1
|
Klein D, Rivera ES, Caprioli RM, Spraggins JM. Imaging Mass Spectrometry of Isotopically Resolved Intact Proteins on a Trapped Ion-Mobility Quadrupole Time-of-Flight Mass Spectrometer. Anal Chem 2024; 96:5065-5070. [PMID: 38517028 PMCID: PMC10993197 DOI: 10.1021/acs.analchem.3c05252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
In this work, we demonstrate rapid, high spatial, and high spectral resolution imaging of intact proteins by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) on a hybrid quadrupole-reflectron time-of-flight (qTOF) mass spectrometer equipped with trapped ion mobility spectrometry (TIMS). Historically, untargeted MALDI IMS of proteins has been performed on TOF mass spectrometers. While advances in TOF instrumentation have enabled rapid, high spatial resolution IMS of intact proteins, TOF mass spectrometers generate relatively low-resolution mass spectra with limited mass accuracy. Conversely, the implementation of MALDI sources on high-resolving power Fourier transform (FT) mass spectrometers has allowed IMS experiments to be conducted with high spectral resolution with the caveat of increasingly long data acquisition times. As illustrated here, qTOF mass spectrometers enable protein imaging with the combined advantages of TOF and FT mass spectrometers. Protein isotope distributions were resolved for both a protein standard mixture and proteins detected from a whole-body mouse pup tissue section. Rapid (∼10 pixels/s) 10 μm lateral spatial resolution IMS was performed on a rat brain tissue section while maintaining isotopic spectral resolution. Lastly, proof-of-concept MALDI-TIMS data was acquired from a protein mixture to demonstrate the ability to differentiate charge states by ion mobility. These experiments highlight the advantages of qTOF and timsTOF platforms for resolving and interpreting complex protein spectra generated from tissue by IMS.
Collapse
Affiliation(s)
- Dustin
R. Klein
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Emilio S. Rivera
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Richard M. Caprioli
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Medicine, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey M. Spraggins
- Mass
Spectrometry Research Center, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
2
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
3
|
Baquer G, Sementé L, Mahamdi T, Correig X, Ràfols P, García-Altares M. What are we imaging? Software tools and experimental strategies for annotation and identification of small molecules in mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2022:e21794. [PMID: 35822576 DOI: 10.1002/mas.21794] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) has become a widespread analytical technique to perform nonlabeled spatial molecular identification. The Achilles' heel of MSI is the annotation and identification of molecular species due to intrinsic limitations of the technique (lack of chromatographic separation and the difficulty to apply tandem MS). Successful strategies to perform annotation and identification combine extra analytical steps, like using orthogonal analytical techniques to identify compounds; with algorithms that integrate the spectral and spatial information. In this review, we discuss different experimental strategies and bioinformatics tools to annotate and identify compounds in MSI experiments. We target strategies and tools for small molecule applications, such as lipidomics and metabolomics. First, we explain how sample preparation and the acquisition process influences annotation and identification, from sample preservation to the use of orthogonal techniques. Then, we review twelve software tools for annotation and identification in MSI. Finally, we offer perspectives on two current needs of the MSI community: the adaptation of guidelines for communicating confidence levels in identifications; and the creation of a standard format to store and exchange annotations and identifications in MSI.
Collapse
Affiliation(s)
- Gerard Baquer
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Lluc Sementé
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Toufik Mahamdi
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
| | - Xavier Correig
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - Pere Ràfols
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Institut D'Investigacio Sanitaria Pere Virgili, Tarragona, Spain
| | - María García-Altares
- Department of Electronic Engineering, University Rovira I Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
4
|
Liu H, Han M, Li J, Qin L, Chen L, Hao Q, Jiang D, Chen D, Ji Y, Han H, Long C, Zhou Y, Feng J, Wang X. A Caffeic Acid Matrix Improves In Situ Detection and Imaging of Proteins with High Molecular Weight Close to 200,000 Da in Tissues by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem 2021; 93:11920-11928. [PMID: 34405989 DOI: 10.1021/acs.analchem.0c05480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To our knowledge, this was the first study in which caffeic acid (CA) was successfully evaluated as a matrix to enhance the in situ detection and imaging of endogenous proteins in three biological tissue sections (i.e., a rat brain and Capparis masaikai and germinating soybean seeds) by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Our results show several properties of CA, including strong ultraviolet absorption, a super-wide MS detection mass range close to 200,000 Da, micrometer-sized matrix crystals, uniform matrix deposition, and high ionization efficiency. More high-molecular-weight (HMW) protein ion signals (m/z > 30,000) could be clearly detected in biological tissues with the use of CA, compared to two commonly used MALDI matrices, i.e., sinapinic acid (SA) and ferulic acid (FA). Notably, CA shows excellent performance for HMW protein in situ detection from biological tissues in the mass range m/z > 80,000, compared to the use of SA and FA. Furthermore, the use of a CA matrix also significantly enhanced the imaging of proteins on the surface of selected biological tissue sections. Three HMW protein ion signals (m/z 50,419, m/z 65,874, and m/z 191,872) from a rat brain, two sweet proteins (mabinlin-2 and mabinlin-4) from a Capparis masaikai seed, and three HMW protein ion signals (m/z 94,838, m/z 134,204, and m/z 198,738) from a germinating soybean seed were successfully imaged for the first time. Our study proves that CA has the potential to become a standard organic acid matrix for enhanced tissue imaging of HMW proteins by MALDI-MSI in both animal and plant tissues.
Collapse
Affiliation(s)
- Haiqiang Liu
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Manman Han
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jinming Li
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Lulu Chen
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qichen Hao
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Dongxu Jiang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Difan Chen
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuanyuan Ji
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hang Han
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaodong Wang
- Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
5
|
Abstract
Analysis of intact proteins by native mass spectrometry has emerged as a powerful tool for obtaining insight into subunit diversity, post-translational modifications, stoichiometry, structural arrangement, stability, and overall architecture. Typically, such an analysis is performed following protein purification procedures, which are time consuming, costly, and labor intensive. As this technology continues to move forward, advances in sample handling and instrumentation have enabled the investigation of intact proteins in situ and in crude samples, offering rapid analysis and improved conservation of the biological context. This emerging field, which involves various ion source platforms such as matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) for both spatial imaging and solution-based analysis, is expected to impact many scientific fields, including biotechnology, pharmaceuticals, and clinical sciences. In this Perspective, we discuss the information that can be retrieved by such experiments as well as the current advantages and technical challenges associated with the different sampling strategies. Furthermore, we present future directions of these MS-based methods, including current limitations and efforts that should be made to make these approaches more accessible. Considering the vast progress we have witnessed in recent years, we anticipate that the advent of further innovations enabling minimal handling of MS samples will make this field more robust, user friendly, and widespread.
Collapse
Affiliation(s)
- Shay Vimer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
|
7
|
Han J, Permentier H, Bischoff R, Groothuis G, Casini A, Horvatovich P. Imaging of protein distribution in tissues using mass spectrometry: An interdisciplinary challenge. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Liu X, Lukowski JK, Flinders C, Kim S, Georgiadis RA, Mumenthaler SM, Hummon AB. MALDI-MSI of Immunotherapy: Mapping the EGFR-Targeting Antibody Cetuximab in 3D Colon-Cancer Cell Cultures. Anal Chem 2018; 90:14156-14164. [PMID: 30479121 DOI: 10.1021/acs.analchem.8b02151] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunotherapies are treatments that use a patient's immune system to combat disease. One important type of immunotherapy employed in cancer treatments is the delivery of monoclonal antibodies to block growth receptors. In this manuscript, we develop a methodology that enables accurate and simple evaluation of antibody-type drug delivery using MALDI-MSI. To overcome the mass-range limitation that prevents the detection of large therapeutic antibodies, we used in situ reduction and alkylation to break disulfide bonds to generate smaller fragments. These smaller fragments are more readily ionized and detected by MALDI-MSI without loss of spatial information on the parent drug. As a proof of concept study, we evaluated the distribution of cetuximab in 3D colon cell cultures. Cetuximab is a monoclonal antibody that binds to the extracellular domain of epidermal-growth-factor receptor (EGFR), which is often overexpressed in colorectal cancer (CRC) and mediates cell differentiation, proliferation, migration, and angiogenesis. Cetuximab directly inhibits tumor growth and metastasis and induces apoptosis. By performing on-tissue reduction followed by MALDI-MSI analysis, we successfully mapped the time-dependent penetration and distribution of cetuximab in spheroids derived from two different colon-cancer cell lines (HT-29 and DLD-1). The localization patterns were further confirmed with IF staining of the drug. Changes in other biomolecules following drug treatment were also observed, including the elevation of ATP in spheroids. The developed method has also been applied to map cetuximab distribution in patient-derived colorectal-tumor organoids (CTOs). Overall, we believe this powerful label-free approach will be useful for visualizing the heterogeneous distribution of antibody drugs in tissues and tumors and will help to monitor and optimize their use in the clinic.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute , University of Notre Dame , 152 McCourtney Hall , Notre Dame , Indiana 46556 , United States
| | - Jessica K Lukowski
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute , University of Notre Dame , 152 McCourtney Hall , Notre Dame , Indiana 46556 , United States.,Department of Chemistry and Biochemistry and Comprehensive Cancer Center , The Ohio State University , 414 Biomedical Research Tower , Columbus , Ohio 43210 , United States
| | - Colin Flinders
- Lawrence J. Ellison Institute for Transformative Medicine , University of Southern California , 2250 Alcazar Street, CSC 240 , Los Angeles , California 90033 , United States
| | - Seungil Kim
- Lawrence J. Ellison Institute for Transformative Medicine , University of Southern California , 2250 Alcazar Street, CSC 240 , Los Angeles , California 90033 , United States
| | - Rebecca A Georgiadis
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute , University of Notre Dame , 152 McCourtney Hall , Notre Dame , Indiana 46556 , United States
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine , University of Southern California , 2250 Alcazar Street, CSC 240 , Los Angeles , California 90033 , United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry and Comprehensive Cancer Center , The Ohio State University , 414 Biomedical Research Tower , Columbus , Ohio 43210 , United States
| |
Collapse
|
9
|
Othman Z, Cillero Pastor B, van Rijt S, Habibovic P. Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials 2018; 167:191-204. [PMID: 29571054 DOI: 10.1016/j.biomaterials.2018.03.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
The role that biomaterials play in the clinical treatment of damaged organs and tissues is changing. While biomaterials used in permanent medical devices were required to passively take over the function of a damaged tissue in the long term, current biomaterials are expected to trigger and harness the self-regenerative potential of the body in situ and then to degrade, the foundation of regenerative medicine. To meet these different requirements, it is imperative to fully understand the interactions biomaterials have with biological systems, in space and in time. This knowledge will lead to a better understanding of the regenerative capabilities of biomaterials aiding their design with improved functionalities (e.g. biocompatibility, bioactivity). Proteins play a pivotal role in the interaction between biomaterials and cells or tissues. Protein adsorption on the material surface is the very first event of this interaction, which is determinant for the subsequent processes of cell growth, differentiation, and extracellular matrix formation. Against this background, the aim of the current review is to provide insight in the current knowledge of the role of proteins in cell-biomaterial and tissue-biomaterial interactions. In particular, the focus is on proteomics studies, mainly using mass spectrometry, and the knowledge they have generated on protein adsorption of biomaterials, protein production by cells cultured on materials, safety and efficacy of new materials based on nanoparticles and the analysis of extracellular matrices and extracellular matrix-derived products. In the outlook, the potential and limitations of this approach are discussed and mass spectrometry imaging is presented as a powerful technique that complements existing mass spectrometry techniques by providing spatial molecular information about the material-biological system interactions.
Collapse
Affiliation(s)
- Ziryan Othman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Berta Cillero Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Sabine van Rijt
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pamela Habibovic
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
10
|
Kurreck A, Vandergrift LA, Fuss TL, Habbel P, Agar NYR, Cheng LL. Prostate cancer diagnosis and characterization with mass spectrometry imaging. Prostate Cancer Prostatic Dis 2017; 21:297-305. [PMID: 29209003 PMCID: PMC5988647 DOI: 10.1038/s41391-017-0011-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Background Prostate cancer (PCa), the most common cancer and second leading cause of cancer death in American men, presents the clinical challenge of distinguishing between indolent and aggressive tumors for proper treatment. PCa presents significant alterations in metabolic pathways that can potentially be measured using techniques like mass spectrometry (MS) or mass spectrometry imaging (MSI) and used to characterize PCa aggressiveness. MS quantifies metabolomic, proteomic, and lipidomic profiles of biological systems that can be further visualized for their spatial distributions through MSI. Methods PubMed was queried for all publications relating to MS and MSI in human prostate cancer from April 2007 to April 2017. With the goal of reviewing the utility of MSI in diagnosis and prognostication of human PCa, MSI articles that reported investigations of PCa-specific metabolites or metabolites indicating PCa aggressiveness were selected for inclusion. Articles were included that covered MS and MSI principles, limitations, and applications in PCa. Results We identified nine key studies on MSI in intact human prostate tissue specimens that determined metabolites which could either differentiate between benign and malignant prostate tissue or indicate prostate cancer aggressiveness. These MSI-detected biomarkers show promise in reliably identifying PCa and determining disease aggressiveness. Conclusions MSI represents an innovative technique with the ability to interrogate cancer biomarkers in relation to tissue pathologies and investigate tumor aggressiveness. We propose MSI as a powerful adjuvant histopathology imaging tool for prostate tissue evaluations, where clinical translation of this ex vivo technique could make possible the use of MSI for personalized medicine in diagnosis and prognosis of prostate cancer. Moreover, the knowledge provided from this technique can majorly contribute to the understanding of molecular pathogenesis of PCa and other malignant diseases.
Collapse
Affiliation(s)
- Annika Kurreck
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Hematology and Oncology, Charité Medical University of Berlin, Berlin, Germany
| | - Lindsey A Vandergrift
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor L Fuss
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Berlin, Germany
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leo L Cheng
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging in the Study of Gastric Cancer: A Mini Review. Int J Mol Sci 2017; 18:ijms18122588. [PMID: 29194417 PMCID: PMC5751191 DOI: 10.3390/ijms18122588] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide and the disease outcome commonly depends upon the tumour stage at the time of diagnosis. However, this cancer can often be asymptomatic during the early stages and remain undetected until the later stages of tumour development, having a significant impact on patient prognosis. However, our comprehension of the mechanisms underlying the development of gastric malignancies is still lacking. For these reasons, the search for new diagnostic and prognostic markers for gastric cancer is an ongoing pursuit. Modern mass spectrometry imaging (MSI) techniques, in particular matrix-assisted laser desorption/ionisation (MALDI), have emerged as a plausible tool in clinical pathology as a whole. More specifically, MALDI-MSI is being increasingly employed in the study of gastric cancer and has already elucidated some important disease checkpoints that may help us to better understand the molecular mechanisms underpinning this aggressive cancer. Here we report the state of the art of MALDI-MSI approaches, ranging from sample preparation to statistical analysis, and provide a complete review of the key findings that have been reported in the literature thus far.
Collapse
|
12
|
Zhou R, Basile F. Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging. Anal Chem 2017; 89:8704-8712. [PMID: 28727443 DOI: 10.1021/acs.analchem.7b00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method based on plasmon surface resonance absorption and heating was developed to perform a rapid on-surface protein thermal decomposition and digestion suitable for imaging mass spectrometry (MS) and/or profiling. This photothermal process or plasmonic thermal decomposition/digestion (plasmonic-TDD) method incorporates a continuous wave (CW) laser excitation and gold nanoparticles (Au-NPs) to induce known thermal decomposition reactions that cleave peptides and proteins specifically at the C-terminus of aspartic acid and at the N-terminus of cysteine. These thermal decomposition reactions are induced by heating a solid protein sample to temperatures between 200 and 270 °C for a short period of time (10-50 s per 200 μm segment) and are reagentless and solventless, and thus are devoid of sample product delocalization. In the plasmonic-TDD setup the sample is coated with Au-NPs and irradiated with 532 nm laser radiation to induce thermoplasmonic heating and bring about site-specific thermal decomposition on solid peptide/protein samples. In this manner the Au-NPs act as nanoheaters that result in a highly localized thermal decomposition and digestion of the protein sample that is independent of the absorption properties of the protein, making the method universally applicable to all types of proteinaceous samples (e.g., tissues or protein arrays). Several experimental variables were optimized to maximize product yield, and they include heating time, laser intensity, size of Au-NPs, and surface coverage of Au-NPs. Using optimized parameters, proof-of-principle experiments confirmed the ability of the plasmonic-TDD method to induce both C-cleavage and D-cleavage on several peptide standards and the protein lysozyme by detecting their thermal decomposition products with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The high spatial specificity of the plasmonic-TDD method was demonstrated by using a mask to digest designated sections of the sample surface with the heating laser and MALDI-MS imaging to map the resulting products. The solventless nature of the plasmonic-TDD method enabled the nonenzymatic on-surface digestion of proteins to proceed with undetectable delocalization of the resulting products from their precursor protein location. The advantages of this novel plasmonic-TDD method include short reaction times (<30 s/200 μm), compatibility with MALDI, universal sample compatibility, high spatial specificity, and localization of the digestion products. These advantages point to potential applications of this method for on-tissue protein digestion and MS-imaging/profiling for the identification of proteins, high-fidelity MS imaging of high molecular weight (>30 kDa) proteins, and the rapid analysis of formalin-fixed paraffin-embedded (FFPE) tissue samples.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Chemistry, University of Wyoming , 1000 University Avenue, Laramie, Wyoming 82071, United States
| | - Franco Basile
- Department of Chemistry, University of Wyoming , 1000 University Avenue, Laramie, Wyoming 82071, United States
| |
Collapse
|
13
|
Malys BJ, Owens KG. Improving the analyte ion signal in matrix-assisted laser desorption/ionization imaging mass spectrometry via electrospray deposition by enhancing incorporation of the analyte in the matrix. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:804-812. [PMID: 28263004 DOI: 10.1002/rcm.7848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
RATIONALE Matrix-assisted laser desorption/ionization (MALDI) is widely used as the ionization method in high-resolution chemical imaging studies that seek to visualize the distribution of analytes within sectioned biological tissues. This work extends the use of electrospray deposition (ESD) to apply matrix with an additional solvent spray to incorporate and homogenize analyte within the matrix overlayer. METHODS Analytes and matrix are sequentially and independently applied by ESD to create a sample from which spectra are collected, mimicking a MALDI imaging mass spectrometry (IMS) experiment. Subsequently, an incorporation spray consisting of methanol is applied by ESD to the sample and another set of spectra are collected. The spectra prior to and after the incorporation spray are compared to evaluate the improvement in the analyte signal. RESULTS Prior to the incorporation spray, samples prepared using α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) as the matrix showed low signal while the sample using sinapinic acid (SA) initially exhibited good signal. Following the incorporation spray, the sample using SA did not show an increase in signal; the sample using DHB showed moderate gain factors of 2-5 (full ablation spectra) and 12-336 (raster spectra), while CHCA samples saw large increases in signal, with gain factors of 14-172 (full ablation spectra) and 148-1139 (raster spectra). CONCLUSIONS The use of an incorporation spray to apply solvent by ESD to a matrix layer already deposited by ESD provides an increase in signal by both promoting incorporation of the analyte within and homogenizing the distribution of the incorporated analyte throughout the matrix layer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Brian J Malys
- Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA
| | - Kevin G Owens
- Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Systematic assessment of surfactants for matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chim Acta 2017; 963:76-82. [DOI: 10.1016/j.aca.2017.01.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 11/18/2022]
|
15
|
Sarkis GA, Mangaonkar MD, Moghieb A, Lelling B, Guertin M, Yadikar H, Yang Z, Kobeissy F, Wang KKW. The Application of Proteomics to Traumatic Brain and Spinal Cord Injuries. Curr Neurol Neurosci Rep 2017; 17:23. [DOI: 10.1007/s11910-017-0736-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Abstract
One of the big clinical challenges in the treatment of cancer is the different behavior of cancer patients under guideline therapy. An important determinant for this phenomenon has been identified as inter- and intratumor heterogeneity. While intertumor heterogeneity refers to the differences in cancer characteristics between patients, intratumor heterogeneity refers to the clonal and nongenetic molecular diversity within a patient. The deciphering of intratumor heterogeneity is recognized as key to the development of novel therapeutics or treatment regimens. The investigation of intratumor heterogeneity is challenging since it requires an untargeted molecular analysis technique that accounts for the spatial and temporal dynamics of the tumor. So far, next-generation sequencing has contributed most to the understanding of clonal evolution within a cancer patient. However, it falls short in accounting for the spatial dimension. Mass spectrometry imaging (MSI) is a powerful tool for the untargeted but spatially resolved molecular analysis of biological tissues such as solid tumors. As it provides multidimensional datasets by the parallel acquisition of hundreds of mass channels, multivariate data analysis methods can be applied for the automated annotation of tissues. Moreover, it integrates the histology of the sample, which enables studying the molecular information in a histopathological context. This chapter will illustrate how MSI in combination with statistical methods and histology has been used for the description and discovery of intratumor heterogeneity in different cancers. This will give evidence that MSI constitutes a unique tool for the investigation of intratumor heterogeneity, and could hence become a key technology in cancer research.
Collapse
|
17
|
Guinan TM, Abdelmaksoud H, Voelcker NH. Rapid detection of nicotine from breath using desorption ionisation on porous silicon. Chem Commun (Camb) 2017; 53:5224-5226. [DOI: 10.1039/c7cc00243b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Desorption ionisation on porous silicon mass spectrometry was used for the detection of nicotine from exhaled breath.
Collapse
Affiliation(s)
- T. M. Guinan
- Future Industries Institute
- University of South Australia
- Adelaide
- Australia
- Monash Institute of Pharmaceutical Sciences
| | - H. Abdelmaksoud
- Future Industries Institute
- University of South Australia
- Adelaide
- Australia
- Monash Institute of Pharmaceutical Sciences
| | - N. H. Voelcker
- Future Industries Institute
- University of South Australia
- Adelaide
- Australia
- Monash Institute of Pharmaceutical Sciences
| |
Collapse
|
18
|
Zubair F, Laibinis PE, Swisher WG, Yang J, Spraggins JM, Norris JL, Caprioli RM. Trypsin and MALDI matrix pre-coated targets simplify sample preparation for mapping proteomic distributions within biological tissues by imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:1168-1179. [PMID: 27676701 PMCID: PMC5687832 DOI: 10.1002/jms.3888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/20/2016] [Indexed: 05/05/2023]
Abstract
Prefabricated surfaces containing α-cyano-4-hydroxycinnamic acid and trypsin have been developed to facilitate enzymatic digestion of endogenous tissue proteins prior to matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). Tissue sections are placed onto slides that were previously coated with α-cyano-4-hydroxycinnamic acid and trypsin. After incubation to promote enzymatic digestion, the tissue is analyzed by MALDI IMS to determine the spatial distribution of the tryptic fragments. The peptides detected in the MALDI IMS dataset were identified by Liquid chromatography-tandem mass spectrometry/mass spectrometry. Protein identification was further confirmed by correlating the localization of unique tryptic fragments originating from common parent proteins. Using this procedure, proteins with molecular weights as large as 300 kDa were identified and their distributions were imaged in sections of rat brain. In particular, large proteins such as myristoylated alanine-rich C-kinase substrate (29.8 kDa) and spectrin alpha chain, non-erythrocytic 1 (284 kDa) were detected that are not observed without trypsin. The pre-coated targets simplify workflow and increase sample throughput by decreasing the sample preparation time. Further, the approach allows imaging at higher spatial resolution compared with robotic spotters that apply one drop at a time. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Faizan Zubair
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Paul E. Laibinis
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - William G. Swisher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Junhai Yang
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
| | - Jeffrey M. Spraggins
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy L. Norris
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M. Caprioli
- Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Correspondence to: Richard M. Caprioli, Mass Spectrometry Research Center (MSRC), Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
19
|
Rocha B, Cillero-Pastor B, Blanco FJ, Ruiz-Romero C. MALDI mass spectrometry imaging in rheumatic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:784-794. [PMID: 27742553 DOI: 10.1016/j.bbapap.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 01/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a technique used to visualize the spatial distribution of biomolecules such as peptides, proteins, lipids or other organic compounds by their molecular masses. Among the different MSI strategies, MALDI-MSI provides a sensitive and label-free approach for imaging of a wide variety of protein or peptide biomarkers from the surface of tissue sections, being currently used in an increasing number of biomedical applications such as biomarker discovery and tissue classification. In the field of rheumatology, MALDI-MSI has been applied to date for the analysis of joint tissues such as synovial membrane or cartilage. This review summarizes the studies and key achievements obtained using MALDI-MSI to increase understanding on rheumatic pathologies and to describe potential diagnostic or prognostic biomarkers of these diseases. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Beatriz Rocha
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain
| | | | - Francisco J Blanco
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain; RIER-RED de Inflamación y Enfermedades Reumáticas, INIBIC-CHUAC, A Coruña, Spain.
| | - Cristina Ruiz-Romero
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain; CIBER-BBN Instituto de Salud Carlos III, INIBIC-CHUAC, A Coruña, Spain.
| |
Collapse
|
20
|
Label-free quantification of peptides in solution by disposable patterned hydrophilic chip based MALDI imaging. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Imaging mass spectrometry for the precise design of antibody-drug conjugates. Sci Rep 2016; 6:24954. [PMID: 27098163 PMCID: PMC4838941 DOI: 10.1038/srep24954] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/07/2016] [Indexed: 01/25/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a class of immunotherapeutic agents that enable the delivery of cytotoxic drugs to target malignant cells. Because various cancers and tumour vascular endothelia strongly express anti-human tissue factor (TF), we prepared ADCs consisting of a TF-specific monoclonal antibody (mAb) linked to the anticancer agent (ACA) monomethyl auristatin E (MMAE) via a valine-citrulline (Val-Cit) linker (human TF ADC). Identifying the most efficient drug design in advance is difficult because ADCs have complicated structures. The best method of assessing ADCs is to examine their selectivity and efficiency in releasing and distributing the ACA within tumour tissue. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) can be used to directly detect the distributions of native molecules within tumour tissues. Here, MALDI-IMS enabled the identification of the intratumour distribution of MMAE released from the ADC. In conclusion, MALDI-IMS is a useful tool to assess ADCs and facilitate the optimization of ADC design.
Collapse
|
22
|
Abstract
Plant-omics is rapidly becoming an important field of study in the scientific community due to the urgent need to address many of the most important questions facing humanity today with regard to agriculture, medicine, biofuels, environmental decontamination, ecological sustainability, etc. High-performance mass spectrometry is a dominant tool for interrogating the metabolomes, peptidomes, and proteomes of a diversity of plant species under various conditions, revealing key insights into the functions and mechanisms of plant biochemistry.
Collapse
Affiliation(s)
- Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison , 777 Highland Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
23
|
Bodzon-Kulakowska A, Suder P. Imaging mass spectrometry: Instrumentation, applications, and combination with other visualization techniques. MASS SPECTROMETRY REVIEWS 2016; 35:147-69. [PMID: 25962625 DOI: 10.1002/mas.21468] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/23/2015] [Indexed: 05/18/2023]
Abstract
Imaging Mass Spectrometry (IMS) is strengthening its position as a valuable analytical tool. It has unique ability to identify structures and to unravel molecular changes that occur in the precisely defined part of the sample. These unique features open new possibilities in the field of various aspects of biological research. In this review we briefly discuss the main imaging mass spectrometry techniques, as well as the nature of biological samples and molecules, which might be analyzed by such methodology. Moreover, a novel approach, where different analytical techniques might be combined with the results of IMS study, is emphasized and discussed. With such a fast development of IMS and related methods, we can foresee the promising future of this technique.
Collapse
Affiliation(s)
- Anna Bodzon-Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
- Academic Centre for Materials and Nanotechnology (ACMiN), AGH University of Science and Technology, 30-059 Krakow, Poland
| |
Collapse
|
24
|
Abstract
Pharmacodynamics and toxicodynamics are the study of the biochemical and physiological effects of therapeutic agents and toxicants and their mechanisms of action. MALDI-MS imaging offers great potential for the study of pharmaco/toxicodynamic responses in tissue owing is its ability to study multiple biomarkers simultaneously in a label-free manner. Here, existing examples of such studies examining anticancer drugs and topically applied treatments are described. Examination of the literature shows that the use of MS imaging in pharmaco/toxicodynamic studies is in fact quite low. The reasons for this are discussed and potential developments in the methodology that might lead to its further use are described.
Collapse
|
25
|
Buchberger A, Yu Q, Li L. Advances in Mass Spectrometric Tools for Probing Neuropeptides. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:485-509. [PMID: 26070718 PMCID: PMC6314846 DOI: 10.1146/annurev-anchem-071114-040210] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.
Collapse
Affiliation(s)
- Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| |
Collapse
|
26
|
MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. J Transl Med 2015; 95:422-31. [PMID: 25621874 DOI: 10.1038/labinvest.2014.156] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 01/14/2023] Open
Abstract
MALDI Imaging mass spectrometry has entered the field of tissue-based research by providing unique advantages for analyzing tissue specimen in an unprecedented detail. A broad spectrum of analytes ranging from proteins, peptides, protein modification over small molecules, drugs and their metabolites as well as pharmaceutical components, endogenous cell metabolites, lipids, and other analytes are made accessible by this in situ technique in tissue. Some of them were even not accessible in tissues within the histological context before. Thereby, the great advantage of MALDI Imaging is the correlation of molecular information with traditional histology by keeping the spatial localization information of the analytes after mass spectrometric measurement. This method is label-free and allows multiplex analysis of hundreds to thousands of molecules in the very same tissue section simultaneously. Imaging mass spectrometry brings a new quality of molecular data and links the expert discipline of pathology and deep molecular mass spectrometric analysis to tissue-based research. This review will focus on state-of-the-art of MALDI Imaging mass spectrometry, its recent applications by analyzing tissue specimen and the contributions in understanding the biology of disease as well as its perspectives for pathology research and practice.
Collapse
|
27
|
Mainini V, Lalowski M, Gotsopoulos A, Bitsika V, Baumann M, Magni F. MALDI-imaging mass spectrometry on tissues. Methods Mol Biol 2015; 1243:139-64. [PMID: 25384744 DOI: 10.1007/978-1-4939-1872-0_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF)-profiling and imaging mass spectrometry (MSI) are promising technologies for measuring hundreds of different molecules directly on tissues. For instance, small molecules, drugs and their metabolites, endogenous lipids, carbohydrates and complex peptides/proteins can be measured at the same time. In the most advanced instruments, it is achieved without significant disruption of sample integrity. MSI is a unique approach for assessing the spatial distribution of molecules using graphical multidimensional maps of their constituent analytes, which may for instance be correlated with histopathological alterations in patient tissues. MALDI-TOF-MSI technology has been implemented in hospitals of several countries, where it is routinely used for quick pathogen(s) identification, a task formerly accomplished by laborious and expensive DNA/RNA-based PCR (polymerase chain reaction) screening.In this chapter, we describe how MSI is performed, what is required from the researcher, the instrument vendors and finally what can be achieved with MSI. We restrict our descriptions only to MALDI-MSI although several other MS techniques of ionization can easily be linked to MSI.
Collapse
Affiliation(s)
- Veronica Mainini
- Department of Health Sciences, University Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Enriched by a decade of remarkable developments, matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has witnessed a phenomenal expansion. Initially introduced for the mapping of peptides and intact proteins from mammalian tissue sections, MALDI IMS applications now extend to a wide range of molecules including peptides, lipids, metabolites and xenobiotics. Technology and methodology are quickly evolving to push the limits of the technique forward. Within a short period of time, numerous protocols and concepts have been developed and introduced in tissue section preparation, nonexhaustively including in situ tissue chemistries and solvent-free matrix depositions. Considering the past progress and current capabilities, this Review aims to cover the different aspects and challenges of tissue section preparation for MALDI IMS.
Collapse
|
29
|
Affiliation(s)
- Bernhard Spengler
- Justus Liebig University Giessen, Institute of Inorganic and Analytical
Chemistry, Schubertstrasse
60, Building 16, 35392 Giessen, Germany
| |
Collapse
|
30
|
Challenges and recent advances in mass spectrometric imaging of neurotransmitters. Bioanalysis 2014; 6:525-40. [PMID: 24568355 DOI: 10.4155/bio.13.341] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. Herein, we briefly review new MSI studies of neurotransmitters, focusing specifically on the challenges and recent advances of MSI of neurotransmitters.
Collapse
|
31
|
Gabriel SJ, Schwarzinger C, Schwarzinger B, Panne U, Weidner SM. Matrix segregation as the major cause for sample inhomogeneity in MALDI dried droplet spots. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1356-1363. [PMID: 24781460 DOI: 10.1007/s13361-014-0913-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
The segregation in dried droplet MALDI sample spots was analyzed with regard to the matrix-to-sample ratio using optical microscopy, MALDI imaging mass spectrometry (MALDI MSI) and IR imaging spectroscopy. In this context, different polymer/matrix/solvent systems usually applied in the analysis of synthetic polymers were investigated. The use of typical matrix concentrations (10 mg mL⁻¹) in almost every case resulted in ring patterns, whereas higher concentrated matrix solutions always led to homogeneous sample spot layers. The data revealed that segregation is predominantly caused by matrix transport in the drying droplet, whereas polymer segregation seems to be only secondary.
Collapse
Affiliation(s)
- Stefan J Gabriel
- Federal Institute for Materials Research and Testing (BAM), D-12489, Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Ahlf DR, Masyuko RN, Hummon AB, Bohn PW. Correlated mass spectrometry imaging and confocal Raman microscopy for studies of three-dimensional cell culture sections. Analyst 2014; 139:4578-85. [DOI: 10.1039/c4an00826j] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Chatterji B, Pich A. MALDI imaging mass spectrometry and analysis of endogenous peptides. Expert Rev Proteomics 2014; 10:381-8. [PMID: 23992420 DOI: 10.1586/14789450.2013.814939] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, MALDI imaging mass spectrometry (MALDI-IMS) has developed as a promising tool to investigate the spatial distribution of biomolecules in intact tissue specimens. Ion densities of various molecules can be displayed as heat maps while preserving anatomical structures. In this short review, an overview of different biomolecules that can be analyzed by MALDI-IMS is given. Many reviews have covered imaging of lipids, small metabolites, whole proteins and enzymatically digested proteins in the past. However, little is known about imaging of endogenous peptides, for example, in the rat brain, and this will therefore be highlighted in this review. Furthermore, sample preparation of frozen or formalin-fixed, paraffin-embedded (FFPE) tissue is crucial for imaging experiments. Therefore, some aspects of sample preparation will be addressed, including washing and desalting, the choice of MALDI matrix and its deposition. Apart from mapping endogenous peptides, their reliable identification in situ still remains challenging and will be discussed as well.
Collapse
Affiliation(s)
- Bijon Chatterji
- Hannover Medical School, Institute of Toxicology, Core Unit Mass Spectrometry - Proteomics, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | | |
Collapse
|
34
|
Gabriel SJ, Pfeifer D, Schwarzinger C, Panne U, Weidner SM. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric imaging of synthetic polymer sample spots prepared using ionic liquid matrices. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:489-498. [PMID: 24497287 DOI: 10.1002/rcm.6810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Polymer sample spots for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) prepared by the dried-droplet method often reveal ring formation accompanied by possible segregation of matrix and sample molecules as well as of the polymer homologs itself. Since the majority of sample spots are prepared by this simple and fast method, a matrix or sample preparation method that excludes such segregation has to be found. METHODS Three different ionic liquid matrices based on conventionally used aromatic compounds for MALDI-TOF MS were prepared. The formation of ionic liquids was proven by (1) H NMR spectroscopy. MALDI-Imaging mass spectrometry was applied to monitor the homogeneity. RESULTS Our results show a superior sample spot homogeneity using ionic liquid matrices. Spots could be sampled several times without visible differences in the mass spectra. A frequently observed loss of matrix in the mass spectrometer vacuum was not observed. The necessary laser irradiance was reduced, which resulted in less polymer fragmentation. CONCLUSIONS Ionic liquid matrices can be used to overcome segregation, a typical drawback of conventional MALDI dried-droplet preparations. Homogeneous sample spots are easy to prepare, stable in the MS vacuum and, thereby, improve the reproducibility of MALDI.
Collapse
Affiliation(s)
- Stefan J Gabriel
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, D-12489, Berlin, Germany
| | | | | | | | | |
Collapse
|
35
|
Mainini V, Pagni F, Garancini M, Giardini V, De Sio G, Cusi C, Arosio C, Roversi G, Chinello C, Caria P, Vanni R, Magni F. An alternative approach in endocrine pathology research: MALDI-IMS in papillary thyroid carcinoma. Endocr Pathol 2013; 24:250-3. [PMID: 24142502 DOI: 10.1007/s12022-013-9273-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Veronica Mainini
- Department of Health Sciences, Proteomics Section, University Milano Bicocca, Monza, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cillero-Pastor B, Heeren RMA. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging for Peptide and Protein Analyses: A Critical Review of On-Tissue Digestion. J Proteome Res 2013; 13:325-35. [DOI: 10.1021/pr400743a] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Berta Cillero-Pastor
- FOM Institute AMOLF, Biomolecular Imaging Mass Spectrometry (BIMS), AMOLF Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ron M. A. Heeren
- FOM Institute AMOLF, Biomolecular Imaging Mass Spectrometry (BIMS), AMOLF Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
37
|
MALDI-MS tissue imaging identification of biliverdin reductase B overexpression in prostate cancer. J Proteomics 2013; 91:500-14. [DOI: 10.1016/j.jprot.2013.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 01/18/2023]
|