1
|
Wu J, Zhang J, Hu M, Reiser P, Torresi L, Friederich P, Lahn L, Kasian O, Guldi DM, Pérez-Ojeda ME, Barabash A, Rocha-Ortiz JS, Zhao Y, Xie Z, Luo J, Wang Y, Seok SI, Hauch JA, Brabec CJ. Integrated System Built for Small-Molecule Semiconductors via High-Throughput Approaches. J Am Chem Soc 2023. [PMID: 37467341 PMCID: PMC10401720 DOI: 10.1021/jacs.3c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of the molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle "Like dissolves like," we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electronic properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production.
Collapse
Affiliation(s)
- Jianchang Wu
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstraße 2, 91058 Erlangen, Germany
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
| | - Jiyun Zhang
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstraße 2, 91058 Erlangen, Germany
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
| | - Manman Hu
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Korea
| | - Patrick Reiser
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luca Torresi
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Pascal Friederich
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Ham Fasanengarten 5, 76131 Karlsruhe, Germany
| | - Leopold Lahn
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
- Helmholtz-Zentrum Berlin GmbH, Helmholtz Institut Erlangen-Nürnberg, Cauerstraße 1, 91058 Erlangen, Germany
| | - Olga Kasian
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
- Helmholtz-Zentrum Berlin GmbH, Helmholtz Institut Erlangen-Nürnberg, Cauerstraße 1, 91058 Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center of Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - M Eugenia Pérez-Ojeda
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Anastasia Barabash
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstraße 2, 91058 Erlangen, Germany
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
| | - Juan S Rocha-Ortiz
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
| | - Yicheng Zhao
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstraße 2, 91058 Erlangen, Germany
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
- University of Electronic Science and Technology of China, School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Films and Integrated Devices, 611731 Chengdu, P. R. China
| | - Zhiqiang Xie
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
| | - Junsheng Luo
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
- University of Electronic Science and Technology of China, School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Films and Integrated Devices, 611731 Chengdu, P. R. China
| | - Yunuo Wang
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
| | - Sang Il Seok
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Korea
| | - Jens A Hauch
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstraße 2, 91058 Erlangen, Germany
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
| | - Christoph J Brabec
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg (HI-ERN), Immerwahrstraße 2, 91058 Erlangen, Germany
- Faculty of Engineering, Department of Material Science, Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstrasse 7, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Vallan L, Istif E, Gómez IJ, Alegret N, Mantione D. Thiophene-Based Trimers and Their Bioapplications: An Overview. Polymers (Basel) 2021; 13:1977. [PMID: 34208624 PMCID: PMC8234281 DOI: 10.3390/polym13121977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 01/15/2023] Open
Abstract
Certainly, the success of polythiophenes is due in the first place to their outstanding electronic properties and superior processability. Nevertheless, there are additional reasons that contribute to arouse the scientific interest around these materials. Among these, the large variety of chemical modifications that is possible to perform on the thiophene ring is a precious aspect. In particular, a turning point was marked by the diffusion of synthetic strategies for the preparation of terthiophenes: the vast richness of approaches today available for the easy customization of these structures allows the finetuning of their chemical, physical, and optical properties. Therefore, terthiophene derivatives have become an extremely versatile class of compounds both for direct application or for the preparation of electronic functional polymers. Moreover, their biocompatibility and ease of functionalization make them appealing for biology and medical research, as it testifies to the blossoming of studies in these fields in which they are involved. It is thus with the willingness to guide the reader through all the possibilities offered by these structures that this review elucidates the synthetic methods and describes the full chemical variety of terthiophenes and their derivatives. In the final part, an in-depth presentation of their numerous bioapplications intends to provide a complete picture of the state of the art.
Collapse
Affiliation(s)
- Lorenzo Vallan
- Laboratoire de Chimie des Polymères Organiques (LCPO—UMR 5629), Université de Bordeaux, Bordeaux INP, CNRS F, 33607 Pessac, France;
| | - Emin Istif
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey;
| | - I. Jénnifer Gómez
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic;
| | - Nuria Alegret
- POLYMAT and Departamento de Química Aplicada, University of the Basque Country, UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Daniele Mantione
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey;
| |
Collapse
|
3
|
Abstract
Traceless solid-phase synthesis represents an ultimate sophisticated synthetic strategy on insoluble supports. Compounds synthesized on solid supports can be released without a trace of the linker that was used to tether the intermediates during the synthesis. Thus, the target products are composed only of the components (atoms, functional groups) inherent to the target core structure. A wide variety of synthetic strategies have been developed to prepare products in a traceless manner, and this review is dedicated to all aspects of traceless solid-phase organic synthesis. Importantly, the synthesis does not need to be carried out on a linker designed for traceless synthesis; most of the synthetic approaches described herein were developed using standard, commercially available linkers (originally devised for solid-phase peptide synthesis). The type of structure prepared in a traceless fashion is not restricted. The individual synthetic approaches are divided into eight sections, each devoted to a different methodology for traceless synthesis. Each section consists of a brief outline of the synthetic strategy followed by a description of individual reported syntheses.
Collapse
Affiliation(s)
- Naděžda Cankařová
- Department of Organic Chemistry, Faculty of Science , Palacky University , 17. Listopadu 12 , Olomouc , 771 46 , Czech Republic
| | - Eva Schütznerová
- Department of Organic Chemistry, Faculty of Science , Palacky University , 17. Listopadu 12 , Olomouc , 771 46 , Czech Republic
| | - Viktor Krchňák
- Department of Organic Chemistry, Faculty of Science , Palacky University , 17. Listopadu 12 , Olomouc , 771 46 , Czech Republic.,Department of Chemistry and Biochemistry , University of Notre Dame , 251 Nieuwland Science Center , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
4
|
Mazziotta A, Makarov IS, Fristrup P, Madsen R. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones. J Org Chem 2017; 82:5890-5897. [PMID: 28499339 DOI: 10.1021/acs.joc.7b00802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide. The reaction constitutes a straightforward protocol for the synthesis of certain phenyl-substituted carboxylic acids from 2-phenylcycloalkanones. The mechanism was investigated by kinetic experiments which indicated a first order reaction in hydroxide and a full negative charge in the rate-determining step. The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid and a benzyl anion.
Collapse
Affiliation(s)
- Andrea Mazziotta
- Department of Chemistry, Technical University of Denmark , 2800 Kgs. Lyngby, Denmark
| | - Ilya S Makarov
- Department of Chemistry, Ludwig-Maximilians-Universität , Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Peter Fristrup
- Department of Chemistry, Technical University of Denmark , 2800 Kgs. Lyngby, Denmark
| | - Robert Madsen
- Department of Chemistry, Technical University of Denmark , 2800 Kgs. Lyngby, Denmark
| |
Collapse
|