1
|
Li Y, Xia M, Zhou J, Hu L, Du Y. Recent advances in gold Janus nanomaterials: Preparation and application. Adv Colloid Interface Sci 2024; 334:103315. [PMID: 39454268 DOI: 10.1016/j.cis.2024.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/02/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Gold Janus nanomaterials have a tremendous significance for the novel bifunctional materials, significantly expanding the application scope of gold nanomaterials, especially Janus gold-thiol coordination polymer due to their exceptional biological characteristics, stability, plasmon effect, etc. The recent research on Janus gold nanoparticles and monolayer films of preparation and application has been summarized and in this review. To begin, we briefly introduce overview of Janus nanomaterials which received intense attention, outline current research trends, and detail the preparation and application of gold nanomaterials. Subsequently, we present comprehensively detailing fabrication strategies and applications of Janus gold nanoparticles. Additionally, we survey recent studies on the Janus gold nano-thickness films and point out the outstanding advantage of application on the tunable surface plasmon resonance, high sensitivity of surface-enhanced Raman scattering and electrical analysis fields. Finally, we discuss the emerging trends in Janus gold nanomaterials and address the associated challenges, thereby providing a comprehensive overview of this area of research.
Collapse
Affiliation(s)
- Yunbo Li
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China.
| | - Minqiang Xia
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Jiahang Zhou
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Lingui Hu
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Yixuan Du
- School of Materials Science & Engineering, Bayreuth Universität, Bayreuth, 95445, Germany.
| |
Collapse
|
2
|
Fernanda Torresan M, Morrone J, Sorbello C, Etchenique R, Angelomé PC, Wolosiuk A. Emissive Platforms Employing NaYF
4
‐based Upconverting Nanoparticles and Mesoporous Metal Oxide Thin Films. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Fernanda Torresan
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
- DQIAyQF – INQUIMAE – CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Josefina Morrone
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
| | - Cecilia Sorbello
- DQIAyQF – INQUIMAE – CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Roberto Etchenique
- DQIAyQF – INQUIMAE – CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Paula C. Angelomé
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
| | - Alejandro Wolosiuk
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
| |
Collapse
|
3
|
Stanzel M, Zhao L, Mohammadi R, Pardehkhorram R, Kunz U, Vogel N, Andrieu-Brunsen A. Simultaneous Nanolocal Polymer and In Situ Readout Unit Placement in Mesoporous Separation Layers. Anal Chem 2021; 93:5394-5402. [PMID: 33724794 PMCID: PMC8027984 DOI: 10.1021/acs.analchem.0c04446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
Bioinspired solid-state nanopores and nanochannels have attracted interest in the last two decades, as they are envisioned to advance future sensing, energy conversion, and separation concepts. Although much effort has been made regarding functionalization of these materials, multifunctionality and accurate positioning of functionalities with nanoscale precision still remain challenging. However, this precision is necessary to meet transport performance and complexity of natural pores in living systems, which are often based on nonequilibrium states and compartmentalization. In this work, a nanolocal functionalization and simultaneous localized sensing strategy inside a filtering mesoporous film using precisely placed plasmonic metal nanoparticles inside mesoporous films with pore accessibility control is demonstrated. A single layer of gold nanoparticles is incorporated into mesoporous thin films with precise spatial control along the nanoscale layer thickness. The local surface plasmon resonance is applied to induce a photopolymerization leading to a nanoscopic polymer shell around the particles and thus nanolocal polymer placement inside the mesoporous material. As near-field modes are sensitive to the dielectric properties of their surrounding, the in situ sensing capability is demonstrated using UV-vis spectroscopy. It is demonstrated that the sensing sensitivity only slightly decreases upon functionalization. The presented nanolocal placement of responsive functional polymers into nanopores offers a simultaneous filtering and nanoscopic readout function. Such a nanoscale local control is envisioned to have a strong impact onto the development of new transport and sensor concepts, especially as the system can be developed into higher complexity using different metal nanoparticles and additional design of mesoporous film filtering properties.
Collapse
Affiliation(s)
- Mathias Stanzel
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Lucy Zhao
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Reza Mohammadi
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Raheleh Pardehkhorram
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Ulrike Kunz
- Department
of Materials and Earth Sciences, Physical Metallurgy Group, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Annette Andrieu-Brunsen
- Ernst-Berl
Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Bastakoti BP, Kuila D, Salomon C, Konarova M, Eguchi M, Na J, Yamauchi Y. Metal-incorporated mesoporous oxides: Synthesis and applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123348. [PMID: 32763679 DOI: 10.1016/j.jhazmat.2020.123348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Mesoporous oxides are outstanding metal nanoparticle catalyst supports owing to their well-defined porous structures. Such mesoporous architectures not only prevent the aggregation of metal nanoparticles but also enhance their catalytic performance. Metal/metal oxide heterojunctions exhibit unique chemical and physical properties because of the surface reconstruction around the junction and electron transfer/interaction across the interface. This article reviews the methods used for synthesizing metal-supported hybrid nanostructures and their applications as catalysts for environmental remediation and sensors for detecting hazardous materials.
Collapse
Affiliation(s)
- Bishnu Prasad Bastakoti
- Department of Chemistry, Applied Sciences & Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| | - Debasish Kuila
- Department of Chemistry, Applied Sciences & Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Muxina Konarova
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Miharu Eguchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia; International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia; International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia; International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia; Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
5
|
Steinberg PY, Zalduendo MM, Giménez G, Soler-Illia GJAA, Angelomé PC. TiO 2 mesoporous thin film architecture as a tool to control Au nanoparticles growth and sensing capabilities. Phys Chem Chem Phys 2019; 21:10347-10356. [PMID: 31073574 DOI: 10.1039/c9cp01896d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper, a systematic study regarding the effect of the mesoporous structure over Au nanoparticles (NPs) growth inside and through the pores of mesoporous TiO2 thin films (MTTFs) is presented, and the effect of such characteristics over the composites' sensing capabilities is evaluated. Highly stable MTTFs with different pore diameters (range: 4-8 nm) and pore arrangements (body- and face-centered cubic) were synthesized and characterized. Au NPs were grown inside the pores, and it was demonstrated-through a careful physicochemical characterization-that the amount of incorporated Au and NP size depends on the pore array; being higher for bigger pore diameters and face-centered cubic structures. The same structure allows the growth of more and longer tips over Au NPs deposited at the thin film-substrate interface. Finally, to confirm the effect of the structural characteristics of the composites over their possible applications, the materials were tested as surface-enhanced Raman scattering (SERS)-based substrates. The composites with a higher amount of Au and more ramified NPs were the ones that presented better sensitivity in the detection of a probe molecule (4-nitrothiophenol). Overall, this work demonstrates that the pore size and ordering in MTTFs determine the materials' accessibility and connectivity, and therefore, have a clear impact on their potential applications.
Collapse
Affiliation(s)
- Paula Y Steinberg
- Gerencia Química & INN, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
6
|
Innocenzi P, Malfatti L. Mesoporous materials as platforms for surface-enhanced Raman scattering. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Hanske C, Sanz-Ortiz MN, Liz-Marzán LM. Silica-Coated Plasmonic Metal Nanoparticles in Action. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707003. [PMID: 29736945 DOI: 10.1002/adma.201707003] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/17/2018] [Indexed: 05/22/2023]
Abstract
Hybrid colloids consisting of noble metal cores and metal oxide shells have been under intense investigation for over two decades and have driven progress in diverse research lines including sensing, medicine, catalysis, and photovoltaics. Consequently, plasmonic core-shell particles have come to play a vital role in a plethora of applications. Here, an overview is provided of recent developments in the design and utilization of the most successful class of such hybrid materials, silica-coated plasmonic metal nanoparticles. Besides summarizing common simple approaches to silica shell growth, special emphasis is put on advanced synthesis routes that either overcome typical limitations of classical methods, such as stability issues and undefined silica porosity, or grant access to particularly sophisticated nanostructures. Hereby, a description is given, how different types of silica can be used to provide noble metal particles with specific functionalities. Finally, applications of such nanocomposites in ultrasensitive analyte detection, theranostics, catalysts, and thin-film solar cells are reviewed.
Collapse
Affiliation(s)
- Christoph Hanske
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, ,20014, Donostia-San Sebastián, Spain
| | - Marta N Sanz-Ortiz
- Centre for Nanostructured Media, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - Luis M Liz-Marzán
- CIC biomaGUNE and CIBER-BBN, Paseo de Miramón 182, ,20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| |
Collapse
|
8
|
Hamon C, Sanz-Ortiz MN, Modin E, Hill EH, Scarabelli L, Chuvilin A, Liz-Marzán LM. Hierarchical organization and molecular diffusion in gold nanorod/silica supercrystal nanocomposites. NANOSCALE 2016; 8:7914-22. [PMID: 26961684 PMCID: PMC5317216 DOI: 10.1039/c6nr00712k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/26/2016] [Indexed: 05/27/2023]
Abstract
Hierarchical organization of gold nanorods was previously obtained on a substrate, allowing precise control over the morphology of the assemblies and macroscale spatial arrangement. Herein, a thorough description of these gold nanorod assemblies and their orientation within supercrystals is presented together with a sol-gel technique to protect the supercrystals with mesoporous silica films. The internal organization of the nanorods in the supercrystals was characterized by combining focused ion beam ablation and scanning electron microscopy. A mesoporous silica layer is grown both over the supercrystals and between the individual lamellae of gold nanorods inside the structure. This not only prevented the detachment of the supercrystal from the substrate in water, but also allowed small molecule analytes to infiltrate the structure. These nanocomposite substrates show superior Raman enhancement in comparison with gold supercrystals without silica owing to improved accessibility of the plasmonic hot spots to analytes. The patterned supercrystal arrays with enhanced optical and mechanical properties obtained in this work show potential for the practical implementation of nanostructured devices in spatially resolved ultradetection of biomarkers and other analytes.
Collapse
Affiliation(s)
- Cyrille Hamon
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastian, Spain.
| | - Marta N Sanz-Ortiz
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastian, Spain.
| | - Evgeny Modin
- Electron Microscopy and Image Processing Interdisciplinary Laboratory, Far Eastern Federal University, Sukhanova 8, 690000, Vladivostok, Russia and Electron Microscopy Laboratory, CIC NanoGUNE Consolider, Tolosa Hiribidea, 76, 20019 Donostia - San Sebastian, Spain
| | - Eric H Hill
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastian, Spain.
| | - Leonardo Scarabelli
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastian, Spain.
| | - Andrey Chuvilin
- Electron Microscopy Laboratory, CIC NanoGUNE Consolider, Tolosa Hiribidea, 76, 20019 Donostia - San Sebastian, Spain and Basque Foundation of Science, IKERBASQUE, 48013 Bilbao, Spain
| | - Luis M Liz-Marzán
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastian, Spain. and Basque Foundation of Science, IKERBASQUE, 48013 Bilbao, Spain and Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain
| |
Collapse
|
9
|
Giner-Casares JJ, Henriksen-Lacey M, García I, Liz-Marzán LM. Plasmonic Surfaces for Cell Growth and Retrieval Triggered by Near-Infrared Light. Angew Chem Int Ed Engl 2016; 55:974-8. [PMID: 26594015 PMCID: PMC4737312 DOI: 10.1002/anie.201509025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/31/2015] [Indexed: 01/19/2023]
Abstract
Methods for efficient detachment of cells avoiding damage are required in tissue engineering and regenerative medicine. We introduce a bottom-up approach to build plasmonic substrates using micellar block copolymer nanolithography to generate a 2D array of Au seeds, followed by chemical growth leading to anisotropic nanoparticles. The resulting plasmonic substrates show a broad plasmon band covering a wide part of the visible and near-infrared (NIR) spectral ranges. Both human and murine cells were successfully grown on the substrates. A simple functionalization step of the plasmonic substrates with the cyclic arginylglycylaspartic acid (c-RGD) peptide allowed us to tune the morphology of integrin-rich human umbilical vein endothelial cells (HUVEC). Subsequent irradiation with a NIR laser led to highly efficient detachment of the cells with cell viability confirmed using the MTT assay. We thus propose the use of such plasmonic substrates for cell growth and controlled detachment using remote near-IR irradiation, as a general method for cell culture in biomedical applications.
Collapse
Affiliation(s)
- Juan J Giner-Casares
- CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
| | - Isabel García
- CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
10
|
Ying J, Hu ZY, Yang XY, Wei H, Xiao YX, Janiak C, Mu SC, Tian G, Pan M, Van Tendeloo G, Su BL. High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability. Chem Commun (Camb) 2016; 52:8219-22. [DOI: 10.1039/c6cc00912c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile high-viscosity-solvent method is developed to synthesize highly dispersed bimetallic PtPd nanocrystals with high activity, stability and durability.
Collapse
|
11
|
Chekini M, Cataldi U, Maroni P, Guénée L, Černý R, Bürgi T. Preparation of Anisotropic and Oriented Particles on a Flexible Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13221-13229. [PMID: 26575589 DOI: 10.1021/acs.langmuir.5b03524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Elongated plasmonic nanoparticles show superior optical properties when compared to spherical ones. Facile, versatile and cost-effective bottom-up approaches for fabrication of anisotropic nanoparticles in solution have been developed. However, fabrication of 2-D plasmonic templates from elongated nanoparticles with spatial arrangement at the surface is still a challenge. We used controlled seed-mediated growth in the presence of porous and functionalized surface of flexible polydimethylsiloxane (PDMS) templates to provide directional growth and formation of elongated gold nanoparticles (AuNPs). Atomic force microscopy (AFM) and spectroscopy revealed embedding of the particles within the functionalized porous surface of PDMS. Nanoparticles shapes were observed with transmission electron microscope (TEM), UV-Vis spectroscopy, and X-ray powder diffraction (XRPD) measurements, which revealed an overall orientation of particles at the surface. Anisotropic and oriented particles on a flexible substrate are of interest for sensing applications.
Collapse
Affiliation(s)
- Mahshid Chekini
- Department of Physical Chemistry, University of Geneva , 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Ugo Cataldi
- Department of Physical Chemistry, University of Geneva , 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Plinio Maroni
- Department of Inorganic and Analytic Chemistry, University of Geneva , 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Laure Guénée
- Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva , 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Radovan Černý
- Department of Quantum Matter Physics, Laboratory of Crystallography, University of Geneva , 24 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry, University of Geneva , 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
12
|
López-Puente V, Angelomé PC, Soler-Illia GJAA, Liz-Marzán LM. Selective SERS Sensing Modulated by Functionalized Mesoporous Films. ACS APPLIED MATERIALS & INTERFACES 2015; 7:25633-25640. [PMID: 26536368 DOI: 10.1021/acsami.5b10543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A hybrid material comprising metal nanoparticles embedded in functionalized mesoporous thin films was constructed, and its use as a selective SERS-based sensor was demonstrated. The presence of specific functional groups in the pore network allows control over the surface chemistry of the pores, tuning the selectivity for specific molecules. Amino-functionalized hybrid mesoporous thin films were used in a proof of concept experiment, to discern the presence of methylene blue (MB) in mixtures with acid blue (AB), with no need for any sample pretreatment step. Selective detection of MB was possible through entrapment of AB in the mesoporous matrix, based on its high affinity for amino groups. The sensor selectivity can be tuned by varying the solution pH, rendering a pH responsive surface and thus, selective SERS-based sensing. The developed sensors allow specific detection of molecules in complex matrixes.
Collapse
Affiliation(s)
| | - Paula C Angelomé
- Gerencia Química, Centro Atómico Constituyentes, CNEA , Avenida Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| | - Galo J A A Soler-Illia
- Gerencia Química, Centro Atómico Constituyentes, CNEA , Avenida Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| | - Luis M Liz-Marzán
- Departamento de Química Física, Universidade de Vigo , 36310 Vigo, Spain
- Bionanoplasmonics Laboratory, CIC biomaGUNE , Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science , 48013 Bilbao, Spain
| |
Collapse
|
13
|
Giner-Casares JJ, Henriksen-Lacey M, García I, Liz-Marzán LM. Plasmonic Surfaces for Cell Growth and Retrieval Triggered by Near-Infrared Light. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan J. Giner-Casares
- CIC biomaGUNE; Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN); Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
| | - Malou Henriksen-Lacey
- CIC biomaGUNE; Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN); Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
| | - Isabel García
- CIC biomaGUNE; Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN); Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
| | - Luis M. Liz-Marzán
- CIC biomaGUNE; Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN); Paseo de Miramón 182 20009 Donostia-San Sebastián Spain
- Ikerbasque, Basque Foundation for Science; 48013 Bilbao Spain
| |
Collapse
|
14
|
Sanz-Ortiz MN, Sentosun K, Bals S, Liz-Marzán LM. Templated Growth of Surface Enhanced Raman Scattering-Active Branched Gold Nanoparticles within Radial Mesoporous Silica Shells. ACS NANO 2015; 9:10489-97. [PMID: 26370658 PMCID: PMC4625167 DOI: 10.1021/acsnano.5b04744] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/15/2015] [Indexed: 05/22/2023]
Abstract
Noble metal nanoparticles are widely used as probes or substrates for surface enhanced Raman scattering (SERS), due to their characteristic plasmon resonances in the visible and near-IR spectral ranges. Aiming at obtaining a versatile system with high SERS performance, we developed the synthesis of quasi-monodisperse, nonaggregated gold nanoparticles protected by radial mesoporous silica shells. The radial mesoporous channels were used as templates for the growth of gold tips branching out from the cores, thereby improving the plasmonic performance of the particles while favoring the localization of analyte molecules at high electric field regions: close to the tips, inside the pores. The method, which additionally provides control over tip length, was successfully applied to gold nanoparticles with various shapes, leading to materials with highly efficient SERS performance. The obtained nanoparticles are stable in ethanol and water upon thermal consolidation and can be safely stored as a powder.
Collapse
Affiliation(s)
- Marta N. Sanz-Ortiz
- Bionanoplasmonics Laboratory, CIC biomaGUNE, 20009 Donostia-San Sebastián, Spain
| | - Kadir Sentosun
- EMAT-University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Sara Bals
- EMAT-University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Luis M. Liz-Marzán
- Bionanoplasmonics Laboratory, CIC biomaGUNE, 20009 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Address correspondence to
| |
Collapse
|
15
|
Lin M, Wang Y, Sun X, Wang W, Chen L. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7516-25. [PMID: 25815901 DOI: 10.1021/acsami.5b01077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Raman enhancing ability of noble metal nanoparticles (NPs) is an important factor for surface enhanced Raman scattering (SERS) substrate screening, which is generally evaluated by simply mixing as-prepared NPs with Raman reporters for Raman signal measurements. This method usually leads to incredible results because of the NP surface coverage nonuniformity and reporter-induced NP aggregation. Moreover, it cannot realize in situ, continuous SERS characterization. Herein, we proposed a dynamic SERS monitoring strategy for NPs with precisely tuned structures based on a simplified spatially confined NP growth method. Gold nanorod (AuNR) seed NPs were coated with a mesoporous silica (mSiO2) shell. The permeability of mSiO2 for both reactive species and Raman reporters rendered the silver overcoating reaction and SERS indication of NP growth. Additionally, the mSiO2 coating ensured monodisperse NP growth in a Raman reporter-rich reaction system. Moreover, "elastic" features of mSiO2 were observed for the first time, which is crucial for holding the growing NP without breakage. This feature makes the mSiO2 coating adhere to metal NPs throughout the growing process, providing a stable Raman reporter distribution microenvironment near the NPs and ensuring that the substrate's SERS ability comparison is accurate. Three types of NPs, i.e., core-shell Au@AgNR@mSiO2, Au@AuNR@mSiO2, and yolk-shell Au@void@AuNR@mSiO2 NPs, were synthesized via core-shell overgrowth and galvanic replacement methods, showing the versatility of the approach. The living cell SERS labeling ability of Au@AgNR@mSiO2-based tags was also demonstrated. This strategy addresses the problems of multiple batch NP preparation, aggregation, and surface adsorption differentiation, which is a breakthrough for the dynamic comparison of SERS ability of metal NPs with precisely tuned structures and optical properties.
Collapse
Affiliation(s)
- Min Lin
- †School of Pharmacy, Yantai University, Yantai, Shandong 264005, China
- §Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Yunqing Wang
- §Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Xiuyan Sun
- †School of Pharmacy, Yantai University, Yantai, Shandong 264005, China
| | - Wenhai Wang
- §Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Lingxin Chen
- §Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| |
Collapse
|
16
|
Jeong U, Joo JB, Kim Y. Au nanoparticle-embedded SiO2–Au@SiO2 catalysts with improved catalytic activity, enhanced stability to metal sintering and excellent recyclability. RSC Adv 2015. [DOI: 10.1039/c5ra07175e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Au NP-embedded SiO2 (SiO2–Au@SiO2) particles with the improved molecule accessibility, catalyst stability and catalytic performance were successfully synthesized by post-treatments such as calcination and/or etching with water or ammonia.
Collapse
Affiliation(s)
- Uiseok Jeong
- Department of Chemical Engineering
- Kwangwoon University
- Seoul
- Republic of Korea
| | - Ji Bong Joo
- Low Carbon Process Lab
- Korea Institute of Energy Research
- Deajeon
- Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering
- Kwangwoon University
- Seoul
- Republic of Korea
| |
Collapse
|
17
|
Liu H, Xu Y, Wen S, Zhu J, Zheng L, Shen M, Zhao J, Zhang G, Shi X. Facile hydrothermal synthesis of low generation dendrimer-stabilized gold nanoparticles for in vivo computed tomography imaging applications. Polym Chem 2013. [DOI: 10.1039/c2py20993d] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Martín-García B, Velázquez MM, Rossella F, Bellani V, Diez E, García Fierro JL, Pérez-Hernández JA, Hernández-Toro J, Claramunt S, Cirera A. Functionalization of Reduced Graphite Oxide Sheets with a Zwitterionic Surfactant. Chemphyschem 2012; 13:3682-90. [DOI: 10.1002/cphc.201200501] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/13/2012] [Indexed: 11/10/2022]
|