1
|
Yadav Y, Tyagi R, Yadav K, Tiwari G, Sagar R. Reinvestigation of SnCl 4 catalyzed efficient synthesis of 2,3-unsaturated glycopyranosides. Carbohydr Res 2023; 534:108989. [PMID: 38016255 DOI: 10.1016/j.carres.2023.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
The Ferrier rearrangement is a powerful tool to prepare 2,3-unsaturated glycopyranosides. We have reinvestigated SnCl4 catalyzed Ferrier rearrangements through direct allylic substitution of the hydroxyl group at the C-3 position of glycals, resulting in the formation of stereoselective 2,3-unsaturated glycosides at 0 °C. The catalytic amount of SnCl4 (0.1 equiv.) was successfully used to promote this transformation on 3,4,6-tri-O-acetyl-D-glucal, 3,4,6-tri-O-acetyl-D-galactal and 3,4-di-O-acetyl-D-arabinal using various nucleophiles viz alcohols, azide and thiols to form a variety of 2,3-unsaturated glycopyranosides (pseudoglycals). This straightforward process is notable for its strong anomeric selectivity, excellent yields and shorter reaction time.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kanchan Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Deng LF, Wang Y, Xu S, Shen A, Zhu H, Zhang S, Zhang X, Niu D. Palladium catalysis enables cross-coupling-like S N2-glycosylation of phenols. Science 2023; 382:928-935. [PMID: 37995215 DOI: 10.1126/science.adk1111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Despite their importance in life and material sciences, the efficient construction of stereo-defined glycosides remains a challenge. Studies of carbohydrate functions would be advanced if glycosylation methods were as reliable and modular as palladium (Pd)-catalyzed cross-coupling. However, Pd-catalysis excels in forming sp2-hybridized carbon centers whereas glycosylation mostly builds sp3-hybridized C-O linkages. We report a glycosylation platform through Pd-catalyzed SN2 displacement from phenols toward bench-stable, aryl-iodide-containing glycosyl sulfides. The key Pd(II) oxidative addition intermediate diverges from an arylating agent (Csp2 electrophile) to a glycosylating agent (Csp3 electrophile). This method inherits many merits of cross-coupling reactions, including operational simplicity and functional group tolerance. It preserves the SN2 mechanism for various substrates and is amenable to late-stage glycosylation of commercial drugs and natural products.
Collapse
Affiliation(s)
- Li-Fan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yingwei Wang
- Department of Nuclear Medicine & Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Ao Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Hangping Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Siyu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Sato E, Tachiwaki G, Fujii M, Mitsudo K, Washio T, Takizawa S, Suga S. Electrochemical Carbon-Ferrier Rearrangement Using a Microflow Reactor and Machine Learning-Assisted Exploration of Suitable Conditions. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Eisuke Sato
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Gaku Tachiwaki
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mayu Fujii
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takashi Washio
- Department of Reasoning for Intelligence, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Artificial Intelligence Research Center, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- Department of Reasoning for Intelligence, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Department of Synthetic Organic Chemistry, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Seiji Suga
- Faculty of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Kumar M, Gurawa A, Kumar N, Kashyap S. Bismuth-Catalyzed Stereoselective 2-Deoxyglycosylation of Disarmed/Armed Glycal Donors. Org Lett 2022; 24:575-580. [PMID: 34995079 DOI: 10.1021/acs.orglett.1c04008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bi(OTf)3 promoted direct and highly stereoselective glycosylation of "disarmed" and "armed" glycals to synthesize 2-deoxyglycosides has been reported. The tunable and solvent-controlled chemoselective activation of deactivated glycal donors distinguishing the competitive Ferrier and 1,2-addition pathways was discovered to improve substrate scope. The practical versatility of the method has been amply demonstrated with the oligosaccharide syntheses and 2-deoxyglycosylation of high-value natural products and drugs.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, MNIT, Jaipur 302017, India
| |
Collapse
|
5
|
Citric acid mediated simple and stereoselective synthesis of o-linked glycosides by Ferrier rearrangement. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Bhuma N, Lebedel L, Yamashita H, Shimizu Y, Abada Z, Ardá A, Désiré J, Michelet B, Martin‐Mingot A, Abou‐Hassan A, Takumi M, Marrot J, Jiménez‐Barbero J, Nagaki A, Blériot Y, Thibaudeau S. Insight into the Ferrier Rearrangement by Combining Flash Chemistry and Superacids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Naresh Bhuma
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Ludivine Lebedel
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Hiroki Yamashita
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Yutaka Shimizu
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Zahra Abada
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
- Sorbonne Université CNRS UMR 8234 PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX) 75005 Paris France
| | - Ana Ardá
- CIC bioGUNE Parque technologico de Bizkaia Edif. 801A-1° 48160 Derio-Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Jérôme Désiré
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Bastien Michelet
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Agnès Martin‐Mingot
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Ali Abou‐Hassan
- Sorbonne Université CNRS UMR 8234 PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX) 75005 Paris France
| | - Masahiro Takumi
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Jérôme Marrot
- Institut Lavoisier de Versailles UMR CNRS 8180 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE Parque technologico de Bizkaia Edif. 801A-1° 48160 Derio-Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Yves Blériot
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| |
Collapse
|
7
|
Bhuma N, Lebedel L, Yamashita H, Shimizu Y, Abada Z, Ardá A, Désiré J, Michelet B, Martin‐Mingot A, Abou‐Hassan A, Takumi M, Marrot J, Jiménez‐Barbero J, Nagaki A, Blériot Y, Thibaudeau S. Insight into the Ferrier Rearrangement by Combining Flash Chemistry and Superacids. Angew Chem Int Ed Engl 2020; 60:2036-2041. [DOI: 10.1002/anie.202010175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Naresh Bhuma
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Ludivine Lebedel
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Hiroki Yamashita
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Yutaka Shimizu
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Zahra Abada
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
- Sorbonne Université CNRS UMR 8234 PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX) 75005 Paris France
| | - Ana Ardá
- CIC bioGUNE Parque technologico de Bizkaia Edif. 801A-1° 48160 Derio-Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Jérôme Désiré
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Bastien Michelet
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Agnès Martin‐Mingot
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Ali Abou‐Hassan
- Sorbonne Université CNRS UMR 8234 PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX) 75005 Paris France
| | - Masahiro Takumi
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Jérôme Marrot
- Institut Lavoisier de Versailles UMR CNRS 8180 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Jesús Jiménez‐Barbero
- CIC bioGUNE Parque technologico de Bizkaia Edif. 801A-1° 48160 Derio-Bizkaia Spain
- Ikerbasque Basque Foundation for Science Maria Lopez de Haro 3 48013 Bilbao Spain
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry Graduate School of Engineering Kyoto University Japan
| | - Yves Blériot
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| | - Sébastien Thibaudeau
- IC2MP UMR CNRS 7285 Equipe “Synthèse Organique” Université de Poitiers 4 rue Michel Brunet 86073 Poitiers cedex 9 France
| |
Collapse
|
8
|
Li W, Yu B. Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Adv Carbohydr Chem Biochem 2020; 77:1-69. [PMID: 33004110 DOI: 10.1016/bs.accb.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of a carbohydrate building block usually starts with introduction of a temporary protecting group at the anomeric center and ends with its selective cleavage for further transformation. Thus, the choice of the anomeric temporary protecting group must be carefully considered because it should retain intact during the whole synthetic manipulation, and it should be chemoselectively removable without affecting other functional groups at a late stage in the synthesis. Etherate groups are the most widely used temporary protecting groups at the anomeric center, generally including allyl ethers, MP (p-methoxyphenyl) ethers, benzyl ethers, PMB (p-methoxybenzyl) eithers, and silyl ethers. This chapter provides a comprehensive review on their formation, cleavage, and applications in the synthesis of complex carbohydrates.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
9
|
Mukherjee MM, Maity SK, Ghosh R. One-pot construction of carbohydrate scaffolds mediated by metal catalysts. RSC Adv 2020; 10:32450-32475. [PMID: 35516477 PMCID: PMC9056687 DOI: 10.1039/d0ra05355d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 11/21/2022] Open
Abstract
Owing to the environmental concern worldwide and also due to cost, time and labour issues, use of one-pot reactions [domino/cascade/tandem/multi-component (MC) or sequential] has gained much attention among the scientific and industrial communities for the generation of compound libraries having different scaffolds. Inclusion of sugars in such compounds is expected to increase the pharmacological efficacy because of the possibility of better interactions with the receptors of such unnatural glycoconjugates. In many of the one-pot transformations, the presence of a metal salt/complex can improve the reaction/change the course of reaction with remarkable increase in chemo-/regio-/stereo-selectivity. On the other hand because of the importance of natural polymeric glycoconjugates in life processes, the development and efficient synthesis of related oligosaccharides, particularly utilising one-pot MC-glycosylation techniques are necessary. The present review is an endeavour to discuss one-pot transformations involving carbohydrates catalysed by a metal salt/complex.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health Bethesda MD 20892 USA
| | | | - Rina Ghosh
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| |
Collapse
|
10
|
Kumar M, Reddy TR, Gurawa A, Kashyap S. Copper(ii)-catalyzed stereoselective 1,2-addition vs. Ferrier glycosylation of "armed" and "disarmed" glycal donors. Org Biomol Chem 2020; 18:4848-4862. [PMID: 32608448 DOI: 10.1039/d0ob01042a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Selective activation of "armed' and ''disarmed" glycal donors enabling the stereo-controlled glycosylations by employing Cu(ii)-catalyst as the promoter has been realized. The distinctive stereochemical outcome in the process is mainly influenced by the presence of diverse protecting groups on the donor and the solvent system employed. The protocol is compatible with a variety of aglycones including carbohydrates, amino acids, and natural products to access deoxy-glycosides and glycoconjugates with high α-anomeric selectivity. Notably, the synthetic practicality of the method is amply verified for the stereoselective assembling of trisaccharides comprising 2-deoxy components. Mechanistic studies involving deuterated experiments validate the syn-diastereoselective 1,2-addition of acceptors on the double bond of armed donors.
Collapse
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Thurpu Raghavender Reddy
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL), Department of Chemistry, Malaviya National Institute of Technology (MNIT), Jaipur-302017, India.
| |
Collapse
|
11
|
Yurino T, Hachiya A, Suzuki K, Ohkuma T. Selective Conversion of Benzylic Phosphates into Diarylmethanes Through Al(OTf) 3
-Catalyzed Friedel-Crafts-Type Benzylation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Taiga Yurino
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; 060-8628 Sapporo Hokkaido Japan
| | - Asuka Hachiya
- Graduate School of Chemical Sciences and Engineering; Faculty of Engineering; Hokkaido University; 060-8628 Sapporo Hokkaido Japan
| | - Keisuke Suzuki
- Graduate School of Chemical Sciences and Engineering; Faculty of Engineering; Hokkaido University; 060-8628 Sapporo Hokkaido Japan
| | - Takeshi Ohkuma
- Division of Applied Chemistry and Frontier Chemistry Center; Faculty of Engineering; Hokkaido University; 060-8628 Sapporo Hokkaido Japan
| |
Collapse
|
12
|
Abstract
The substitution reaction of glycal (1,2-unsaturated cyclic carbohydrate derivative)
at C1 by allyl rearrangement in the presence of a catalyst is called Ferrier type-I rearrangement.
2,3-Unsaturated glycosides are usually obtained from glycals through Ferrier
type-I rearrangement, and their potential biological activities have gradually attracted
widespread attention of researchers. This review summarizes recent advances (2009-
present) in the application of various types of catalysts to Ferrier type-I rearrangement reactions,
including their synthesis, mechanism, and application of 2, 3-unsaturated glycosides.
Collapse
Affiliation(s)
- Nan Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhengliang Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Youxian Dong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaoxia Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiaxia Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jianbo Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
13
|
Jiang N, Dong Y, Sun G, Yang G, Wang Q, Zhang J. Core‐Shell Fe
3
O
4
@Carbon@SO
3
H: A Powerful Recyclable Catalyst for the Synthesis of α‐2‐Deoxygalactosides. ChemistrySelect 2020. [DOI: 10.1002/slct.202000089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nan Jiang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Youxian Dong
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Guosheng Sun
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Guofang Yang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Qingbing Wang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| | - Jianbo Zhang
- School of Chemistry and Molecular EngineeringEast China Normal University Shanghai 200241 P. R. of China
| |
Collapse
|
14
|
Tanaka D, Kadonaga Y, Manabe Y, Fukase K, Sasaya S, Maruyama H, Nishimura S, Yanagihara M, Konishi A, Yasuda M. Synthesis of Cage-Shaped Aluminum Aryloxides: Efficient Lewis Acid Catalyst for Stereoselective Glycosylation Driven by Flexible Shift of Four- to Five-Coordination. J Am Chem Soc 2019; 141:17466-17471. [DOI: 10.1021/jacs.9b08875] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daiki Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichiro Kadonaga
- Division of Science, Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shota Sasaya
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hikaru Maruyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sota Nishimura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mayu Yanagihara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Bihari Mishra K, Kandasamy J. Tris(Pentafluorophenyl)Borane‐Driven Stereoselective
O
‐Glycosylation with Glycal Donors under Mild Condition. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kunj Bihari Mishra
- Department of chemistryIndian Institute of Technology, IIT BHU Varanasi- 221005
| | - Jeyakumar Kandasamy
- Department of chemistryIndian Institute of Technology, IIT BHU Varanasi- 221005
| |
Collapse
|
16
|
Wang J, Deng C, Zhang Q, Chai Y. Tuning the Chemoselectivity of Silyl Protected Rhamnals by Temperature and Brønsted Acidity: Kinetically Controlled 1,2-Addition vs Thermodynamically Controlled Ferrier Rearrangement. Org Lett 2019; 21:1103-1107. [PMID: 30714737 DOI: 10.1021/acs.orglett.9b00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An acidity- and temperature-dependent chemoselective glycosylation of silyl-protected rhamnals with alcohols has been revealed. The reaction undergoes a 1,2-addition pathway with (±)-CSA as the catalyst at rt, affording kinetically controlled 2-deoxyl rhamnosides. In contrast, only thermodynamically controlled 2,3-unsaturated rhamnosides are formed via Ferrier rearrangement when elevating reaction temperature to 85 °C or using CF3SO3H instead. This tunable glycosylation allows facile and practical access to both 2-deoxyl and 2,3-unsaturated rhamnosides with excellent yields and high α-stereoselectivity.
Collapse
Affiliation(s)
- Jincai Wang
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Chuqiao Deng
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| | - Yonghai Chai
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Xi'an , Shaanxi 710119 , P. R. China.,School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi 710119 , P. R. China
| |
Collapse
|
17
|
Bodachivskyi I, Kuzhiumparambil U, Williams DBG. The role of the molecular formula of ZnCl2·nH2O on its catalyst activity: a systematic study of zinc chloride hydrates in the catalytic valorisation of cellulosic biomass. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00846b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show the efficient and direct transformation of a range of low value cellulosic substrates such as lignocellulose and algal biomass, into higher value chemicals, including low molecular weight reducing saccharides and furanoid products.
Collapse
Affiliation(s)
- Iurii Bodachivskyi
- School of Mathematical and Physical Sciences
- University of Technology Sydney
- Sydney
- Australia
| | | | - D. Bradley G. Williams
- School of Mathematical and Physical Sciences
- University of Technology Sydney
- Sydney
- Australia
| |
Collapse
|
18
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
19
|
Ding Z, Luo X, Ma Y, Chen H, Qiu S, Sun G, Zhang W, Yu C, Wu Z, Zhang J. Eco-friendly synthesis of 5-hydroxymethylfurfural (HMF) and its application to the Ferrier-rearrangement reaction. J Carbohydr Chem 2018. [DOI: 10.1080/07328303.2018.1428990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zekun Ding
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiaosheng Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yibin Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Heshan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Saifeng Qiu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Guosheng Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Wan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Chao Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zhenliang Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jianbo Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
20
|
Compain G, Sikk L, Massi L, Gal JF, Duñach E. Bond Strength and Reactivity Scales for Lewis Superacid Adducts: A Comparative Study with In(OTf)3and Al(OTf)3. Chemphyschem 2017; 18:683-691. [DOI: 10.1002/cphc.201601389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Guillaume Compain
- Institut de Chimie de Nice, UMR 7272; Université Côte D'Azur, CNRS; 06108 Nice France
| | - Lauri Sikk
- Institut de Chimie de Nice, UMR 7272; Université Côte D'Azur, CNRS; 06108 Nice France
| | - Lionel Massi
- Institut de Chimie de Nice, UMR 7272; Université Côte D'Azur, CNRS; 06108 Nice France
| | - Jean-François Gal
- Institut de Chimie de Nice, UMR 7272; Université Côte D'Azur, CNRS; 06108 Nice France
| | - Elisabet Duñach
- Institut de Chimie de Nice, UMR 7272; Université Côte D'Azur, CNRS; 06108 Nice France
| |
Collapse
|
21
|
Abstract
The development of glycobiology relies on the sources of particular oligosaccharides in their purest forms. As the isolation of the oligosaccharide structures from natural sources is not a reliable option for providing samples with homogeneity, chemical means become pertinent. The growing demand for diverse oligosaccharide structures has prompted the advancement of chemical strategies to stitch sugar molecules with precise stereo- and regioselectivity through the formation of glycosidic bonds. This Review will focus on the key developments towards chemical O-glycosylations in the current century. Synthesis of novel glycosyl donors and acceptors and their unique activation for successful glycosylation are discussed. This Review concludes with a summary of recent developments and comments on future prospects.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| | - Balaram Mukhopadhyay
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) KolkataMohanpurNadia741246India
| |
Collapse
|
22
|
An efficient method for the synthesis of pyranoid glycals. Carbohydr Res 2016; 431:42-6. [DOI: 10.1016/j.carres.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 01/17/2023]
|
23
|
Moshapo PT, Sokamisa M, Mmutlane EM, Mampa RM, Kinfe HH. A convenient domino Ferrier rearrangement-intramolecular cyclization for the synthesis of novel benzopyran-fused pyranoquinolines. Org Biomol Chem 2016; 14:5627-38. [DOI: 10.1039/c5ob02536b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-mediated three component coupling of salicyladehydes, anilines and gylcals provided novel benzopyran-fused pyranoquinolines stereoselectively, in moderate to high yields.
Collapse
Affiliation(s)
- Paseka T. Moshapo
- Research Centre for Synthesis and Catalysis
- Department of Chemistry
- University of Johannesburg
- South Africa
| | - Mokela Sokamisa
- Research Centre for Synthesis and Catalysis
- Department of Chemistry
- University of Johannesburg
- South Africa
| | - Edwin M. Mmutlane
- Research Centre for Synthesis and Catalysis
- Department of Chemistry
- University of Johannesburg
- South Africa
| | | | - Henok H. Kinfe
- Research Centre for Synthesis and Catalysis
- Department of Chemistry
- University of Johannesburg
- South Africa
| |
Collapse
|
24
|
Rokade SM, Bhate PM. Ferrier reaction in a deep eutectic solvent. Carbohydr Res 2015; 415:28-30. [PMID: 26279523 DOI: 10.1016/j.carres.2015.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 12/01/2022]
Abstract
A mild and efficient synthesis of 2,3-unsaturated sugar derivatives has been achieved by conducting the Ferrier reaction in a deep eutectic solvent (DES). A wide range of alcohols including primary, secondary, benzylic, and sugar-derived primary alcohols can be used. Advantages include good yields, shorter reaction times and recyclability of DES.
Collapse
Affiliation(s)
- Sunil M Rokade
- Department of Dyestuff Technology, Institute of Chemical Technology (formerly UDCT), N. P. Marg, Matunga, Mumbai 400 019, Maharashtra, India
| | - Prakash M Bhate
- Department of Dyestuff Technology, Institute of Chemical Technology (formerly UDCT), N. P. Marg, Matunga, Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
25
|
Simelane SB, Kinfe HH, Muller A, Williams DBG. Aluminum Triflate Catalyzed Tandem Reactions of d-Galactal: Toward Chiral Benzopyrans, Chromenes, and Chromans. Org Lett 2014; 16:4543-5. [DOI: 10.1021/ol502305j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandile B. Simelane
- Research
Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Henok H. Kinfe
- Research
Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Alfred Muller
- Research
Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - D. Bradley G. Williams
- Research
Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
- Ferrier
Research Institute, Victoria University of Wellington, 69 Gracefield
Road, Lower Hutt 5010, New Zealand
| |
Collapse
|
26
|
Bound DJ, Bettadaiah BK, Srinivas P. ZnBr2-Catalyzed and Microwave-Assisted Synthesis of 2,3-Unsaturated Glucosides of Hindered Phenols and Alcohols. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2014.909490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- D. James Bound
- a Plantation Products, Spices and Flavour Technology Department , CSIR−Central Food Technological Research Institute , Mysore , India
| | - B. K. Bettadaiah
- a Plantation Products, Spices and Flavour Technology Department , CSIR−Central Food Technological Research Institute , Mysore , India
| | - P. Srinivas
- a Plantation Products, Spices and Flavour Technology Department , CSIR−Central Food Technological Research Institute , Mysore , India
| |
Collapse
|
27
|
Gómez AM, Lobo F, Uriel C, López JC. Recent Developments in the Ferrier Rearrangement. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300798] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Ferrier Rearrangement and 2-Deoxy Sugar Synthesis from d-Glycals Mediated by Layered α-Zirconium Sulfophenylphosphonate-Methanphosphonate as Heterogeneous Catalyst. Catal Letters 2012. [DOI: 10.1007/s10562-012-0932-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|