1
|
Chiu TH, Liao JH, Silalahi RPB, Pillay MN, Liu CW. Hydride-doped coinage metal superatoms and their catalytic applications. NANOSCALE HORIZONS 2024; 9:675-692. [PMID: 38507282 DOI: 10.1039/d4nh00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Superatomic constructs have been identified as a critical component of future technologies. The isolation of coinage metal superatoms relies on partially reducing metallic frameworks to accommodate the mixed valent state required to generate a superatom. Controlling this reduction requires careful consideration in reducing the agent, temperature, and the ligand that directs the self-assembly process. Hydride-based reducing agents dominate the synthetic wet chemical routes to coinage metal clusters. However, within this category, a unique subset of superatoms that retain a hydride/s within the nanocluster post-reduction have emerged. These stable constructs have only recently been characterized in the solid state and have highly unique structural features and properties. The difficulty in identifying the position of hydrides in electron-rich metallic constructs requires the combination and correlation of several analytical methods, including ESI-MS, NMR, SCXRD, and DFT. This text highlights the importance of NMR in detecting hydride environments in these superatomic systems. Added to the complexity of these systems is the dual nature of the hydride, which can act as metallic hydrogen in some cases, resulting in entirely different physical properties. This review includes all hydride-doped superatomic nanoclusters emphasizing synthesis, structure, and catalytic potential.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
2
|
Pinacho-Olaciregui J, Verde-Sesto E, Taton D, Pomposo JA. Gold Nanoclusters Synthesized within Single-Chain Nanoparticles as Catalytic Nanoreactors in Water. Polymers (Basel) 2024; 16:378. [PMID: 38337267 DOI: 10.3390/polym16030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Metalloenzymes are able to catalyze complex biochemical reactions in cellular (aqueous) media with high efficiency. In recent years, a variety of metal-containing single-chain nanoparticles (SCNPs) have been synthesized as simplified metalloenzyme-mimetic nano-objects. However, most of the metal-containing SCNPs reported so far contained complexed metal ions but not metal nanoclusters (NCs) with diameter <5 nm, which could be used as powerful, emerging catalysts. Herein, we report the synthesis of gold nanoclusters (Au-NCs) within SCNPs and the further use of Au-NCs/SCNPs as catalytic nanoreactors in water. We demonstrate that a common motif contained in several drugs (i.e., the aminophenyl-oxazolidinone fragment present in Rivaroxaban, Sutezolid, and Linezolid) can be efficiently prepared in water from a hydrophobic precursor compound by using the Au-NCs/SCNPs as efficient catalytic nanoreactors. In summary, this work paves the way forthe synthesis of metal-NCs/SCNPs for advanced catalysis in aqueous media.
Collapse
Affiliation(s)
- Jokin Pinacho-Olaciregui
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, Pº Manuel Lardizabal 5, E-20018 Donostia, Spain
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux INP-ENSCBP, 16 av. Pey Berland, 33607 Pessac CEDEX, France
| | - Ester Verde-Sesto
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, Pº Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO), Université de Bordeaux INP-ENSCBP, 16 av. Pey Berland, 33607 Pessac CEDEX, France
| | - José A Pomposo
- Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center MPC, Pº Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento de Polímeros y Materiales Avanzados, Física, Química y Tecnología, University of the Basque Country (UPV/EHU), Pº Manuel Lardizabal 3, E-20800 Donostia, Spain
| |
Collapse
|
3
|
Ye J, Li C, Yao X, Jin M, Wan D. Customizing a Hyperbranched Ligand Confers Supported Platinum Nanoclusters with Unexpected Catalytic Activity toward the Reduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38038684 DOI: 10.1021/acs.langmuir.3c02884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
We here show that a dendritic molecule combined with ligand merit confers supported platinum nanoclusters (PtNCs) with unprecedented catalytic performance. Branched polyethylenimine (PEI, Mn = 2000 D) patched on a porous bead is modified with 2-(diphenylphosphino)benzaldehyde (dppb) before being used to mediate a platinum nanoparticle/nanocluster (Pt0). The catalytic activity of Pt0 toward the reduction of 4-nitrophenol (4-NP) is evaluated from the parameter of Pt-normalized rate constant (kc). Optimization of the dppb level along with transformation of the PEI hydrogens into diol or trimethylammonium groups imparts supported Pt0 unprecedented activity (kc = 19.2 L mmol-1 s-1 and turnover frequency (TOF) = 1041 h-1). The supported Pt0 at an extremely low dosage of 0.1 ppm promotes 98% conversion of 4-NP within minutes and is well recyclable. The striking catalytic activity is attributed to the combination of orthogonal ligand properties such as weak ligand nature, catalyst-activating ability, excellent substrate affinity, and effect on PtNC-size mediation of the ligand.
Collapse
Affiliation(s)
- Jingyun Ye
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Chenhui Li
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Xiaoqiu Yao
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Ming Jin
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| | - Decheng Wan
- Department of Polymer Materials, School of Materials Science and Engineering, Tongji University, 4800 Cao-an Road, Shanghai 201804, China
| |
Collapse
|
4
|
Mohamed RM, El-Sheikh SM, Kadi MW, Labib AA, Sheta SM. A novel test device and quantitative colorimetric method for the detection of human chorionic gonadotropin (hCG) based on Au@Zn-salen MOF for POCT applications. RSC Adv 2023; 13:11751-11761. [PMID: 37063717 PMCID: PMC10103075 DOI: 10.1039/d2ra07854f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
The human chorionic gonadotropin (hCG) hormone is a biomarker that can predict tumors and early pregnancy; however, it is challenging to develop sensitive qualitative-quantitative procedures that are also effective, inventive, and unique. In this study, we used a novel easy in situ reaction of an organic nano-linker with Zn(NO3)2·6H2O and HAuCl4·3H2O to produce a gold-zinc-salen metal-organic framework composite known as Au-Zn-Sln-MOF. A wide variety of micro-analytical instruments and spectroscopic techniques were used in order to characterize the newly synthesized Au-Zn-Sln-MOF composite. Disclosure is provided for a novel swab test instrument and a straightforward colorimetric approach for detecting hCG hormone based on an Au-Zn-Sln-MOF composite. Both of these methods are easy. In order to validate a natural enzyme-free immunoassay, an Au-Zn-Sln-MOF composite was utilized in the role of an enzyme; a woman can use this gadget to determine whether or not she is pregnant in the early stages of the pregnancy or whether or not her hCG levels are excessively high, which is a symptom that she may have a tumor. This cotton swab test device is compatible with testing of various biological fluids, such as serum, plasma, or urine, and it can be easily transferred to the market to commercialize it as a costless kit, which will be 20-30% cheaper than what is available on the market. Additionally, it can be used easily at home and for near-patient testing (applications of point-of-care testing (POCT)).
Collapse
Affiliation(s)
- Reda M Mohamed
- Chemistry Department, Faculty of Science, King Abdul-Aziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Said M El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute Cairo 11421 Egypt
| | - Mohammad W Kadi
- Chemistry Department, Faculty of Science, King Abdul-Aziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Ammar A Labib
- Department of Inorganic Chemistry, National Research Centre Cairo 12622 Egypt +201009697356
| | - Sheta M Sheta
- Department of Inorganic Chemistry, National Research Centre Cairo 12622 Egypt +201009697356
| |
Collapse
|
5
|
Quinson J, Kunz S, Arenz M. Surfactant-Free Colloidal Syntheses of Precious Metal Nanoparticles for Improved Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Quinson J, Aalling-Frederiksen O, Dacayan WL, Bjerregaard JD, Jensen KD, Jørgensen MRV, Kantor I, Sørensen DR, Theil Kuhn L, Johnson MS, Escudero-Escribano M, Simonsen SB, Jensen KMØ. Surfactant-Free Colloidal Syntheses of Gold-Based Nanomaterials in Alkaline Water and Mono-alcohol Mixtures. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:2173-2190. [PMID: 36936178 PMCID: PMC10018736 DOI: 10.1021/acs.chemmater.3c00090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Gold nanoparticles (Au NPs) and gold-based nanomaterials combine unique properties relevant for medicine, imaging, optics, sensing, catalysis, and energy conversion. While the Turkevich-Frens and Brust-Schiffrin methods remain the state-of-the-art colloidal syntheses of Au NPs, there is a need for more sustainable and tractable synthetic strategies leading to new model systems. In particular, stabilizers are almost systematically used in colloidal syntheses, but they can be detrimental for fundamental and applied studies. Here, a surfactant-free synthesis of size-controlled colloidal Au NPs stable for months is achieved by the simple reduction of HAuCl4 at room temperature in alkaline solutions of low-viscosity mono-alcohols such as ethanol or methanol and water, without the need for any other additives. Palladium (Pd) and bimetallic Au x Pd y NPs, nanocomposites and multimetallic samples, are also obtained and are readily active (electro)catalysts. The multiple benefits over the state-of-the-art syntheses that this simple synthesis bears for fundamental and applied research are highlighted.
Collapse
Affiliation(s)
- Jonathan Quinson
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Biochemical
and Chemical Engineering Department, Aarhus
University, Åbogade 40, DK-8200 Aarhus, Denmark
| | | | - Waynah L. Dacayan
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Fysikvej Building 310, DK-2800 Kgs. Lyngby, Denmark
| | - Joachim D. Bjerregaard
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kim D. Jensen
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Mads R. V. Jørgensen
- Department
of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- MAX
IV Laboratory, Lund University, Fotongatan 2, SE-224 84 Lund, Sweden
| | - Innokenty Kantor
- MAX
IV Laboratory, Lund University, Fotongatan 2, SE-224 84 Lund, Sweden
- Department
of Physics, The Technical University of
Denmark, Fysikvej Building
311, DK-2800 Kgs.
Lyngby, Denmark
| | - Daniel R. Sørensen
- Department
of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- MAX
IV Laboratory, Lund University, Fotongatan 2, SE-224 84 Lund, Sweden
| | - Luise Theil Kuhn
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Fysikvej Building 310, DK-2800 Kgs. Lyngby, Denmark
| | - Matthew S. Johnson
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - María Escudero-Escribano
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, UAB Campus, Bellaterra, 08193 Barcelona, Spain
- ICREA, Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| | - Søren B. Simonsen
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Fysikvej Building 310, DK-2800 Kgs. Lyngby, Denmark
| | - Kirsten M. Ø. Jensen
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
7
|
Wu Y, Han S, Li Y, Shen W. Fabrication of monodisperse gold-copper nanocubes and AuCu-cuprous sulfide heterodimers by a step-wise polyol reduction. J Colloid Interface Sci 2022; 626:136-145. [DOI: 10.1016/j.jcis.2022.06.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 10/31/2022]
|
8
|
Sun B, Najarian AM, Sagar LK, Biondi M, Choi MJ, Li X, Levina L, Baek SW, Zheng C, Lee S, Kirmani AR, Sabatini R, Abed J, Liu M, Vafaie M, Li P, Richter LJ, Voznyy O, Chekini M, Lu ZH, García de Arquer FP, Sargent EH. Fast Near-Infrared Photodetection Using III-V Colloidal Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203039. [PMID: 35767306 DOI: 10.1002/adma.202203039] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Colloidal quantum dots (CQDs) are promising materials for infrared (IR) light detection due to their tunable bandgap and their solution processing; however, to date, the time response of CQD IR photodiodes is inferior to that provided by Si and InGaAs. It is reasoned that the high permittivity of II-VI CQDs leads to slow charge extraction due to screening and capacitance, whereas III-Vs-if their surface chemistry can be mastered-offer a low permittivity and thus increase potential for high-speed operation. In initial studies, it is found that the covalent character in indium arsenide (InAs) leads to imbalanced charge transport, the result of unpassivated surfaces, and uncontrolled heavy doping. Surface management using amphoteric ligand coordination is reported, and it is found that the approach addresses simultaneously the In and As surface dangling bonds. The new InAs CQD solids combine high mobility (0.04 cm2 V-1 s-1 ) with a 4× reduction in permittivity compared to PbS CQDs. The resulting photodiodes achieve a response time faster than 2 ns-the fastest photodiode among previously reported CQD photodiodes-combined with an external quantum efficiency (EQE) of 30% at 940 nm.
Collapse
Affiliation(s)
- Bin Sun
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Amin Morteza Najarian
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Laxmi Kishore Sagar
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Margherita Biondi
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Min-Jae Choi
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Xiyan Li
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Larissa Levina
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Se-Woong Baek
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Chao Zheng
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Seungjin Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Ahmad R Kirmani
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Randy Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Mengxia Liu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Maral Vafaie
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Peicheng Li
- Department of Material Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada
| | - Lee J Richter
- Materials Science and Engineering Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 20899, USA
| | - Oleksandr Voznyy
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Mahshid Chekini
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Zheng-Hong Lu
- Department of Material Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada
| | - F Pelayo García de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| |
Collapse
|
9
|
Li D, Dai Y, Chen X, Zhang X, Yue D, Wang J, Guo Y. Stability and catalytic activity of hyperbranched polyglycerol stabilized gold nanofluids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
López-Hernández I, Truttmann V, Barrabés N, Rupprechter G, Rey F, Mengual J, Palomares A. Gold nanoclusters supported on different materials as catalysts for the selective alkyne semihydrogenation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Settem M, Ferrando R, Giacomello A. Tempering of Au nanoclusters: capturing the temperature-dependent competition among structural motifs. NANOSCALE 2022; 14:939-952. [PMID: 34988565 DOI: 10.1039/d1nr05078h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A computational approach to determine the equilibrium structures of nanoclusters in the whole temperature range from 0 K to melting is developed. Our approach relies on Parallel Tempering Molecular Dynamics (PTMD) simulations complemented by Harmonic Superposition Approximation (HSA) calculations and global optimization searches, thus combining the accuracy of global optimization and HSA in describing the low-energy part of configuration space, together with the PTMD thorough sampling of high-energy configurations. This combined methodology is shown to be instrumental towards revealing the temperature-dependent structural motifs in Au nanoclusters of sizes 90, 147, and 201 atoms. The reported phenomenology is particularly rich, displaying a size- and temperature-dependent competition between the global energy minimum and other structural motifs. In the case of Au90 and Au147, the global minimum is also the dominant structure at finite temperatures. In contrast, the Au201 cluster undergoes a solid-solid transformation at low temperature (<200 K). Results indicate that PTMD and HSA very well agree at intermediate temperatures, between 300 and 400 K. For higher temperatures, PTMD gives an accurate description of equilibrium, while HSA fails in describing the melting range. On the other hand, HSA is more efficient in catching low-temperature structural transitions. Finally, we describe the elusive structures close to the melting region which can present complex and defective geometries, that are otherwise difficult to characterize through experimental imaging.
Collapse
Affiliation(s)
- Manoj Settem
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Roma, Italy.
| | - Riccardo Ferrando
- Dipartimento di Fisica dell'Università di Genova and CNR-IMEM, via Dodecaneso 33, 16146 Genova, Italy.
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Roma, Italy.
| |
Collapse
|
12
|
Nasaruddin RR, Hülsey MJ, Xie J. Enhancing catalytic properties of ligand-protected gold-based 25-metal atom nanoclusters by silver doping. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Balakrishnan T, Choi SM. Encapsulation of atomically thin gold nanosheets within porous silica for enhanced structural stability and superior catalytic performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj03221j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous silica-encapsulated atomically thin AuNSs exhibit excellent structural stability in dried state and superior catalytic activity and stability for the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Thiruparasakthi Balakrishnan
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sung-Min Choi
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
14
|
Astruc D. On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry 2021; 27:16291-16308. [PMID: 34427365 DOI: 10.1002/chem.202102477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Electron transfer plays a major role in chemical reactions and processes, and this is particularly true of catalysis by nanomaterials. The advent of metal nanoparticle (NP) catalysts, recently including atomically precise nanoclusters (NCs) as parts of nanocatalyst devices has brought increased control of the relationship between NP and NC structures and their catalytic functions. Consequently, the molecular definition of these new nanocatalysts has allowed a better understanding and management of various kinds of electron transfer involved in the catalytic processes. This Minireview brings a chemist's view of several major aspects of electron-transfer functions concerning NPs and NCs in catalytic processes. Particular focus concerns the role of NPs and NCs as electron reservoirs and light-induced antenna in catalytic processes from H2 generation to more complex reactions and sustainable energy production.
Collapse
Affiliation(s)
- Didier Astruc
- Univ. Bordeaux, ISM UMR N°5801, 351 Cours de la Libération, 33405, Talence Cedex, France
| |
Collapse
|
15
|
Li S, Tian W, Liu Y. The ligand effect of atomically precise gold nanoclusters in tailoring catalytic properties. NANOSCALE 2021; 13:16847-16859. [PMID: 34622913 DOI: 10.1039/d1nr05232b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is well known that surface ligands are vital layers for ligand-protected Aun nanoclusters. Improving the knowledge of the relationship between ligands and catalytic properties is a forefront research topic for Aun nanoclusters. Enormous effort has been devoted to realizing the ligand effect in synthesis, including well-controlled sizes and shapes as well as structural transformation. However, the crucial function of surface ligands has not been addressed yet in catalytic reactions. Here, this review mainly aims to summarize the recent progress concerning the influence of surface ligand layers on catalytic activity and selectivity, based on the various types of ligand protected Aun nanoclusters. Besides, the potential challenges and opportunities of Aun nanoclusters are indicated, mainly in terms of surface ligands to guide the improvement of catalytic performances.
Collapse
Affiliation(s)
- Shuohao Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Wenjiang Tian
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Yuanyuan Liu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| |
Collapse
|
16
|
Chu K, Luo Y, Wu D, Su Z, Shi J, Zhang JZ, Su CY. Charge State of Au 25(SG) 18 Nanoclusters Induced by Interaction with a Metal Organic Framework Support and Its Effect on Catalytic Performance. J Phys Chem Lett 2021; 12:8003-8008. [PMID: 34433276 DOI: 10.1021/acs.jpclett.1c02090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigated the charge transfer between Au25(SG)18 nanoclusters and metal-organic framework (MOF) supports including Mil-101-Cr, Mil-125-Ti, and ZIF-8 by an X-ray photoemission technique and discussed the influence of resulted charge states of supported Au25(SG)18 nanoclusters on the 4-nitrophenol reduction reaction. Charge transfer from Au25(SG)18 to Mil-101-Cr induces positive charge Auδ+ (0 < δ < 1) while charge transfer from ZIF-8 to Au25(SG)18 generates negative charge Auδ- due to different metal-support interactions. Au25(SG)18 on Mil-125 shows metallic Au0, similar to unsupported Au25(SG)18, due to negligible charge transfer. The resulted charge state of Auδ- inhibits the formation of adsorbed hydride (H-) species because of electrostatic repulsion, while Auδ+ impairs the reductive ability of adsorbed hydride (H-) species due to strong affinity between them. In comparison, metallic Au0 in Au25(SG)18/Mil-125 and unsupported Au25(SG)18 presents the optimum catalytic activity. The current work provides guidelines to design effective metal nanoclusters in heterogeneous catalysis through metal-support interaction exerted by metal-oxo/nitric clusters within MOFs.
Collapse
Affiliation(s)
- Kunlin Chu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yucheng Luo
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Dongjun Wu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhifang Su
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jianying Shi
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Cheng-Yong Su
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
17
|
Analysis of the Reduction of 4-Nitrophenol Catalyzed by Para-Mercaptobenzoic Acid Capped Magic Number Gold Clusters. Catal Letters 2021. [DOI: 10.1007/s10562-021-03727-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Zhang B, Chen J, Cao Y, Chai OJH, Xie J. Ligand Design in Ligand-Protected Gold Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004381. [PMID: 33511773 DOI: 10.1002/smll.202004381] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/04/2020] [Indexed: 06/12/2023]
Abstract
The design of surface ligands is crucial for ligand-protected gold nanoclusters (Au NCs). Besides providing good protection for Au NCs, the surface ligands also play the following two important roles: i) as the outermost layer of Au NCs, the ligands will directly interact with the exterior environment (e.g., solvents, molecules and cells) influencing Au NCs in various applications; and ii) the interfacial chemistry between ligands and gold atoms can determine the structures, as well as the physical and chemical properties of Au NCs. A delicate ligand design in Au NCs (or other metal NCs) needs to consider the covalent bonds between ligands and gold atoms (e.g., gold-sulfur (Au-S) and gold-phosphorus (Au-P) bond), the physics forces between ligands (e.g., hydrophobic and van der Waals forces), and the ionic forces between the functional groups of ligands (e.g., carboxylic (COOH) and amine group (NH2 )); which form the underlying chemistry and discussion focus of this review article. Here, detailed discussions on the effects of surface ligands (e.g., thiolate, phosphine, and alkynyl ligands; or hydrophobic and hydrophilic ligands) on the synthesis, structures, and properties of Au NCs; highlighting the design principles in the surface engineering of Au NCs for diverse emerging applications, are provided.
Collapse
Affiliation(s)
- Bihan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Jishi Chen
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yitao Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Osburg Jin Huang Chai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
19
|
Sonia, Komal, Kukreti S, Kaushik M. Gold nanoclusters: An ultrasmall platform for multifaceted applications. Talanta 2021; 234:122623. [PMID: 34364432 DOI: 10.1016/j.talanta.2021.122623] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Gold nanoclusters (Au NCs) with a core size below 2 nm form an exciting class of functional nano-materials with characteristic physical and chemical properties. The properties of Au NCs are more prominent and extremely different from their bulk counterparts. The synthesis of Au NCs is generally assisted by template or ligand, which impart excellent cluster stability and high quantum yield. The tunable and sensitive physicochemical properties of Au NCs open horizons for their advanced applications in various interdisciplinary fields. In this review, we briefly summarize the solution phase synthesis and origin of the characteristic properties of Au NCs. A vast review of recent research work introducing biosensors based on Au NCs has been presented along with their specifications and detection limits. This review also highlights recent progress in the use of Au NCs as bio-imaging probe, enzyme mimic, temperature sensing probe and catalysts. A speculation on present challenges and certain future prospects have also been provided to enlighten the path for advancement of multifaceted applications of Au NCs.
Collapse
Affiliation(s)
- Sonia
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Komal
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India; Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.
| |
Collapse
|
20
|
Yang G, Lin W, Lai H, Tong J, Lei J, Yuan M, Zhang Y, Cui C. Understanding the relationship between particle size and ultrasonic treatment during the synthesis of metal nanoparticles. ULTRASONICS SONOCHEMISTRY 2021; 73:105497. [PMID: 33677187 PMCID: PMC7941011 DOI: 10.1016/j.ultsonch.2021.105497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 05/03/2023]
Abstract
Ultrasonic treatment is an effective method for size refinement and dispersion of nanomaterials during their synthesis process. However, the quantitative relationship between ultrasonic conditions and particle size in the synthesis of metal nanoparticles has not been fully revealed. In this study, Cu nanoparticles were synthesized via the wet-chemical redox method under ultrasonic treatment, and statistical analysis on the evolution of particle size distribution was carried out. It was found that the particle size decreased exponentially with increasing ultrasonic power. A quantitative model was then proposed to describe the influence of ultrasonic power on the size distribution of metal nanoparticles from the perspective of the competition between the surface energy and the ultrasonic force. A relational expression of Rc∝γ47P-37 was revealed, and it was proved to fit well with the experimental results. Our study provides new experimental basis and theoretical method for understanding the mechanism of ultrasonic-induced size refinement of metal nanoparticles.
Collapse
Affiliation(s)
- Guannan Yang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, PR China; Jihua Laboratory, Foshan 528225, PR China
| | - Wei Lin
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Haiqi Lai
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jin Tong
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Junjun Lei
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Maodan Yuan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yu Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, PR China; Jihua Laboratory, Foshan 528225, PR China.
| | - Chengqiang Cui
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, PR China; Jihua Laboratory, Foshan 528225, PR China.
| |
Collapse
|
21
|
Kobayashi M, Yamaguchi H, Suzuki T, Obora Y. Cross β-alkylation of primary alcohols catalysed by DMF-stabilized iridium nanoparticles. Org Biomol Chem 2021; 19:1950-1954. [PMID: 33595578 DOI: 10.1039/d1ob00045d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A simple method for the cross β-alkylation of linear alcohols with benzyl alcohols in the presence of DMF-stabilized iridium nanoparticles was developed. The nanoparticles were prepared in one-step and thoroughly characterized. Furthermore, the optimum reaction conditions have a wide substrate scope and excellent product selectivity.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan. obora@ kansai-u.ac.jp
| | - Hiroki Yamaguchi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan. obora@ kansai-u.ac.jp
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0057, Japan
| | - Yasushi Obora
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan. obora@ kansai-u.ac.jp
| |
Collapse
|
22
|
Zhuang Z, Du C, Li P, Zhang Z, Fang Z, Guo J, Chen W. Pt21(C4O4SH5)21 clusters: atomically precise synthesis and enhanced electrocatalytic activity for hydrogen generation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Griep MH, Sellers MS, Subhash B, Fakner AM, West AL, Bedford NM. Towards the identification of the gold binding region within trypsin stabilized nanoclusters using microwave synthesis routes. NANOSCALE 2021; 13:1061-1068. [PMID: 33393579 DOI: 10.1039/d0nr07068h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Elucidating the location of stabilized nanoclusters within their protein hosts is an existing challenge towards the optimized development of functional protein-nanoclusters. While nanoclusters of various metal compositions can be readily synthesized within a wide array of protein hosts and exhibit tailorable properties, the inability to identify the cluster stabilization region prevents controllable property manipulation of both metallic and protein components. Additionally, the ability to synthesize protein-nanoclusters in a consistent and high-throughput fashion is also highly desirable. In this effort, trypsin stabilized gold nanoclusters are synthesized through standard and microwave-enabled methodologies to determine the impact of processing parameters on the materials physical and functional properties. Density functional theory simulations are employed to localize high probability regions within the trypsin enzyme for Au25 cluster stabilization, which reveal that cluster location is likely within close proximity of the trypsin active region. Trypsin activity measurements support our findings from DFT, as trypsin enzymatic activity is eliminated following cluster growth and stabilization. Moreover, studies on the reactivity of Au NCs and synchrotron characterization measurements further reveal that clusters made by microwave-based techniques exhibit slight structural differences to those made via standard methodologies, indicating that microwave-based syntheses largely maintain the native structural attributes despite the faster synthetic conditions. Overall, this work illustrates the importance of understanding the connections between synthetic conditions, atomic-scale structure, and materials properties that can be potentially used to further tune the properties of metal cluster-protein materials for future applications.
Collapse
Affiliation(s)
- Mark H Griep
- Weapons and Materials Research Directorate, CCDC Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Michael S Sellers
- Weapons and Materials Research Directorate, CCDC Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Bijil Subhash
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Alexis M Fakner
- Weapons and Materials Research Directorate, CCDC Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Abby L West
- Weapons and Materials Research Directorate, CCDC Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA
| | - Nicholas M Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
24
|
Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid. Mikrochim Acta 2021; 188:26. [DOI: 10.1007/s00604-020-04667-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
|
25
|
Shahin Z, Rataboul F, Demessence A. Study of the oxidative esterification of furfural catalyzed by Au25(glutathione)18 nanocluster deposited on zirconia. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Naeem H, Ajmal M, Khatoon F, Siddiq M, Khan GS. Synthesis of graphene oxide–metal nanoparticle nanocomposites for catalytic reduction of nitrocompounds in aqueous medium. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1991736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hina Naeem
- Department of Chemistry, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Ajmal
- Department of Chemistry, University of Education, Attock Campus., Attock, Pakistan
| | - Fatima Khatoon
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Siddiq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gul Shahzada Khan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Bahrain
| |
Collapse
|
27
|
Understanding the induction time associated with the photoredution of resazurin by hydroxylamine in the presence of gold nanoparticles as a photocatalyst. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Padmanabhan P, Singh S. Resveratrol isomeric switching during bioreduction of gold nanoparticles: a gateway for cis-resveratrolArchita. NANOTECHNOLOGY 2020; 31:465603. [PMID: 32746439 DOI: 10.1088/1361-6528/ababcb] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Resveratrol, a polyphenolic and biocompatible molecule, exhibits significant pharmacological effects but has poor bioavailability and metabolic stability. It appears in two isomeric forms trans-(E)-resveratrol (tRes) and cis-(Z)-resveratrol (cRes). Many pharmacological activities studied so far are of tRes and is the most stable, predominant, and natural form. cRes is not commercially available due to difficulty in its purification and hence not explored much for its biological activities. Therefore, our study focuses on investigating the stability and therapeutic potential of cRes through its bio-conjugation to nanomaterial. In this study, tRes reduces gold ions to gold nanoparticles (GNPs) and itself gets oxidized to its isomeric form cRes. The isomeric switching was evidenced through cRes characteristic spectral differences and chromatographic elution pattern. The monodispersed GNPs of 25.6 ± 0.4 nm size was formed having zeta potential of -19 ± 3.82 mV confirming it to be a stable formulation. The stability studies were further extended to be tested under different physiological fluids. The cRes loaded GNPs (cRGNPs) reflecting the biological activity of cRes presented equivalent antioxidant property to that of tRes even at low concentrations. Also, cRGNPs showed the hemocompatibility by presenting no hemotoxicity and simultaneous in vitro anti-hemolytic activity. Therefore, the stability provided to cRes upon conjugating to GNPs can further be exploited to study the biological activities of cRes through its nano-conjugated delivery.
Collapse
|
29
|
Patra D, Nalluri SR, Tan HR, Saifullah MSM, Ganesan R, Gopalan B. New gold standard: weakly capped infant Au nanoclusters with record high catalytic activity for 4-nitrophenol reduction and hydrogen generation from an ammonia borane-sodium borohydride mixture. NANOSCALE ADVANCES 2020; 2:5384-5395. [PMID: 36132016 PMCID: PMC9417437 DOI: 10.1039/d0na00639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/28/2020] [Indexed: 06/15/2023]
Abstract
Increasing the surface area-to-volume ratio of materials through size reduction is a desired approach to access maximum possible surface sites in applications such as catalysis. However, increase in the surface energy with the decrease in dimension warrants strong ligands to stabilize nanosystems, which mask the accessibility of the active surface sites. Owing to this, the realization of the true potential of a catalyst's surface remains challenging. Here, we employed a rationally designed strategy to synthesize infant Au nanoclusters-that alleviates the requirement of any separate ligand removal step-to unleash their actual potential to register a record high maximum turn-over frequency (TOFmax) of 72 900 h-1 and 65 500 h-1 in the benchmark catalytic reduction of 4-nitrophenol and catalytic H2 generation from an ammonia borane-sodium borohydride mixture, respectively. Such a phenomenal catalytic activity has been realized via the synthesis and stabilization of Au nanoclusters using solid citric acid and a super-concentrated aqueous AuCl3 solution, a pathway entirely different from the conventional modifications of the Turkevich and Brust methods. The crux of the synthetic strategy lies in precise control of the water content and thereby ensuring that the final Au nanoclusters remain in the solid state. During the synthesis, citric acid not only acts as a reducing agent to yield 'infant' Au nanoclusters but also provides a barrier matrix to arrest their growth. In solution, its weak capping ability and rapid dissolution allows the reactants to easily access the active sites of Au nanoclusters, thus leading to faster catalysis. Our study reveals that the true potential of metal nanoclusters as catalysts is actually far higher than what has been reported in the literature.
Collapse
Affiliation(s)
- Dinabandhu Patra
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 India
| | - Srinivasa Rao Nalluri
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 India
| | - Hui Ru Tan
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology, and Research) 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Mohammad S M Saifullah
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology, and Research) 2 Fusionopolis Way, #08-03 Innovis Singapore 138634 Singapore
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 India
| | - Balaji Gopalan
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad-500078 India
| |
Collapse
|
30
|
Pd/Mo2N-TiO2 as efficient catalysts for promoted selective hydrogenation of 4-nitrophenol: A green bio-reducing preparation method. J Catal 2020. [DOI: 10.1016/j.jcat.2020.08.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Jin R, Li G, Sharma S, Li Y, Du X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem Rev 2020; 121:567-648. [DOI: 10.1021/acs.chemrev.0c00495] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Sachil Sharma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
32
|
Sun Y, Cheng X, Zhang Y, Tang A, Cai X, Liu X, Zhu Y. Precisely modulating the surface sites on atomically monodispersed gold-based nanoclusters for controlling their catalytic performances. NANOSCALE 2020; 12:18004-18012. [PMID: 32870213 DOI: 10.1039/d0nr04871b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomically precise gold nanoclusters protected by ligands are being intensely investigated in current catalysis science, due to the definitive correlation between the catalytic properties and structures at an atomic level. By solving the crystal structures of the nanoclusters, coupled with in situ and ex situ spectroscopy, a very fundamental understanding can be achieved to learn what controls the catalytic activation, active site structure, and catalytic mechanism. Herein, we mainly focus on the recent progress in catalysis controlled by precisely modulating the surface structures of the nanoclusters, including the alteration of the surface motifs, the doping of heterogeneous atoms in the surface of the nanoclusters, and the surface ligand engineering. The article is expected to help not only gain deep insight into the crucial roles of surface motifs of the nanoclusters in regulating the catalytic properties, but also explore the wide catalytic applications of atomically precise nanoclusters by elaborately tailoring the surface of the nanoclusters.
Collapse
Affiliation(s)
- Yongnan Sun
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xinglian Cheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yuying Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Ancheng Tang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xu Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
33
|
You J, Jin D, Tseng W, Tseng W, Lin P. Gold(I)‐Thiolate Oligomers for Catalytic Hydrogenation of Nitroaromatics in Aqueous and Organic Medium. ChemCatChem 2020. [DOI: 10.1002/cctc.202000885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jyun‐Guo You
- Department of Chemistry National Sun Yat-sen University No.70 Lien-hai Rd. Kaohsiung 80424 Taiwan
| | - Dun‐Yuan Jin
- Department of Chemistry National Sun Yat-sen University No.70 Lien-hai Rd. Kaohsiung 80424 Taiwan
| | - Wei‐Bin Tseng
- Department of Chemistry National Sun Yat-sen University No.70 Lien-hai Rd. Kaohsiung 80424 Taiwan
| | - Wei‐Lung Tseng
- Department of Chemistry National Sun Yat-sen University No.70 Lien-hai Rd. Kaohsiung 80424 Taiwan
- School of Pharmacy Kaohsiung Medical University No. 100, Shiquan 1st Road Sanmin District Kaohsiung 80708 Taiwan
| | - Po‐Chiao Lin
- Department of Chemistry National Sun Yat-sen University No.70 Lien-hai Rd. Kaohsiung 80424 Taiwan
| |
Collapse
|
34
|
Neal RD, Hughes RA, Sapkota P, Ptasinska S, Neretina S. Effect of Nanoparticle Ligands on 4-Nitrophenol Reduction: Reaction Rate, Induction Time, and Ligand Desorption. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02759] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Robert D. Neal
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert A. Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Pitambar Sapkota
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, Unites States
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sylwia Ptasinska
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, Unites States
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, Unites States
| |
Collapse
|
35
|
Hong GL, Deng HH, Zhao HL, Zou ZY, Huang KY, Peng HP, Liu YH, Chen W. Gold nanoclusters/graphene quantum dots complex-based dual-emitting ratiometric fluorescence probe for the determination of glucose. J Pharm Biomed Anal 2020; 189:113480. [PMID: 32688209 DOI: 10.1016/j.jpba.2020.113480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Herein, we report the design of a single-excitation/double-emission ratiometric fluorescence nanosensor for the determination of glucose. The sensing system combines glucose oxidation catalyzed by glucose oxidase, Fenton chemistry, Fe3+-sensitive fluorescent gold nanoclusters (AuNCs), and Fe3+-inert fluorescent graphene quantum dots (GQDs). We used orange-fluorescent AuNCs co-modified with bovine serum albumin and 3-mercaptopropionic acid as the indicator probe, and GQDs with the same excitation wavelength as the BSA/MPA-AuNCs, but with different emission wavelength, as the reference probe. The fluorescence intensity-ratio between 420 nm and 575 nm (F420/F575) was used to quantitatively determine glucose with a low detection limit of 0.18 μM, and the nanosensor was successfully used to detect glucose in human serum. This ratiometric fluorescence sensing system, based on AuNCs and GQDs, ensures sensitive and convenient determination of glucose, and has broad application prospects for biomedical-analysis applications.
Collapse
Affiliation(s)
- Guo-Lin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hai-Ling Zhao
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhi-Yan Zou
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, China
| | - Kai-Yuan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China.
| | - Yin-Huan Liu
- Department of Laboratory Medicine, The Affiliated Fuzhou Second Hospital of Xiamen University, Fuzhou 350007, China.
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
36
|
Sibakoti TR, Jasinski JB, Nantz MH, Zamborini FP. Iodine activation: a general method for catalytic enhancement of thiolate monolayer-protected metal clusters. NANOSCALE 2020; 12:12027-12037. [PMID: 32467955 PMCID: PMC7350617 DOI: 10.1039/d0nr00844c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To enhance catalytic activity, the present study details a general approach for partial thiolate ligand removal from monolayer-protected clusters (MPCs) by straightforward in situ addition of iodine. Two model reactions are examined to illustrate the effects on the catalytic activity of glutathione (SG)-capped Au MPCs serving as a catalyst for the NaBH4 reduction of 4-nitrophenol to 4-aminophenol and SG-capped Pd MPCs serving as a catalyst for the hydrogenation/isomerization of allyl alcohol. Iodine addition promoted partial thiolate ligand removal from both MPCs and improved the catalytic properties, presumably due to greater surface exposure of the metal cores as a result of ligand dissociation. The rate of 4-nitrophenol reduction increased from 0.066 min-1 in the absence of I2 to 0.505 min-1 in the presence of 2.0 equivalents I2 (equivalents based on total ligated glutathione). The reaction of allyl alcohol to produce 1-propanol and propanal was similarly accelerated as indicated by the increase in turnover frequency from 131 to 230 moles products per moles catalyst per h by addition of 0.2 equivalents I2. In both reactions, as the amount of I2 added increases the catalyst recyclability decreases due to catalyst instability. Low equivalents of I2 are optimal when considering both reaction rate and catalyst recyclability.
Collapse
Affiliation(s)
- Tirtha R Sibakoti
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Jacek B Jasinski
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, Kentucky 40292, USA
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Francis P Zamborini
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
37
|
Al-Shankiti B, Al-Maksoud W, Habeeb Muhammed MA, Anjum DH, Moosa B, Basset JM, Khashab NM. Ligand-free gold nanoclusters confined in mesoporous silica nanoparticles for styrene epoxidation. NANOSCALE ADVANCES 2020; 2:1437-1442. [PMID: 36132309 PMCID: PMC9417287 DOI: 10.1039/c9na00781d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
We present a novel approach to produce gold nanoclusters (Au NCs) in the pores of mesoporous silica nanoparticles (MSNs) by sequential and controlled addition of metal ions and reducing agents. This impregnation technique was followed to confine Au NCs inside the pores of MSNs without adding external ligands or stabilizing agents. TEM images show a uniform distribution of monodisperse NCs with an average size of 1.37 ± 0.4 nm. Since the NCs are grown in situ in MSN pores, additional support and high temperature calcination are not required to use them as catalysts. The use of Au NC/MSNs as a catalyst for the epoxidation of styrene in the presence of tert-butyl hydroperoxide (TBHP) as a terminal oxidant resulted in an 88% conversion of styrene in 12 h with a 74% selectivity towards styrene epoxide. Our observations suggest that this remarkable catalytic performance is due to the small size of Au NCs and the strong interaction between gold and the MSNs. This catalytic conversion is environmentally friendly as it is solvent free. We believe our synthetic approach can be extended to other metal NCs offering a wide range of applications.
Collapse
Affiliation(s)
- Buthainah Al-Shankiti
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Walid Al-Maksoud
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) 4700 KAUST Thuwal 23955-6900 Saudi Arabia
| | - Madathumpady Abubaker Habeeb Muhammed
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Dalaver H Anjum
- Advanced Nanofabrication Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jean-Marie Basset
- Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) 4700 KAUST Thuwal 23955-6900 Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
38
|
Nagata T, Obora Y. N, N-Dimethylformamide-Protected Single-Sized Metal Nanoparticles and Their Use as Catalysts for Organic Transformations. ACS OMEGA 2020; 5:98-103. [PMID: 31956756 PMCID: PMC6963902 DOI: 10.1021/acsomega.9b03828] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/09/2019] [Indexed: 05/12/2023]
Abstract
In this mini-review, we summarize the solution syntheses of N,N-dimethylformamide (DMF)-protected metal nanoparticles (NPs) and nanoclusters (NCs) and their use in catalytic reactions. Representative examples are given of external-stabilizer/protectant-free metal NP and NC syntheses by reduction with DMF. In this method, DMF has three roles, i.e., a solvent, reductant, and protectant. Recent applications of DMF-stabilized metal NPs are summarized. These applications have enabled a versatile organic transformation such as cross-coupling reactions, hydrosilylation, and methylation to be achieved. These reactions proceed under low catalyst loadings and ligandless conditions.
Collapse
Affiliation(s)
- Tatsuki Nagata
- Department of Chemistry and Materials
Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Yasushi Obora
- Department of Chemistry and Materials
Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| |
Collapse
|
39
|
Zhao Y, Zhuang S, Liao L, Wang C, Xia N, Gan Z, Gu W, Li J, Deng H, Wu Z. A Dual Purpose Strategy to Endow Gold Nanoclusters with Both Catalysis Activity and Water Solubility. J Am Chem Soc 2020; 142:973-977. [PMID: 31851504 DOI: 10.1021/jacs.9b11017] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gold nanoclusters have attracted extensive interest for catalysis applications in recent years due to their ultrasmall sizes and well-defined compositions and structures. However, at least two challenges exist in this emerging field. First, the steric hindrance of the ligands inhibits the catalysis activity, and second, the mechanism underlying water-phase catalysis using gold nanoclusters is often ambiguous. Herein, we introduce a "kill two birds with one stone" strategy to address these two challenges via the use of host-guest chemistry. As an illustration, a novel adamantanethiolate-protected Au40(S-Adm)22 nanocluster was synthesized, bound with γ-CD-MOF, and then transferred to the HRP-mimicking reaction system. The as-obtained catalyst exhibits excellent water solubility and catalytical activity, totally different from the virgin Au40(S-Adm)22 nanoclusters. Further, the detailed HRP-mimicking catalysis mechanism was proposed and supported by DFT calculation. Another interesting finding is the unique structure of Au40(S-Adm)22, which can be regarded as an Au13 icosahedron unit derived structure but different from the widely reported icosahedron contained nanocluster where the Au13 icosahedrons are often centered. These novel, intriguing results have important implication for the property tuning and practical application of metal nanoclusters in the future.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei , 230031 , P.R. China.,Department of Materials Science and Engineering , University of Science and Technology of China , Hefei , 230026 , P.R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P.R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei , 230031 , P.R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P.R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei , 230031 , P.R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P.R. China
| | - Chengming Wang
- Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , Hefei , 230026 , P.R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei , 230031 , P.R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P.R. China
| | - Zibao Gan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei , 230031 , P.R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P.R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei , 230031 , P.R. China.,Department of Materials Science and Engineering , University of Science and Technology of China , Hefei , 230026 , P.R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P.R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences School of Life Sciences , Tsinghua University , Beijing , 100084 , P.R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences , Tsinghua University , Beijing , 100084 , P.R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience , Institute of Solid State Physics, Chinese Academy of Sciences , Hefei , 230031 , P.R. China.,Institute of Physical Science and Information Technology , Anhui University , Hefei , 230601 , P.R. China
| |
Collapse
|
40
|
Ye S, Brown AP, Stammers AC, Thomson NH, Wen J, Roach L, Bushby RJ, Coletta PL, Critchley K, Connell SD, Markham AF, Brydson R, Evans SD. Sub-Nanometer Thick Gold Nanosheets as Highly Efficient Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900911. [PMID: 31728277 PMCID: PMC6839621 DOI: 10.1002/advs.201900911] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/12/2019] [Indexed: 06/10/2023]
Abstract
2D metal nanomaterials offer exciting prospects in terms of their properties and functions. However, the ambient aqueous synthesis of atomically-thin, 2D metallic nanomaterials represents a significant challenge. Herein, freestanding and atomically-thin gold nanosheets with a thickness of only 0.47 nm (two atomic layers thick) are synthesized via a one-step aqueous approach at 20 °C, using methyl orange as a confining agent. Owing to the high surface-area-to-volume ratio, abundance of unsaturated atoms exposed on the surface and large interfacial areas arising from their ultrathin 2D nature, the as-prepared Au nanosheets demonstrate excellent catalysis performance in the model reaction of 4-nitrophenol reduction, and remarkable peroxidase-mimicking activity, which enables a highly sensitive colorimetric sensing of H2O2 with a detection limit of 0.11 × 10-6 m. This work represents the first fabrication of freestanding 2D gold with a sub-nanometer thickness, opens up an innovative pathway toward atomically-thin metal nanomaterials that can serve as model systems for inspiring fundamental advances in materials science, and holds potential across a wide region of applications.
Collapse
Affiliation(s)
- Sunjie Ye
- School of Physics and AstronomyUniversity of LeedsLeedsLS2 9JTUK
- Leeds Institute of Medical ResearchSt James's University HospitalUniversity of LeedsLeedsLS9 7TFUK
| | - Andy P. Brown
- School of Chemical and Process EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | | | - Neil H. Thomson
- Division of Oral BiologySchool of DentistryUniversity of LeedsLeedsLS9 7TFUK
| | - Jin Wen
- Institute of Organic Chemistry and BiochemistryAS CR166 10 Praha 6Czech Republic
| | - Lucien Roach
- School of Physics and AstronomyUniversity of LeedsLeedsLS2 9JTUK
| | | | - Patricia Louise Coletta
- Leeds Institute of Medical ResearchSt James's University HospitalUniversity of LeedsLeedsLS9 7TFUK
| | - Kevin Critchley
- School of Physics and AstronomyUniversity of LeedsLeedsLS2 9JTUK
| | - Simon D. Connell
- School of Physics and AstronomyUniversity of LeedsLeedsLS2 9JTUK
| | - Alexander F. Markham
- Leeds Institute of Medical ResearchSt James's University HospitalUniversity of LeedsLeedsLS9 7TFUK
| | - Rik Brydson
- School of Chemical and Process EngineeringUniversity of LeedsLeedsLS2 9JTUK
| | - Stephen D. Evans
- School of Physics and AstronomyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
41
|
Sulaiman KO, Sudheeshkumar V, Scott RWJ. Activation of atomically precise silver clusters on carbon supports for styrene oxidation reactions. RSC Adv 2019; 9:28019-28027. [PMID: 35530486 PMCID: PMC9070844 DOI: 10.1039/c9ra05566e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/29/2019] [Indexed: 01/24/2023] Open
Abstract
Metal clusters have distinct features such as large surface area, low-coordination-atom enriched surfaces, and discrete energy levels that influence their behavior during catalytic reactions. Atomically-precise Ag clusters, which are analogues of more well-studied Au clusters, are yet to be fully explored as catalysts for various chemical reactions. 2,4-Dimethylbenzenethiol-protected Ag25 clusters were prepared and deposited onto carbon supports followed by calcination. Results from X-ray absorption fine structure (EXAFS) spectroscopy measurements and other characterization techniques indicated that thermal activation of carbon-supported Ag25 clusters resulted in dethiolation of Ag clusters at 250 °C and beyond, and consequently mild growth in particle sizes of Ag clusters on carbon supports was seen with increasing activation temperatures. Both as-prepared and activated Ag25 clusters were active for styrene oxidation reactions, with high selectivity towards styrene oxide, without using any promoter. Results show that mild activation at 250 °C yields the most active catalysts, and higher activation temperatures lead to decreased activities and slightly poorer selectivity to styrene oxidation as a result of cluster sintering. EXAFS data shows the resulting activated clusters are composed of Ag metal and that all thiols are removed from the Ag cluster surfaces, though XPS data shows that thiol oxidation products are still present in the sample.
Collapse
Affiliation(s)
- Kazeem O Sulaiman
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| | - V Sudheeshkumar
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| | - Robert W J Scott
- Department of Chemistry, University of Saskatchewan 110 Science Place Saskatoon Saskatchewan S7N 5C9 Canada
| |
Collapse
|
42
|
Wu H, Cai H, Qiao J, Qi L. Reduction of 4-Nitrophenol Using Ficin Capped Gold Nanoclusters as Catalyst. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9070-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Development of sensing method for mercury ions and cell imaging based on highly fluorescent gold nanoclusters. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Munir A, Joya KS, Ul Haq T, Babar NUA, Hussain SZ, Qurashi A, Ullah N, Hussain I. Metal Nanoclusters: New Paradigm in Catalysis for Water Splitting, Solar and Chemical Energy Conversion. CHEMSUSCHEM 2019; 12:1517-1548. [PMID: 30485695 DOI: 10.1002/cssc.201802069] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/20/2018] [Indexed: 05/12/2023]
Abstract
A sustainable future demands innovative breakthroughs in science and technology today, especially in the energy sector. Earth-abundant resources can be explored and used to develop renewable and sustainable resources of energy to meet the ever-increasing global energy demand. Efficient solar-powered conversion systems exploiting inexpensive and robust catalytic materials for the photo- and photo-electro-catalytic water splitting, photovoltaic cells, fuel cells, and usage of waste products (such as CO2 ) as chemical fuels are appealing solutions. Many electrocatalysts and nanomaterials have been extensively studied in this regard. Low overpotentials, catalytic stability, and accessibility remain major challenges. Metal nanoclusters (NCs, ≤3 nm) with dimensions between molecule and nanoparticles (NPs) are innovative materials in catalysis. They behave like a "superatom" with exciting size- and facet-dependent properties and dynamic intrinsic characteristics. Being an emerging field in recent scientific endeavors, metal NCs are believed to replace the natural photosystem II for the generation of green electrons in a viable way to facilitate the challenging catalytic processes in energy-conversion schemes. This Review aims to discuss metal NCs in terms of their unique physicochemical properties, possible synthetic approaches by wet chemistry, and various applications (mostly recent advances in the electrochemical and photo-electrochemical water splitting cycle and the oxygen reduction reaction in fuel cells). Moreover, the significant role that MNCs play in dye-sensitized solar cells and nanoarrays as a light-harvesting antenna, the electrochemical reduction of CO2 into fuels, and concluding remarks about the present and future perspectives of MNCs in the frontiers of surface science are also critically reviewed.
Collapse
Affiliation(s)
- Akhtar Munir
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Khurram Saleem Joya
- Department of Chemistry, University of Engineering and Technology (UET-Lahore), GT Road, Lahore-, 54890, Punjab, Punjab, Pakistan
- Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Tanveer Ul Haq
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Noor-Ul-Ain Babar
- Department of Chemistry, University of Engineering and Technology (UET-Lahore), GT Road, Lahore-, 54890, Punjab, Punjab, Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| | - Ahsanulhaq Qurashi
- Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Najeeb Ullah
- US-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), University of Engineering & Technology (UET-Peshawar),Jamrud Road, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS). DHA, Lahore-, 54792, Pakistan
| |
Collapse
|
45
|
Takahashi Y, Kondo R, Utsunomiya M, Suzuki T, Takeshita HT, Obora Y. Ti−Pd Alloys as Heterogeneous Catalysts for the Hydrogen Autotransfer Reaction and Catalytic Improvement by Hydrogenation Effects. ChemCatChem 2019. [DOI: 10.1002/cctc.201900318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yuya Takahashi
- Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and BioengineeringKansai University Suita Osaka 564-8680 Japan
| | - Ryota Kondo
- Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and BioengineeringKansai University Suita Osaka 564-8680 Japan
| | - Masayoshi Utsunomiya
- Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and BioengineeringKansai University Suita Osaka 564-8680 Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center The Institute of Science and Industrial research (ISIR)Osaka University 8-1 Mihogaoka, Ibaraki Osaka 567-0057 Japan
| | - Hiroyuki T. Takeshita
- Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and BioengineeringKansai University Suita Osaka 564-8680 Japan
| | - Yasushi Obora
- Department of Chemistry and Materials Engineering Faculty of Chemistry, Materials and BioengineeringKansai University Suita Osaka 564-8680 Japan
| |
Collapse
|
46
|
Gao M, Yang Y, Guo J. Revealing the Role of Chain Length of Ligands on Gold Nanoparticles Surface in the Process for Catalysis Reduction of 4-Nitrophenol. Catal Letters 2019. [DOI: 10.1007/s10562-019-02752-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Du Y, Sheng H, Astruc D, Zhu M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem Rev 2019; 120:526-622. [DOI: 10.1021/acs.chemrev.8b00726] [Citation(s) in RCA: 526] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yuanxin Du
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Hongting Sheng
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Didier Astruc
- Université de Bordeaux, ISM, UMR CNRS 5255, Talence 33405 Cedex, France
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
48
|
Niihori Y, Yoshida K, Hossain S, Kurashige W, Negishi Y. Deepening the Understanding of Thiolate-Protected Metal Clusters Using High-Performance Liquid Chromatography. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yoshiki Niihori
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kana Yoshida
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Wataru Kurashige
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
49
|
Azuma R, Takahashi Y, Kondo R, Suzuki T, Takeshita HT, Obora Y. Bulk Ti–Pd Alloys as Easily Recyclable and Preactivation-Free Heterogeneous Catalysts for Cross-Coupling Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ryusei Azuma
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Yuya Takahashi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Ryota Kondo
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0057, Japan
| | - Hiroyuki T. Takeshita
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| | - Yasushi Obora
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan
| |
Collapse
|
50
|
Niide T, Manabe N, Nakazawa H, Akagi K, Hattori T, Kumagai I, Umetsu M. Complementary Design for Pairing between Two Types of Nanoparticles Mediated by a Bispecific Antibody: Bottom-Up Formation of Porous Materials from Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3067-3076. [PMID: 30689940 DOI: 10.1021/acs.langmuir.8b03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent advances in biotechnology have enabled the generation of antibodies with high affinity for the surfaces of specific inorganic materials. Herein, we report the synthesis of functional materials from multiple nanomaterials by using a small bispecific antibody recombinantly constructed from gold-binding and ZnO-binding antibody fragments. The bispecific antibody-mediated spontaneous linkage of gold and ZnO nanoparticles forms a binary gold-ZnO nanoparticle composite membrane. The relatively low melting point of the gold nanoparticles and the solubility of ZnO in dilute acidic solution then allowed for the bottom-up synthesis of a nanoporous gold membrane by means of a low-energy, low-environmental-load protocol. The nanoporous gold membrane showed high catalytic activity for the reduction of p-nitrophenol to p-aminophenol by sodium borohydride. Here, we show the potential utility of nanoparticle pairing mediated by bispecific antibodies for the bottom-up construction of nanostructured materials from multiple nanomaterials.
Collapse
Affiliation(s)
- Teppei Niide
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| | - Noriyoshi Manabe
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| | - Kazuto Akagi
- Advanced Institute for Materials Research , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai 980-8577 , Japan
| | - Takamitsu Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering , Tohoku University , Aoba 6-6-11, Aramaki , Aoba-ku, Sendai 980-8579 , Japan
| |
Collapse
|