPK) signaling induced by PDGF-BB was suppressed by the administration of ligustrazine. In conclusion, the present study, demonstrated for the first time, to the best of our knowledge, that ligustrazine downregulated PDGF-BB-induced VSMC proliferation and migration partly, at least, through inhibiting the activation of the ERK and P38 MAPK signaling.
Collapse
Affiliation(s)
- Lifei Yu
- Department of Cardiology, Western Hospital, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaojing Huang
- Department of Cardiology, Western Hospital, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Kai Huang
- Department of Cardiology, Western Hospital, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Chun Gui
- Department of Cardiology, Western Hospital, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiaojuan Huang
- Department of Cardiology, Western Hospital, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bin Wei
- Department of Cardiology, Western Hospital, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
6
|
Bassols A, Costa C, Eckersall PD, Osada J, Sabrià J, Tibau J. The pig as an animal model for human pathologies: A proteomics perspective. Proteomics Clin Appl 2014; 8:715-31. [DOI: 10.1002/prca.201300099] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/28/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Bassols
- Departament de Bioquímica i Biologia Molecular; Facultat de Veterinària; Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - Cristina Costa
- New Therapies of Genes and Transplants Group; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); L'Hospitalet de Llobregat; Barcelona Spain
| | - P. David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine; University of Glasgow; Glasgow UK
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias; Universidad de Zaragoza; CIBEROBN; Zaragoza Spain
| | - Josefa Sabrià
- Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Institut de Neurociències (INc); Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - Joan Tibau
- IRTA - Food Technology; Animal Genetics Program; Finca Camps i Armet; Monells Spain
| |
Collapse
|
7
|
Comelli L, Rocchiccioli S, Smirni S, Salvetti A, Signore G, Citti L, Trivella MG, Cecchettini A. Characterization of secreted vesicles from vascular smooth muscle cells. MOLECULAR BIOSYSTEMS 2014; 10:1146-52. [DOI: 10.1039/c3mb70544g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Lepedda AJ, Nieddu G, Rocchiccioli S, Fresu P, De Muro P, Formato M. Development of a method for urine bikunin/urinary trypsin inhibitor (UTI) quantitation and structural characterization: Application to type 1 and type 2 diabetes. Electrophoresis 2013; 34:3227-33. [DOI: 10.1002/elps.201300384] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/11/2013] [Accepted: 09/04/2013] [Indexed: 11/06/2022]
Affiliation(s)
| | - Gabriele Nieddu
- Dipartimento di Scienze Biomediche; University of Sassari; Sassari Italy
| | | | - Pietro Fresu
- Unità Operativa di Diabetologia e Malattie del Ricambio; AOU-Sassari; Sassari Italy
| | - Pierina De Muro
- Dipartimento di Scienze Biomediche; University of Sassari; Sassari Italy
| | - Marilena Formato
- Dipartimento di Scienze Biomediche; University of Sassari; Sassari Italy
| |
Collapse
|
9
|
Rocchiccioli S, Pelosi G, Rosini S, Marconi M, Viglione F, Citti L, Ferrari M, Trivella MG, Cecchettini A. Secreted proteins from carotid endarterectomy: an untargeted approach to disclose molecular clues of plaque progression. J Transl Med 2013; 11:260. [PMID: 24131807 PMCID: PMC3853772 DOI: 10.1186/1479-5876-11-260] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atherosclerosis is the main cause of morbidity and mortality in Western countries and carotid plaque rupture is associated to acute events and responsible of 15-20% of all ischemic strokes. Several proteomics approaches have been up to now used to elucidate the molecular mechanisms involved in plaque formation as well as to identify markers of pathology severity for early diagnosis or target of therapy. The aim of this study was to characterize the plaque secretome. The advantage of this approach is that secretome mimics the in vivo condition and implies a reduced complexity compared to the whole tissue proteomics allowing the detection of under-represented potential biomarkers. METHODS Secretomes from carotid endarterectomy specimens of 14 patients were analyzed by a liquid chromatography approach coupled with label free mass spectrometry. Differential expression of proteins released from plaques and from their downstream distal side segments were evaluated in each specimen. Results were validated by Western blot analysis and ELISA assays. Histology and immunohistochemistry were performed to characterize plaques and to localise the molecular factors highlighted by proteomics. RESULTS A total of 463 proteins were identified and 31 proteins resulted differentially secreted from plaques and corresponding downstream segments. A clear-cut distinction in the distribution of cellular- and extracellular-derived proteins, evidently related to the higher cellularity of distal side segments, was observed along the longitudinal axis of carotid endarterectomy samples. The expressions of thrombospondin-1, vitamin D binding protein, and vinculin, as examples of extracellular and intracellular proteins, were immunohistologically compared between adjacent segments and validated by antibody assays. ELISA assays of plasma samples from 34 patients and 10 healthy volunteers confirmed a significantly higher concentration of thrombospondin-1 and vitamin D binding protein in atherosclerotic subjects. CONCLUSIONS Taking advantage of the optimized workflow, a detailed protein profile related to carotid plaque secretome has been produced which may assist and improve biomarker discovery of molecular factors in blood. Distinctive signatures of proteins secreted by adjacent segments of carotid plaques were evidenced and they may help discriminating markers of plaque complication from those of plaque growth.
Collapse
Affiliation(s)
- Silvia Rocchiccioli
- National Research Council, Institute of Clinical Physiology, Via Moruzzi, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Costa B, Grillone AF, Salvetti A, Rocchiccioli S, Iacopetti P, Daniele S, Da Pozzo E, Campiglia P, Novellino E, Martini C, Rossi L. An antibody-free strategy for screening putative HDM2 inhibitors using crude bacterial lysates expressing GST-HDM2 recombinant protein. Drug Test Anal 2013; 5:596-601. [PMID: 23733564 DOI: 10.1002/dta.1492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 11/09/2022]
Abstract
Targeting the interaction of p53 with its natural inhibitor MDM2 by the use of small synthetic molecules has emerged as a promising pharmacological approach to restore p53 oncosuppressor function in cancers retaining wild-type p53. The first critical step in the experimental validation of newly synthesized small molecules developed to inhibit MDM2-p53 interaction is represented by the evaluation of their efficacy in preventing the formation of the MDM2-p53 complex. This can be achieved using the in vitro reconstructed recombinant MDM2-p53 complex in cell-free assays. A number of possible approaches have been proposed, which are however not suitable for screening large chemical libraries, due to the high costs of reagents and instrumentations, or the need of large amounts of highly pure recombinant proteins. Here we describe a rapid and cheap method for high-throughput screening of putative inhibitors of MDM2-p53 complex formation--based on the use of GST-recombinant proteins--that does not require antibodies and recombinant protein purification steps from bacterial cell lysates.
Collapse
|