1
|
Yan Y, Amur SA, Liu H, Shen R, Sun H, Pei Y, Guo C, Liang H. Endogenous crude Scutellaria baicalensis polysaccharide robustly enhances one-pot extraction and deglycosylation of baicalin. Int J Biol Macromol 2024; 263:130349. [PMID: 38387634 DOI: 10.1016/j.ijbiomac.2024.130349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
With the extensive application of baicalein in the treatment of cardiovascular and cerebrovascular diseases, its clinical and market demand has gradually expanded. But the natural yield of baicalein is very low, and it is mainly prepared by the deglycosylation of baicalin. However, the insolubility of baicalin in water significantly limits the deglycosylation of it under biocatalysis. To make biocatalysis of baicalin more efficient and environmental, a strategy was designed to enhance its water solubility through the solubilization mechanism of endogenous biological macromolecules, and the effect on the activity of glucuronidase was further explored. The results showed that wrapping with Scutellaria baicalensis polysaccharide (SBP) significantly improved the solubility of baicalin in water (the water solubility of baicalin increased by 23 times, BI/SBP = 1/12, w/w). It was not only contributed to the efficient production of baicalein by one-pot method, but also effectively improved the deglycosylation rate of baicalin (increase by 47.04 % in aqueous solution). With the help of the solubilization of endogenous polysaccharide on baicalin in aqueous solution, a green, low-cost and efficient method (one-pot method) was designed to simultaneously extract and enzymatic hydrolyze baicalin to prepare baicalein. Under the same conditions, the yield of one-pot method is 87.17 %, which was much higher than that of the conventional method (29.38 %). In addition, one-pot method with the aid of endogenous polysaccharide could simply and conveniently prepare aglycone of other insoluble natural flavonoids, which has a wide range of industrial application value.
Collapse
Affiliation(s)
- Yucheng Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Safdar Ali Amur
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Liu
- Ji Hua Laboratory, Foshan, P. R. Guangdong Provincial Key R&D Program, China
| | - Ruoyao Shen
- Ji Hua Laboratory, Foshan, P. R. Guangdong Provincial Key R&D Program, China
| | - Huaiqing Sun
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., No.92, River road, Huangpu Development District, Guangzhou 510700, Guangdong, China
| | - Yunlin Pei
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., No.92, River road, Huangpu Development District, Guangzhou 510700, Guangdong, China
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., No.92, River road, Huangpu Development District, Guangzhou 510700, Guangdong, China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Liang XY, Liu AL, Shawn Fan HJ, Wang L, Xu ZN, Ding XG, Huang BS. TsOH-catalyzed acyl migration reaction of the Bz-group: innovative assembly of various building blocks for the synthesis of saccharides. Org Biomol Chem 2023; 21:1537-1548. [PMID: 36723045 DOI: 10.1039/d2ob02052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We developed an efficient method to achieve the regioselective acyl migration of benzoyl ester. In all the cases, the reactions required only the commercially available organic acid catalyst TsOH·H2O. This method enables the benzoyl group to migrate from secondary groups to primary hydroxyl groups, or from equatorial secondary hydroxyl groups to axial hydroxyl groups. The 1,2 or 1,3 acyl migration would potentially occur via five- and six-membered cyclic ortho acid intermediates. A wide range of orthogonally protected monosaccharides, which are useful intermediates for the synthesis of natural oligosaccharides, were synthesized. Finally, to demonstrate the utility of the method, a tetrasaccharide portion from a mycobacterial cell wall polysaccharide was assembled.
Collapse
Affiliation(s)
- Xing-Yong Liang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - An-Lin Liu
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hua-Jun Shawn Fan
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Lei Wang
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Zhi-Ning Xu
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Xin-Gang Ding
- School of Chemistry Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Bo-Shun Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology and Howard Hughes Medical Institute, 1200 East California Boulevard, Pasadena, California 91125, USA.
| |
Collapse
|
3
|
Ruda A, Aytenfisu AH, Angles d’Ortoli T, MacKerell AD, Widmalm G. Glycosidic α-linked mannopyranose disaccharides: an NMR spectroscopy and molecular dynamics simulation study employing additive and Drude polarizable force fields. Phys Chem Chem Phys 2023; 25:3042-3060. [PMID: 36607620 PMCID: PMC9890503 DOI: 10.1039/d2cp05203b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
D-Mannose is a structural component in N-linked glycoproteins from viruses and mammals as well as in polysaccharides from fungi and bacteria. Structural components often consist of D-Manp residues joined via α-(1→2)-, α-(1→3)-, α-(1→4)- or α-(1→6)-linkages. As models for these oligo- and polysaccharides, a series of mannose-containing disaccharides have been investigated with respect to conformation and dynamics. Translational diffusion NMR experiments were performed to deduce rotational correlation times for the molecules, 1D 1H,1H-NOESY and 1D 1H,1H-T-ROESY NMR experiments were carried out to obtain inter-residue proton-proton distances and one-dimensional long-range and 2D J-HMBC experiments were acquired to gain information about conformationally dependent heteronuclear coupling constants across glycosidic linkages. To attain further spectroscopic data, the doubly 13C-isotope labeled α-D-[1,2-13C2]Manp-(1→4)-α-D-Manp-OMe was synthesized thereby facilitating conformational analysis based on 13C,13C coupling constants as interpreted by Karplus-type relationships. Molecular dynamics simulations were carried out for the disaccharides with explicit water as solvent using the additive CHARMM36 and Drude polarizable force fields for carbohydrates, where the latter showed broader population distributions. Both simulations sampled conformational space in such a way that inter-glycosidic proton-proton distances were very well described whereas in some cases deviations were observed between calculated conformationally dependent NMR scalar coupling constants and those determined from experiment, with closely similar root-mean-square differences for the two force fields. However, analyses of dipole moments and radial distribution functions with water of the hydroxyl groups indicate differences in the underlying physical forces dictating the wider conformational sampling with the Drude polarizable versus additive C36 force field and indicate the improved utility of the Drude polarizable model in investigating complex carbohydrates.
Collapse
Affiliation(s)
- Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm UniversityS-106 91 StockholmSweden
| | - Asaminew H. Aytenfisu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of MarylandBaltimoreMaryland 21201USA
| | - Thibault Angles d’Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm UniversityS-106 91 StockholmSweden
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of MarylandBaltimoreMaryland 21201USA
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm UniversityS-106 91 StockholmSweden
| |
Collapse
|
4
|
Dal Colle MCS, Fittolani G, Delbianco M. Synthetic Approaches to Break the Chemical Shift Degeneracy of Glycans. Chembiochem 2022; 23:e202200416. [PMID: 36005282 PMCID: PMC10087674 DOI: 10.1002/cbic.202200416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Indexed: 01/25/2023]
Abstract
NMR spectroscopy is the leading technique for determining glycans' three-dimensional structure and dynamic in solution as well as a fundamental tool to study protein-glycan interactions. To overcome the severe chemical shift degeneracy of these compounds, synthetic probes carrying NMR-active nuclei (e. g., 13 C or 19 F) or lanthanide tags have been proposed. These elegant strategies permitted to simplify the complex NMR analysis of unlabeled analogues, shining light on glycans' conformational aspects and interaction with proteins. Here, we highlight some key achievements in the synthesis of specifically labeled glycan probes and their contribution towards the fundamental understanding of glycans.
Collapse
Affiliation(s)
- Marlene C. S. Dal Colle
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
5
|
Lazar RD, Akher FB, Ravenscroft N, Kuttel MM. Carbohydrate Force Fields: The Role of Small Partial Atomic Charges in Preventing Conformational Collapse. J Chem Theory Comput 2022; 18:1156-1172. [PMID: 35015958 DOI: 10.1021/acs.jctc.1c00534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the quality of current additive all-atom force fields for carbohydrates has been demonstrated in many applications, occasional significant differences reported for the hydrodynamic behavior of specific polysaccharides modeled with different force fields is a cause for concern. In particular, irreversible conformational collapse has been noted for some polysaccharide simulations with the GLYCAM06j force field. Here, we investigate the cause of this phenomenon through comparative simulations of a range of saccharides with both the GLYCAM06j and the CHARMM36 carbohydrate force fields. We find that conformational collapse in GLYCAM06j occurs for saccharide chains containing the deoxy sugar α-l-rhamnose after relatively long simulation intervals. Further, we explore the mechanism of conformational collapse and show that this phenomenon arises because of the anomalous low energy in GLYCAM06j (as compared to quantum mechanical calculations) of a specific orientation of α-l-Rha to α-l-Rha glycosidic linkages, which are subsequently sustained by intramolecular interactions in the saccharide chain. We identify the lack of partial charges on aliphatic hydrogens in GLYCAM as the source of this anomaly, demonstrating that addition of small partial atomic charges on the aliphatic protons in rhamnose removes the conformational collapse phenomenon. This work reveals the large cumulative impact that small partial charges may have on the dynamic behavior of polysaccharides and indicates that future reparameterization of the GLYCAM06j force field should investigate the addition of partial charges on all aliphatic hydrogens.
Collapse
Affiliation(s)
- Ryan D Lazar
- Department of Computer Science, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Farideh B Akher
- Department of Computer Science, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Michelle M Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
6
|
Zerbetto M, Polimeno A, Widmalm G. Glycosidic linkage flexibility: The ψ torsion angle has a bimodal distribution in α-L-Rhap-(1→2)-α-L-Rhap-OMe as deduced from 13C NMR spin relaxation. J Chem Phys 2020; 152:035103. [DOI: 10.1063/1.5134531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Mirco Zerbetto
- Department of Chemical Sciences, University of Padua, Padua I-35131, Italy
| | - Antonino Polimeno
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
7
|
Zerbetto M, Angles d'Ortoli T, Polimeno A, Widmalm G. Differential Dynamics at Glycosidic Linkages of an Oligosaccharide as Revealed by 13C NMR Spin Relaxation and Stochastic Modeling. J Phys Chem B 2018; 122:2287-2294. [PMID: 29385337 DOI: 10.1021/acs.jpcb.7b12478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Among biomolecules, carbohydrates are unique in that not only can linkages be formed through different positions, but the structures may also be branched. The trisaccharide β-d-Glcp-(1→3)[β-d-Glcp-(1→2)]-α-d-Manp-OMe represents a model of a branched vicinally disubstituted structure. A 13C site-specific isotopologue, with labeling in each of the two terminal glucosyl residues, enabled the acquisition of high-quality 13C NMR relaxation parameters, T1 and T2, and heteronuclear NOE, with standard deviations of ≤0.5%. For interpretation of the experimental NMR data, a diffusive chain model was used, in which the dynamics of the glycosidic linkages is coupled to the global reorientation motion of the trisaccharide. Brownian dynamics simulations relying on the potential of mean force at the glycosidic linkages were employed to evaluate spectral densities of the spin probes. Calculated NMR relaxation parameters showed a very good agreement with experimental data, deviating <3%. The resulting dynamics are described by correlation times of 196 and 174 ps for the β-(1→2)- and β-(1→3)-linked glucosyl residues, respectively, i.e., different and linkage dependent. Notably, the devised computational protocol was performed without any fitting of parameters.
Collapse
Affiliation(s)
- Mirco Zerbetto
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Padova 35131, Italy
| | - Thibault Angles d'Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova , Padova 35131, Italy
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University , S-106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Complex carbohydrate recognition by proteins: Fundamental insights from bacteriophage cell adhesion systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.pisc.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Pendrill R, Engström O, Volpato A, Zerbetto M, Polimeno A, Widmalm G. Flexibility at a glycosidic linkage revealed by molecular dynamics, stochastic modeling, and (13)C NMR spin relaxation: conformational preferences of α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe in water and dimethyl sulfoxide solutions. Phys Chem Chem Phys 2016; 18:3086-96. [PMID: 26741055 DOI: 10.1039/c5cp06288h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The monosaccharide L-rhamnose is common in bacterial polysaccharides and the disaccharide α-L-Rhap-α-(1 → 2)-α-L-Rhap-OMe represents a structural model for a part of Shigella flexneri O-antigen polysaccharides. Utilization of [1'-(13)C]-site-specific labeling in the anomeric position at the glycosidic linkage between the two sugar residues facilitated the determination of transglycosidic NMR (3)JCH and (3)JCC coupling constants. Based on these spin-spin couplings the major state and the conformational distribution could be determined with respect to the ψ torsion angle, which changed between water and dimethyl sulfoxide (DMSO) as solvents, a finding mirrored by molecular dynamics (MD) simulations with explicit solvent molecules. The (13)C NMR spin relaxation parameters T1, T2, and heteronuclear NOE of the probe were measured for the disaccharide in DMSO-d6 at two magnetic field strengths, with standard deviations ≤1%. The combination of MD simulation and a stochastic description based on the diffusive chain model resulted in excellent agreement between calculated and experimentally observed (13)C relaxation parameters, with an average error of <2%. The coupling between the global reorientation of the molecule and the local motion of the spin probe is deemed essential if reproduction of NMR relaxation parameters should succeed, since decoupling of the two modes of motion results in significantly worse agreement. Calculation of (13)C relaxation parameters based on the correlation functions obtained directly from the MD simulation of the solute molecule in DMSO as solvent showed satisfactory agreement with errors on the order of 10% or less.
Collapse
Affiliation(s)
- Robert Pendrill
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Olof Engström
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Andrea Volpato
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy.
| | - Mirco Zerbetto
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy.
| | - Antonino Polimeno
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Padova 35131, Italy.
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
10
|
Yang M, Angles d’Ortoli T, Säwén E, Jana M, Widmalm G, MacKerell AD. Delineating the conformational flexibility of trisaccharides from NMR spectroscopy experiments and computer simulations. Phys Chem Chem Phys 2016; 18:18776-94. [PMID: 27346493 PMCID: PMC4945446 DOI: 10.1039/c6cp02970a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The conformation of saccharides in solution is challenging to characterize in the context of a single well-defined three-dimensional structure. Instead, they are better represented by an ensemble of conformations associated with their structural diversity and flexibility. In this study, we delineate the conformational heterogeneity of five trisaccharides via a combination of experimental and computational techniques. Experimental NMR measurements target conformationally sensitive parameters, including J couplings and effective distances around the glycosidic linkages, while the computational simulations apply the well-calibrated additive CHARMM carbohydrate force field in combination with efficient enhanced sampling molecular dynamics simulation methods. Analysis of conformational heterogeneity is performed based on sampling of discreet states as defined by dihedral angles, on root-mean-square differences of Cartesian coordinates and on the extent of volume sampled. Conformational clustering, based on the glycosidic linkage dihedral angles, shows that accounting for the full range of sampled conformations is required to reproduce the experimental data, emphasizing the utility of the molecular simulations in obtaining an atomic detailed description of the conformational properties of the saccharides. Results show the presence of differential conformational preferences as a function of primary sequence and glycosidic linkage types. Significant differences in conformational ensembles associated with the anomeric configuration of a single glycosidic linkage reinforce the impact of such changes on the conformational properties of carbohydrates. The present structural insights of the studied trisaccharides represent a foundation for understanding the range of conformations adopted in larger oligosaccharides and how these molecules encode their conformational heterogeneity into the monosaccharide sequence.
Collapse
Affiliation(s)
- Mingjun Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Thibault Angles d’Ortoli
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Elin Säwén
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Madhurima Jana
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
- Department of Chemistry, National Institute of Technology Rourkela, Odisha, India 769008
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
11
|
Kang Y, Gohlke U, Engström O, Hamark C, Scheidt T, Kunstmann S, Heinemann U, Widmalm G, Santer M, Barbirz S. Bacteriophage Tailspikes and Bacterial O-Antigens as a Model System to Study Weak-Affinity Protein–Polysaccharide Interactions. J Am Chem Soc 2016; 138:9109-18. [DOI: 10.1021/jacs.6b00240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yu Kang
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ulrich Gohlke
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Olof Engström
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106
91 Stockholm, Sweden
| | - Christoffer Hamark
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106
91 Stockholm, Sweden
| | - Tom Scheidt
- Physikalische
Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Sonja Kunstmann
- Physikalische
Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Udo Heinemann
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Institut
für Chemie und Biochemie, Freie Universität, Takustr. 6, 14195 Berlin, Germany
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106
91 Stockholm, Sweden
| | - Mark Santer
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Stefanie Barbirz
- Physikalische
Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
12
|
Patel DS, Pendrill R, Mallajosyula SS, Widmalm G, MacKerell AD. Conformational properties of α- or β-(1→6)-linked oligosaccharides: Hamiltonian replica exchange MD simulations and NMR experiments. J Phys Chem B 2014; 118:2851-71. [PMID: 24552401 PMCID: PMC3979472 DOI: 10.1021/jp412051v] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conformational sampling for a set of 10 α- or β-(1→6)-linked oligosaccharides has been studied using explicit solvent Hamiltonian replica exchange (HREX) simulations and NMR spectroscopy techniques. Validation of the force field and simulation methodology is done by comparing calculated transglycosidic J coupling constants and proton-proton distances with the corresponding NMR data. Initial calculations showed poor agreement, for example, with >3 Hz deviation of the calculated (3)J(H5,H6R) values from the experimental data, prompting optimization of the ω torsion angle parameters associated with (1→6)-linkages. The resulting force field is in overall good agreement (i.e., within ∼0.5 Hz deviation) from experimental (3)J(H5,H6R) values, although some small limitations are evident. Detailed hydrogen bonding analysis indicates that most of the compounds lack direct intramolecular H-bonds between the two monosaccharides; however, minor sampling of the O6···HO2' hydrogen bond is present in three compounds. The results verify the role of the gauche effect between O5 and O6 atoms in gluco- and manno-configured pyranosides causing the ω torsion angle to sample an equilibrium between the gt and gg rotamers. Conversely, galacto-configured pyranosides sample a population distribution in equilibrium between gt and tg rotamers, while the gg rotamer populations are minor. Water radial distribution functions suggest decreased accessibility to the O6 atom in the (1→6)-linkage as compared to the O6' atom in the nonreducing sugar. The role of bridging water molecules between two sugar moieties on the distributions of ω torsion angles in oligosaccharides is also explored.
Collapse
Affiliation(s)
- Dhilon S Patel
- Department of Pharmaceutical Sciences, University of Maryland , 20 Penn Street HSF II, Baltimore, Maryland 21201, United States
| | | | | | | | | |
Collapse
|
13
|
Pendrill R, Sørensen OW, Widmalm G. Suppressing one-bond homonuclear 13C,13C scalar couplings in the J-HMBC NMR experiment: application to 13C site-specifically labeled oligosaccharides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:82-86. [PMID: 24395678 DOI: 10.1002/mrc.4038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/10/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
Site-specific (13)C isotope labeling is a useful approach that allows for the measurement of homonuclear (13)C,(13)C coupling constants. For three site-specifically labeled oligosaccharides, it is demonstrated that using the J-HMBC experiment for measuring heteronuclear long-range coupling constants is problematical for the carbons adjacent to the spin label. By incorporating either a selective inversion pulse or a constant-time element in the pulse sequence, the interference from one-bond (13)C,(13)C scalar couplings is suppressed, allowing the coupling constants of interest to be measured without complications. Experimental spectra are compared with spectra of a nonlabeled compound as well as with simulated spectra. The work extends the use of the J-HMBC experiments to site-specifically labeled molecules, thereby increasing the number of coupling constants that can be obtained from a single preparation of a molecule.
Collapse
Affiliation(s)
- Robert Pendrill
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91, Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Kang Y, Barbirz S, Lipowsky R, Santer M. Conformational Diversity of O-Antigen Polysaccharides of the Gram-Negative Bacterium Shigella flexneri Serotype Y. J Phys Chem B 2014; 118:2523-34. [DOI: 10.1021/jp4111713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yu Kang
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Stefanie Barbirz
- Physikalische
Biochemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Mark Santer
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
15
|
Zhang Y, Yamaguchi T, Kato K. New NMR Tools for Characterizing the Dynamic Conformations and Interactions of Oligosaccharides. CHEM LETT 2013. [DOI: 10.1246/cl.130789] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ying Zhang
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences
- Department of Functional Molecular Science, The Graduate University for Advanced Studies
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Takumi Yamaguchi
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences
- Department of Functional Molecular Science, The Graduate University for Advanced Studies
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Koichi Kato
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences
- Department of Functional Molecular Science, The Graduate University for Advanced Studies
- Graduate School of Pharmaceutical Sciences, Nagoya City University
- The Glycoscience Institute, Ochanomizu University
| |
Collapse
|
16
|
Affiliation(s)
- Vitor H. Pomin
- Program of
Glycobiology, Institute of Medical Biochemistry,
and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-913,
Brazil
| |
Collapse
|