1
|
Trayford C, van Rijt S. In situ modified mesoporous silica nanoparticles: synthesis, properties and theranostic applications. Biomater Sci 2024; 12:5450-5467. [PMID: 39371000 PMCID: PMC11457002 DOI: 10.1039/d4bm00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Over the last 20 years, mesoporous silica nanoparticles (MSNs) have drawn considerable attention in the biomedical field due to their large surface area, porous network, biocompatibility, and abundant modification possibilities. In situ MSN modification refers to the incorporation of materials such as alkoxysilanes, ions and nanoparticles (NPs) in the silica matrix during synthesis. Matrix modification is a popular approach for endowing MSNs with additional functionalities such as imaging properties, bioactivity, and degradability, while leaving the mesopores free for drug loading. As such, in situ modified MSNs are considered promising theranostic agents. This review provides an extensive overview of different materials and modification strategies that have been used and their effect on MSN properties. We also highlight how in situ modified MSNs have been applied in theranostic applications, oncology and regenerative medicine. We conclude with perspectives on the future outlooks and current challenges for the widespread clinical use of in situ modified MSNs.
Collapse
Affiliation(s)
- Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
2
|
Leite KLDF, Martins ML, Dias MDO, Tavares FOM, Justino IBDS, Cabral LM, Neves ADA, Cavalcanti YW, Maia LC. In vitro and in situ caries-preventive effect of a new combined fluoride and calcium experimental nanocomposite solution. Braz Dent J 2023; 34:119-128. [PMID: 37466519 PMCID: PMC10355272 DOI: 10.1590/0103-6440202305460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 07/20/2023] Open
Abstract
To assess the in vitro and in situ effect of experimental combined fluoride and calcium nanocomposite solutions on dental caries prevention. Nanocompound mesoporous silica (MS) with calcium (Ca) and sodium fluoride (NaF) - (MSCaNaF); MS with NaF (MSNaF), NaF solution (positive control), and deionized water (negative control - CG) were studied. The specimens (n=130) were submitted in vitro to a multispecies biofilm in the presence of 2% sucrose. After 24 h and 48 h, the culture medium pH, the percent of surface mineral loss (%SML), and lesion depth (ΔZ) were analyzed. In the in situ study, 10 volunteers participated in four phases of 7-days each. The products were applied on the specimens (n=240) before 20% sucrose solution drips. The polysaccharides (SEPS and IEPS), %SML and roughness (Sa) were evaluated. There was an in vitro decrease in pH values in 24h and 48h, compared to baseline. The MSCaNaF and MSNaF groups obtained lower values of %SML and ΔZ (p < 0.05) than CG and NaF after 24h and were similar to NaF after 48h (p<0.05). In situ results showed similar SEPS and IEPS among all groups after 48h. An after 7-days, the nanocomposites had similar values (p>0.05), while NaF was similar to CG (p>0.05). After 48h, the MSCaNaF and MSNaF reduced the %SML (p<0.05). After 7-days, both experimental nanocomposites were similar to NaF (p>0.05). Regarding Sa, MSCaNaF was better than NaF for both periods (p<0.05). The nanocomposites controlled the in vitro and in situ enamel demineralization, mainly in the initial periods.
Collapse
Affiliation(s)
- Karla Lorene de França Leite
- Department of Pediatric Dentistry and Orthodontics, School of
Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Leonel Martins
- Department of Pediatric Dentistry and Orthodontics, School of
Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Millene de Oliveira Dias
- Department of Pediatric Dentistry and Orthodontics, School of
Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda Oliveira Miranda Tavares
- Department of Pediatric Dentistry and Orthodontics, School of
Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Lúcio Mendes Cabral
- Department of Drugs and Medicines, School of Pharmacy, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Aline de Almeida Neves
- Department of Pediatric Dentistry and Orthodontics, School of
Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of
Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
3
|
Mesoporous silicas in materials engineering: Nanodevices for bionanotechnologies. Mater Today Bio 2022; 17:100472. [PMCID: PMC9627595 DOI: 10.1016/j.mtbio.2022.100472] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
|
4
|
Fateh Basharzad S, Hamidi M, Maleki A, Karami Z, Mohamadpour H, Reza Saghatchi Zanjani M. Polysorbate-coated mesoporous silica nanoparticles as an efficient carrier for improved rivastigmine brain delivery. Brain Res 2022; 1781:147786. [PMID: 35041841 DOI: 10.1016/j.brainres.2022.147786] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
Targeted delivery of neurological therapeutic to the brain has been attracting more and more attention to the treatment of central nervous system (CNS) diseases. Nonetheless, the main obstacle in this road map is the existence of a blood-brain barrier (BBB) which limits the penetration efficiency of most CNS drugs into the brain parenchyma. This present investigation describes a facile synthetic strategy to prepare a highly biocompatible calcium-doped mesoporous silica nanoparticles (MSNs) functionalized by polysorbate-80 (PS) as targeting ligand to deliver rivastigmine (RV) into the brain via crossing the BBB. The developed nanosystem was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), Zeta potential, and N2-adsorption-desorption analysis. In vitro hemolysis studies were carried out to confirm the biocompatibility of the nanocarriers. Our in vivo studies in an animal model of rats showed that the RV-loaded nanosystem was able to enhance the brain-to-plasma concentration ratio, brain uptake clearance, and plasma elimination half-life of the drug compared to the free one drug following intravenous (IV) administration. The results revealed that functionalization of MSNs by PS is crucial to deliver RV into the brain, suggesting PS-functionalized MSNs could be an effective carrier to deliver RV to the brain while overcoming BBB.
Collapse
Affiliation(s)
- Samaneh Fateh Basharzad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Mohamadpour
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
5
|
Tang J, Zhou S, Huang M, Liang Z, Su S, Wen Y, Zhu QL, Wu X. Two isomeric metal-organic frameworks bearing stilbene moieties for high volatile iodine uptake. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00835a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient, green, and economical removal of radioactive iodine (I2) has drawn worldwide attention in the safe development of nuclear energy. Metal-organic frameworks (MOFs) have been demonstrated to be a...
Collapse
|
6
|
Leite KLDF, Vieira TI, Alexandria AK, Silva RFD, Silva ASDS, Lopes RT, Fonseca-Gonçalves A, Neves ADA, Cabral LM, Pithon MM, Cavalcanti YW, Maia LC. In vitro effect of experimental nanocomposites solutions on the prevention of dental caries around orthodontic brackets. Braz Dent J 2021; 32:62-73. [PMID: 34787252 DOI: 10.1590/0103-6440202104331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to evaluate the in vitro effect of a single application of experimental nanocomposite solutions on the prevention of dental caries around orthodontic brackets. The specimens were exposed to mesoporous silica (MS) nanocomposites containing fluoride by association with titanium tetrafluoride (TiF4) or sodium fluoride (NaF). Nanocomposites also could contain calcium and groups were described as MSCaTiF4, MSTiF4, MSCaNaF, MSNaF, and controls (TiF4, and NaF). Specimens were subjected to the formation of a multispecies biofilm to generate a cariogenic challenge. After 24h, both pH and total soluble fluoride concentration of the culture medium were assessed. Mineral loss was evaluated by percentage of surface mineral loss (%SML), mineral volume variation (ΔZ) of inner enamel and polarized light microscopy (PL). Linear (Ra) and volumetric (Sa) surface roughness and scanning electronic microscopy (SEM) were used to assess enamel topography. Statistical analyses were conducted considering p<0.05. MSNaF had the highest value of culture medium pH after cariogenic challenge, similarly to MSTiF4. All nanocomposite solutions released less fluoride than their controls NaF and TiF4 (p<0.05). All nanocomposite solutions presented lower %SML compared to their respective control groups (p<0.05). Lower Ra, Sa and ΔZ were observed for experimental groups compared to TiF4 (p<0.05). The results were confirmed by PL and SEM analysis. The experimental nanocomposite solutions contributed for lower enamel demineralization around orthodontic brackets.
Collapse
Affiliation(s)
- Karla Lorene de França Leite
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Thiago Isidro Vieira
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Adílis Kalina Alexandria
- Department of Drugs and Medicines, School of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Raphael Ferreira da Silva
- Department of Community and Preventive Dentistry, School of Dentistry, Universidade do Estado do Rio de Janeiro(UERJ), Rio de Janeiro, Brasil
| | - Aline Saddock de Sá Silva
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ricardo Tadeu Lopes
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Andréa Fonseca-Gonçalves
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Aline de Almeida Neves
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Lúcio Mendes Cabral
- Department of Drugs and Medicines, School of Pharmacy, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Matheus Melo Pithon
- Department of Healthy I, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brasil
| | - Yuri Wanderley Cavalcanti
- Department of Clinical and Social Odontology, School of Dentistry, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
7
|
Abu-Dief A, Alsehli M, Al-Enizi A, Nafady A. Recent Advances in Mesoporous Silica Nanoparticles for Targeted Drug Delivery applications. Curr Drug Deliv 2021; 19:436-450. [PMID: 34238185 DOI: 10.2174/1567201818666210708123007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology provides the means to design and fabricate delivery vehicles capable of overcoming physiologically imposed obstacles and undesirable side effects of systemic drug delivery. This protocol allows maximal targeting effectiveness and therefore enhances therapeutic efficiency. In recent years, mesoporous silica nanoparticles (MSNPs) have sparked interest in the nanomedicine research community, particularly for their promising applications in cancer treatment. The intrinsic physio-chemical stability, facile functionalization, high surface area, low toxicity, and great loading capacity for a wide range of chemotherapeutic agents make MSNPs very appealing candidates for controllable drug delivery systems. Importantly, the peculiar nanostructures of MSNPs enabled them to serve as an effective drug, gene, protein, and antigen delivery vehicle for a variety of therapeutic regimens. For these reasons, in this review article, we underscore the recent progress in the design and synthesis of MSNPs and the parameters influencing their characteristic features and activities. In addition, the process of absorption, dissemination, and secretion by injection or oral management of MSNPs are also discussed, as they are key directions for the potential utilization of MSNPs. Factors influencing the in vivo fate of MSNPs will also be highlighted, with the main focus on particle size, morphology, porosity, surface functionality, and oxidation. Given that combining other functional materials with MSNPs may increase their biological compatibility, monitor drug discharge, or improve absorption by tumor cells coated MSNPs; these aspects are also covered and discussed herein.
Collapse
Affiliation(s)
- Ahmed Abu-Dief
- Chemistry Department, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Mosa Alsehli
- Chemistry Department, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Abdullah Al-Enizi
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Gupta S, Majumdar S, Krishnamurthy S. Bioactive glass: A multifunctional delivery system. J Control Release 2021; 335:481-497. [PMID: 34087250 DOI: 10.1016/j.jconrel.2021.05.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
Bioactive glasses (BAGs) were invented five decades ago and have been widely used clinically in orthopedic and stomatology. However, in the past two decades, BAGs have been explored immensely by several researchers worldwide as a multifunctional delivery system for a multitude of therapeutics ranging from metal ions to small molecules (e.g., drugs) and macromolecules (e.g., DNA). The impetus for devising a BAG-based delivery system in the 21st century is based upon the facilitative properties it offers for entrapment of a wide range of therapeutic molecules and the tailorable controlled release kinetics to the target tissue site along with the biological activity of the ionic dissolution products in several pathological conditions such as osteoporosis, cancer, infection, and inflammation. This review comprises two parts: the first part discusses the need for a new delivery system and how the journey from melt quench progressed towards template-based sol-gel mesoporous. In the second part, we have comprehended the scientific advancements made so far, emphasizing BAGs as a delivery system ranging from therapeutic ions to phytopharmaceuticals. We have also highlighted a few loopholes that have prevented bench-to-bedside clinical translation of a plethora of elucidative researches done so far.
Collapse
Affiliation(s)
- Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
9
|
Zheng K, Sui B, Ilyas K, Boccaccini AR. Porous bioactive glass micro- and nanospheres with controlled morphology: developments, properties and emerging biomedical applications. MATERIALS HORIZONS 2021; 8:300-335. [PMID: 34821257 DOI: 10.1039/d0mh01498b] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, porous bioactive glass micro/nanospheres (PBGSs) have emerged as attractive biomaterials in various biomedical applications where such engineered particles provide suitable functions, from tissue engineering to drug delivery. The design and synthesis of PBGSs with controllable particle size and pore structure are critical for such applications. PBGSs have been successfully synthesized using melt-quenching and sol-gel based methods. The morphology of PBGSs is controllable by tuning the processing parameters and precursor characteristics during the synthesis. In this comprehensive review on PBGSs, we first overview the synthesis approaches for PBGSs, including both melt-quenching and sol-gel based strategies. Sol-gel processing is the primary technology used to produce PBGSs, allowing for control over the chemical compositions and pore structure of particles. Particularly, the influence of pore-forming templates on the morphology of PBGSs is highlighted. Recent progress in the sol-gel synthesis of PBGSs with sophisticated pore structures (e.g., hollow mesoporous, dendritic fibrous mesoporous) is also covered. The challenges regarding the control of particle morphology, including the influence of metal ion precursors and pore expansion, are discussed in detail. We also highlight the recent achievements of PBGSs in a number of biomedical applications, including bone tissue regeneration, wound healing, therapeutic agent delivery, bioimaging, and cancer therapy. Finally, we conclude with our perspectives on the directions of future research based on identified challenges and potential new developments and applications of PBGSs.
Collapse
Affiliation(s)
- Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | | | | | | |
Collapse
|
10
|
Toprak Ö, Topuz B, Monsef YA, Oto Ç, Orhan K, Karakeçili A. BMP-6 carrying metal organic framework-embedded in bioresorbable electrospun fibers for enhanced bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111738. [PMID: 33545881 DOI: 10.1016/j.msec.2020.111738] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Biomolecule carrier structures have attracted substantial interest owing to their potential utilizations in the field of bone tissue engineering. In this study, MOF-embedded electrospun fiber scaffold for the controlled release of BMP-6 was developed for the first time, to enrich bone regeneration efficacy. The scaffolds were achieved by first, one-pot rapid crystallization of BMP-6 encapsulated ZIF-8 nanocrystals-as a novel carrier for growth factor molecules- and then electrospinning of the blending solution composed of poly (ε-caprolactone) and BMP-6 encapsulated ZIF-8 nanocrystals. BMP-6 molecule encapsulation efficiency for ZIF-8 nanocrystals was calculated as 98%. The in-vitro studies showed that, the bioactivity of BMP-6 was preserved and the release lasted up to 30 days. The release kinetics fitted the Korsmeyer-Peppas model exhibiting a pseudo-Fickian behavior. The in-vitro osteogenesis studies revealed the superior effect of sustained release of BMP-6 towards osteogenic differentiation of MC3T3-E1 pre-osteoblasts. In-vivo studies also revealed that the sustained slow release of BMP-6 was responsible for the generation of well-mineralized, new bone formation in a rat cranial defect. Our results proved that; MOF-carriers embedded in electrospun scaffolds can be used as an effective platform for bone regeneration in bone tissue engineering applications. The proposed approach can easily be adapted for various growth factor molecules for different tissue engineering applications.
Collapse
Affiliation(s)
- Özge Toprak
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey
| | - Berna Topuz
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey
| | - Yanad Abou Monsef
- Ankara University, Faculty of Veterinary Medicine, Department of Pathology, 06110 Ankara, Turkey
| | - Çağdaş Oto
- Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, 06110 Ankara, Turkey; Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of DentoMaxillofacial Radiology, 06100, Ankara, Turkey; Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey
| | - Ayşe Karakeçili
- Ankara University, Faculty of Engineering, Chemical Engineering Department, 06100 Ankara, Turkey.
| |
Collapse
|
11
|
Boffito M, Laurano R, Giasafaki D, Steriotis T, Papadopoulos A, Tonda-Turo C, Cassino C, Charalambopoulou G, Ciardelli G. Embedding Ordered Mesoporous Carbons into Thermosensitive Hydrogels: A Cutting-Edge Strategy to Vehiculate a Cargo and Control Its Release Profile. NANOMATERIALS 2020; 10:nano10112165. [PMID: 33138290 PMCID: PMC7692333 DOI: 10.3390/nano10112165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
The high drug loading capacity, cytocompatibility and easy functionalization of ordered mesoporous carbons (OMCs) make them attractive nanocarriers to treat several pathologies. OMCs’ efficiency could be further increased by embedding them into a hydrogel phase for an in loco prolonged drug release. In this work, OMCs were embedded into injectable thermosensitive hydrogels. In detail, rod-like (diameter ca. 250 nm, length ca. 700 nm) and spherical (diameter approximately 120 nm) OMCs were synthesized by nanocasting selected templates and loaded with ibuprofen through a melt infiltration method to achieve complete filling of their pores (100% loading yield). In parallel, an amphiphilic Poloxamer® 407-based poly(ether urethane) was synthesized (Mn¯ 72 kDa) and solubilized at 15 and 20% w/v concentration in saline solution to design thermosensitive hydrogels. OMC incorporation into the hydrogels (10 mg/mL concentration) did not negatively affect their gelation potential. Hybrid systems successfully released ibuprofen at a slower rate compared to control gels (gels embedding ibuprofen as such), but with no significant differences between rod-like and spherical OMC-loaded gels. OMCs can thus work as effective drug reservoirs that progressively release their payload over time and also upon encapsulation in a hydrogel phase, thus opening the way to their application to treat many different pathological states (e.g., as topical medications).
Collapse
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (R.L.); (C.T.-T.); (G.C.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
- Correspondence: (M.B.); (G.C.); Tel.: +39-0131-229-347 (M.B.); +30-650-3404 (G.C.)
| | - Rossella Laurano
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (R.L.); (C.T.-T.); (G.C.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Dimitra Giasafaki
- National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (D.G.); (T.S.); (A.P.)
| | - Theodore Steriotis
- National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (D.G.); (T.S.); (A.P.)
| | - Athanasios Papadopoulos
- National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (D.G.); (T.S.); (A.P.)
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (R.L.); (C.T.-T.); (G.C.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy;
| | - Georgia Charalambopoulou
- National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (D.G.); (T.S.); (A.P.)
- Correspondence: (M.B.); (G.C.); Tel.: +39-0131-229-347 (M.B.); +30-650-3404 (G.C.)
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (R.L.); (C.T.-T.); (G.C.)
- PolitoBIOMed Lab, Politecnico di Torino, 10129 Turin, Italy
| |
Collapse
|
12
|
Karakeçili A, Topuz B, Korpayev S, Erdek M. Metal-organic frameworks for on-demand pH controlled delivery of vancomycin from chitosan scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110098. [DOI: 10.1016/j.msec.2019.110098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
|
13
|
Jamali A, Shemirani F, Morsali A. A comparative study of adsorption and removal of organophosphorus insecticides from aqueous solution by Zr-based MOFs. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Bisso S, Mura S, Castagner B, Couvreur P, Leroux JC. Dual delivery of nucleic acids and PEGylated-bisphosphonates via calcium phosphate nanoparticles. Eur J Pharm Biopharm 2019; 142:142-152. [PMID: 31220571 DOI: 10.1016/j.ejpb.2019.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022]
Abstract
Despite many years of research and a few success stories with gene therapeutics, efficient and safe DNA delivery remains a major bottleneck for the clinical translation of gene-based therapies. Gene transfection with calcium phosphate (CaP) nanoparticles brings the advantages of low toxicity, high DNA entrapment efficiency and good endosomal escape properties. The macroscale aggregation of CaP nanoparticles can be easily prevented through surface coating with bisphosphonate conjugates. Bisphosphonates, such as alendronate, recently showed promising anticancer effects. However, their poor cellular permeability and preferential bone accumulation hamper their full application in chemotherapy. Here, we investigated the dual delivery of plasmid DNA and alendronate using CaP nanoparticles, with the goal to facilitate cellular internalization of both compounds and potentially achieve a combined pharmacological effect on the same or different cell lines. A pH-sensitive poly(ethylene glycol)-alendronate conjugate was synthetized and used to formulate stable plasmid DNA-loaded CaP nanoparticles. These particles displayed good transfection efficiency in cancer cells and a strong cytotoxic effect on macrophages. The in vivo transfection efficiency, however, remained low, calling for an improvement of the system, possibly with respect to the extent of particle uptake and their physical stability.
Collapse
Affiliation(s)
- Sofia Bisso
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Simona Mura
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Ye Y, Zhao L, Hu S, Liang A, Li Y, Zhuang Q, Tao G, Gu J. Specific detection of hypochlorite based on the size-selective effect of luminophore integrated MOF-801 synthesized by a one-pot strategy. Dalton Trans 2019; 48:2617-2625. [PMID: 30720803 DOI: 10.1039/c8dt04692a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypochlorous acid (HClO), as one of the reactive oxygen species, plays a key role in a variety of physiological and pathological processes, while its accurate and specific in vitro monitoring remains a profound challenge. Herein, a novel luminescent metal-organic framework with high chemical stability has been designed for the specific detection of intracellular ClO-. The specificity was realized by the size-selective effect of MOF-801 with an ultra-small aperture, which can inhibit the entry of large-sized interferents into the cages of MOFs. A universal "ship in a bottle" approach has been proposed to construct this novel sensory platform, in which a large class of luminescent molecules containing carboxylic groups serve as modulators and combine with Zr6 clusters, eventually becoming the luminescent genes of these novel designed MOF-801. Luminescent molecules were readily locked in the framework since they were larger than the small pore entrance of MOF-801, skillfully solving the possible issue of dye leakage. By introducing active sites of 5-aminofluorescein (AF) into MOF-801 (AF@MOF-801) as an example, an excellent ClO- sensing probe was fabricated, which showed strong reliability and excellent sensing performance toward intracellular ClO- with an ultrahigh linear correlation of the Stern-Volmer equation, a rapid response time as short as 30 s and a limit of detection (LOD) as low as 0.05172 μM. Compared with the free AF molecular probe, the specificity of AF@MOF-801 NPs toward ClO- was scarcely affected by other possibly coexistent large-sized interferents in biosystems. The in vitro monitoring of ClO- was also tested with these newly developed AF@MOF-801 NPs, prefiguring their great promise as a robust imaging tool to disclose the complexities of ClO- homeostasis and its pathophysiological contributions.
Collapse
Affiliation(s)
- Yunxi Ye
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed Pharmacother 2018; 109:1100-1111. [PMID: 30551360 DOI: 10.1016/j.biopha.2018.10.167] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Based on unique intrinsic properties of mesoporous silica nanoparticles (MSNs) such as high surface area, large pore size, good biocompatibility and biodegradability, stable aqueous dispersion, they have received much attention in the recent decades for their applications as a promising platform in the biomedicine field. These porous structures possess a pore size ranging from 2 to 50 nm which make them excellent candidates for various biomedical applications. Herein, at first we described the common approaches of cargo loading and release processes from MSNs. Then, the intracellular uptake, safety and cytotoxicity aspects of MSNs are discussed as well. This review also highlights the most recent advances in the biomedical applications of MSNs, including 1) MSNs-based carriers, 2) MSNs as bioimaging agents, 3) MSNs-based biosensors, 4) MSNs as therapeutic agents (photodynamic therapy), 5) MSN based quantum dots, 6) MSNs as platforms for upconverting nanoparticles, and 6) MSNs in tissue engineering.
Collapse
Affiliation(s)
- Samira Jafari
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Loghman Alaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
17
|
Maqbool Q, Chanchal A, Srivastava A. Tween 20-Assisted Synthesis of Uniform Mesoporous Silica Nanospheres with Wormhole Porosity for Efficient Intracellular Curcumin Delivery. ChemistrySelect 2018. [DOI: 10.1002/slct.201800386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qysar Maqbool
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal Bypass Road Bhauri Bhopal-462066, MP India
| | - Abhishek Chanchal
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal Bypass Road Bhauri Bhopal-462066, MP India
| | - Aasheesh Srivastava
- Department of Chemistry; Indian Institute of Science Education and Research (IISER) Bhopal; Bhopal Bypass Road Bhauri Bhopal-462066, MP India
| |
Collapse
|
18
|
Zeleňák V, Beňová E, Almáši M, Halamová D, Hornebecq V, Hronský V. Photo-switchable nanoporous silica supports for controlled drug delivery. NEW J CHEM 2018. [DOI: 10.1039/c8nj00267c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A stimuli-responsive drug delivery system consisting of SBA-12 nanoporous silica modified with a photo-switchable coumarin ligand was studied for the delivery of the non-steroidal anti-inflammatory drug naproxen.
Collapse
Affiliation(s)
- Vladimír Zeleňák
- Department of Inorganic Chemistry
- Faculty of Science
- P.J. Šafárik University
- SK-041 54 Košice
- Slovakia
| | - Eva Beňová
- Department of Inorganic Chemistry
- Faculty of Science
- P.J. Šafárik University
- SK-041 54 Košice
- Slovakia
| | - Miroslav Almáši
- Department of Inorganic Chemistry
- Faculty of Science
- P.J. Šafárik University
- SK-041 54 Košice
- Slovakia
| | - Dáša Halamová
- Department of Inorganic Chemistry
- Faculty of Science
- P.J. Šafárik University
- SK-041 54 Košice
- Slovakia
| | | | - Viktor Hronský
- Department of Physics
- Faculty of Electrical Engineering and Informatics
- Technical University of Košice
- SK-042 00 Košice
- Slovakia
| |
Collapse
|
19
|
Wang Z, Yang J, Li Y, Zhuang Q, Gu J. Simultaneous Degradation and Removal of CrVI
from Aqueous Solution with Zr-Based Metal-Organic Frameworks Bearing Inherent Reductive Sites. Chemistry 2017; 23:15415-15423. [DOI: 10.1002/chem.201702534] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Zhe Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Qixin Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 P.R. China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering; East China University of Science and Technology; Shanghai 200237 P.R. China
| |
Collapse
|
20
|
Li X, Naguib YW, Valdes S, Hufnagel S, Cui Z. Reverse Microemulsion-Based Synthesis of (Bis)phosphonate-Metal Materials with Controllable Physical Properties: An Example Using Zoledronic Acid-Calcium Complexes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14478-14489. [PMID: 28252282 PMCID: PMC5485920 DOI: 10.1021/acsami.6b15006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The development of phosphonate-metal materials is tightly related to the advancement in their synthesis methods. Herein, using zoledronic acid (Zol), a bisphosphonate (bioacitve phosphonate with a "P-C-P" structure), and calcium as model molecules, we applied the reverse microemulsion (RM) method to synthesize a series of Zol-Ca complexes. We comprehensively (i) studied the relationship between RM conditions, including the component ratio of RM, cosurfactants, reaction time, reactant concentration, reaction temperature, and the presence of a phospholipid, 1, 2-dioleoyl-sn-glycero-3-phosphate acid (DOPA), and the physical properties of the complexes synthesized (i.e., shape, size, uniformity, monodispersity, and hydrophilicity/hydrophobicity) and (ii) explored the underlying mechanisms. To evaluate the biomedical application potential of the Zol-Ca complexes synthesized, one type of hydrophobic, DOPA-coated spherical Zol-Ca complexes (denoted as Zol-Ca@DOPA) was formulated into a PEGylated lipid-based nanoparticle formulation (i.e., Zol-Ca@bilipid NPs, ∼24 nm in diameter). In a mouse model with orthotopic mammary tumors, the Zol-Ca@bilipid NPs significantly enhanced the distribution of Zol in tumors, as compared to free Zol. It is expected that the RM-based synthesis of (bis)phosphonate-metal materials with controllable physical properties will help expand their applications.
Collapse
|
21
|
Wang Z, Huang Y, Yang J, Li Y, Zhuang Q, Gu J. The water-based synthesis of chemically stable Zr-based MOFs using pyridine-containing ligands and their exceptionally high adsorption capacity for iodine. Dalton Trans 2017; 46:7412-7420. [DOI: 10.1039/c7dt01084b] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zr-MOFs with inherent pyridine moieties were synthesized by a water-based approach, and exhibited exceptionally high adsorption capacity for I2.
Collapse
Affiliation(s)
- Zhe Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Ying Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qixin Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
22
|
Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev 2016; 45:2327-67. [DOI: 10.1039/c5cs00837a] [Citation(s) in RCA: 1527] [Impact Index Per Article: 190.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes the advances in the study of Zr-based metal–organic frameworks in terms of their design, synthesis, structure, and potential applications.
Collapse
Affiliation(s)
- Yan Bai
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Yibo Dou
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | | | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry
- Texas A&M University
- Texas 77842-3012
- USA
| |
Collapse
|
23
|
Li L, Liu T, Fu C, Tan L, Meng X, Liu H. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1915-24. [DOI: 10.1016/j.nano.2015.07.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/26/2015] [Accepted: 07/03/2015] [Indexed: 11/28/2022]
|
24
|
Zhu X, Li B, Yang J, Li Y, Zhao W, Shi J, Gu J. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS APPLIED MATERIALS & INTERFACES 2015; 7:223-31. [PMID: 25514633 DOI: 10.1021/am5059074] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Though many efforts have been devoted to the adsorptive removal of hazardous materials of organophosphorus pesticides (OPs), it is still highly desirable to develop novel adsorbents with high adsorption capacities. In the current work, the removal of two representative OPs, glyphosate (GP) and glufosinate (GF), was investigated by the exceptionally stable Zr-based MOFs of UiO-67. The abundant Zr-OH groups, resulting from the missing-linker induced terminal hydroxyl groups and the inherent bridging ones in Zr-O clusters of UiO-67 particles, served as natural anchorages for efficient GP and GF capture in relation with their high affinity toward phosphoric groups in OPs. The correlation between the most significant parameters such as contact time, OPs concentration, adsorbent dose, pH, as well as ionic strength with the adsorption capacities was optimized, and the effects of these parameters on the removal efficiency of GP and GF from the polluted aqueous solution were investigated. The adsorption of GP on UiO-67 was faster than that of GF, and a pseudo-second-order rate equation effectively described the uptake kinetics. The Langmuir model exhibited a better fit to adsorption isotherm than the Freundlich model. Thanks to the strong affinity and adequate pore size, the adsorption capacities in UiO-67 approached as high as 3.18 mmol (537 mg) g(-1) for GP and 1.98 mmol (360 mg) g(-1) for GF, which were much higher than those of many other reported adsorbents. The excellent adsorption characteristics of the current adsorbents toward OPs were preserved in a wide pH window and high concentration of the background electrolytes. These prefigured the promising potentials of UiO-67 as novel adsorbent for the efficient removal of OPs from aqueous solution.
Collapse
Affiliation(s)
- Xiangyang Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Zhu X, Gu J, Wang Y, Li B, Li Y, Zhao W, Shi J. Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem Commun (Camb) 2014; 50:8779-82. [DOI: 10.1039/c4cc02570a] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An unprecedented alendronate loading capacity was achieved in UiO-66 nanoparticles thanks to the inherent drug anchorages of Zr–O clusters therein.
Collapse
Affiliation(s)
- Xiangyang Zhu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237, China
| | - Yao Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237, China
| | - Bing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237, China
| | - Yongsheng Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237, China
| | - Wenru Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237, China
| | - Jianlin Shi
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237, China
| |
Collapse
|