1
|
Mahto AK, Kanupriya, Kumari S, Yar MS, Dewangan RP. Hydrocarbon stapled temporin-L analogue as potential antibacterial and antiendotoxin agents with enhanced protease stability. Bioorg Chem 2024; 145:107239. [PMID: 38428282 DOI: 10.1016/j.bioorg.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Antimicrobial resistance (AMR) is a serious global concern and a huge burden on the healthcare system. Antimicrobial peptides (AMPs) are considered as a solution of AMR due to their membrane-lytic and intracellular mode of action and therefore resistance development against AMPs is less frequent. One such AMPs, temporin-L (TL) is a 13-mer peptide reported as a potent and broad-spectrum antibacterial agent with significant immunomodulatory activity. However, TL is toxic to human erythrocytes at their antibacterial concentrations and therefore various analogues were synthesized with potent antimicrobial activity and lower hemolytic activity. In this work, we have selected a non-toxic engineered analogue of TL (eTL) and performed hydrocarbon stapling of amino acid residues at i to i + 4 positions at different part of sequence. The synthesized peptides were investigated against both the gram-positive and gram-negative bacteria as well as methicillin resistant S. aureus, its MIC was measured in the concentrations range of 0.9-15.2 µM. All analogues were found equal or better antibacterial as compared to parent peptide. Interestingly one analogue eTL [5-9] was found to be non-cytotoxic and stable in presence of the human serum. Mode of action studies revealed membrane depolarizing and disruptive mode of action with live MRSA. Further in vivo studies of antimicrobial against MRSA infection and anti-endotoxin activities in mice model revealed potential activity of the stapled peptide analogue. Overall, this reports on stapled analogue of the AMPs highlights an important strategy for the development of new antibacterial therapeutics against AMR.
Collapse
Affiliation(s)
- Aman Kumar Mahto
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Kanupriya
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Shalini Kumari
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Sukhdev Vihar, Mathura Road, New Delhi 110025, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Deemed to be University), New Delhi 110062, India.
| |
Collapse
|
2
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
3
|
Verma NK, Dewangan RP, Harioudh MK, Ghosh JK. Introduction of a β-leucine residue instead of leucine 9 and glycine 10 residues in Temporin L for improved cell selectivity, stability and activity against planktonic and biofilm of methicillin resistant S. aureus. Bioorg Chem 2023; 134:106440. [PMID: 36870201 DOI: 10.1016/j.bioorg.2023.106440] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023]
Abstract
Leucine and glycine residues, at the 9th and 10th positions of helical domain of naturally occurring antimicrobial peptide (AMP), Temporin L were substituted with an unnatural amino acid, β-leucine (homovaline) to improve its serum protease stability, haemolytic/cytotoxic properties and reduce the size to some extent. The designed analogue, L9βl-TL showed either equal or improved antimicrobial activity to TL against different microorganisms including the resistant strains. Interestingly, L9βl-TL also exhibited lower haemolytic and cytotoxic activities against human red blood cells and 3T3 cells, respectively. Moreover, L9βl-TL showed antibacterial activity in presence of 25% (v/v) human serum and showed resistance against proteolytic cleavage in presence of it that suggested the serum protease stability of the TL-analogue. L9βl-TL exhibited un-ordered secondary structures in both bacterial and mammalian membrane mimetic lipid vesicles as compared to the helical structures of TL in these environments. However, tryptophan fluorescence studies demonstrated more selective interaction of L9βl-TL with bacterial membrane mimetic lipid vesicles in comparison to non-selective interactions of TL with both kinds of lipid vesicles. Membrane depolarization studies with live MRSA and bacterial membrane-mimetic lipid vesicles suggested a membrane-disrupting mode of action of L9βl-TL. L9βl-TL showed faster bactericidal mechanism compared to TL against MRSA. Interestingly, L9βl-TL was found as more potent than TL either in inhibiting biofilm formation or in eradicating the mature biofilm formed by MRSA. Overall, the present work demonstrates a simple and useful strategy to design of an analogue of TL, with minimal modifications while maintaining its antimicrobial activity with lesser toxicity and higher stability which could be attempted for other AMPs as well.
Collapse
Affiliation(s)
- Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rikeshwer Prasad Dewangan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Munesh Kumar Harioudh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| |
Collapse
|
4
|
Mumtaz S, Behera S, Joshi S, Mukhopadhyay K. Efficacy and Toxicity Studies of Novel α-MSH Analogues with Antibiofilm Action and β-Lactam Resensitization Potential against MRSA. ACS Infect Dis 2022; 8:2480-2493. [PMID: 36440863 DOI: 10.1021/acsinfecdis.2c00280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a biofilm-forming recalcitrant pathogen with a multidrug-resistant profile, poses a pandemic threat to human health and is the leading cause of severe infections in both healthcare and community settings. In this study, toward designing novel α-MSH-based peptides with enhanced activity and stability against MRSA, particularly its stationary phase and biofilm, we explored a design approach to augment the hydrophobicity of an 8-mer C-terminal α-MSH(6-13)-based peptide Ana-5 through the incorporation of a bulky unnatural amino acid. The designed Ana-peptides overcame the limitation of diminished activity in biological media and exhibited enhanced antistaphylococcal activity and cell selectivity. With membrane rupture as the primary mode of action, the peptides exhibited inhibitory potential against S. aureus biofilms. Importantly, the peptides did not exhibit any adverse effects in the in vivo toxicity studies and were also able to significantly alleviate bacterial infection in a systemic infection mice model study. Additionally, the peptides retained their activity in the presence of serum and displayed a low propensity toward resistance development in MRSA cells. Moreover, the observed synergistic potential of Ana-10 with conventional antibiotics could be vital in resurrecting discarded antibiotics. Thus, this study provides us with an exciting lead, Ana-10, for further development against biofilm-based chronic S. aureus infections.
Collapse
Affiliation(s)
- Sana Mumtaz
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi110067, India
| | - Swastik Behera
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi110067, India
| | - Seema Joshi
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi110067, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi110067, India
| |
Collapse
|
5
|
Dewangan RP, Verma DP, Verma NK, Gupta A, Pant G, Mitra K, Habib S, Ghosh JK. Spermine-Conjugated Short Proline-Rich Lipopeptides as Broad-Spectrum Intracellular Targeting Antibacterial Agents. J Med Chem 2022; 65:5433-5448. [PMID: 35297625 DOI: 10.1021/acs.jmedchem.1c01809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Toward the design of new proline-rich peptidomimetics, a short peptide segment, present in several proline-rich antimicrobial peptides (AMPs), was selected. Fatty acids of varying lengths and spermine were conjugated at the N- and C-terminals of the peptide, respectively. Spermine-conjugated lipopeptides, C10-PR-Spn and C12-PR-Spn, exhibited minimum inhibitory concentrations within 1.5-6.2 μM against the tested pathogens including resistant bacteria and insignificant hemolytic activity against human red blood cells up to 100 μM concentrations and demonstrated resistance against trypsin digestion. C10-PR-Spn and C12-PR-Spn showed synergistic antimicrobial activity against multidrug-resistant methicillin-resistant Staphylococcus aureus with several tested antibiotics. These lipopeptides did not permeabilize bacterial membrane-mimetic lipid vesicles or damage the Escherichia coli membrane like the nonmembrane-lytic AMP, buforin-II. The results suggested that C10-PR-Spn and C12-PR-Spn could interact with the 70S ribosome of E. coli and inhibit its protein synthesis. C10-PR-Spn and C12-PR-Spn demonstrated superior clearance of bacteria from the spleen, liver, and kidneys of mice, infected with S. aureus ATCC 25923 compared to levofloxacin.
Collapse
Affiliation(s)
- Rikeshwer Prasad Dewangan
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Ankit Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Garima Pant
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Saman Habib
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
6
|
Prasad Dewangan R, Kumari S, Kumar Mahto A, Jain A, Pasha S. Self assembly and hydrogelation of N-terminal modified tetrapeptide for sustained release and synergistic action of antibacterial drugs against methicillin resistant S. aureus. Bioorg Chem 2020; 102:104052. [PMID: 32659487 DOI: 10.1016/j.bioorg.2020.104052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023]
Abstract
Self assembly is a ubiquitous process of complex bio-molecules to perform various biological functions. This bottom-up approach applies in engineering of various nanostructures in different technological and biomedical applications. Here we report design and synthesis of phenolic acid conjugated tetra peptides which self assembled in uniform nanofibrils upon dissolution in aqueous solutions at physiological pH and formed stiff and transparent hydrogel. Gel inversion assay, HR-TEM, FT-IR, CD spectroscopy and rheometric analysis characterized the developed hydrogel (HG-2). This gel exhibits characteristics of thixotropy and injectability. Structure-gelation relationship studies of peptide revealed the importance of π-π interactions in self assembly and hydrogelation. Further, this hydrogel used for entrapment and sustained release of antibiotics, rifampicin and ciprofloxacin at physiological pH and temperature for 5 days. The hydrogelator peptide has shown moderate antibacterial activity alone, whereas in combination with rifampicin and ciprofloxacin showed a remarkable synergistic antibacterial activity against clinically relevant multidrug resistant methicillin resistant S. aureus (MRSA). Interestingly, this hydrogel neither cause significant damage to hRBCsnor to human keratinocyte up to hydrogelation concentrations tested by haemolytic and MTT assay. These characteristics of present peptide hold future promising soft materials for treatment of infections and drug delivery applications.
Collapse
Affiliation(s)
- Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Deemed to be University), New Delhi 110062, India.
| | - Shalini Kumari
- CSIR- Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India
| | - Aman Kumar Mahto
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Deemed to be University), New Delhi 110062, India
| | - Aditi Jain
- CSIR- Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India
| | - Santosh Pasha
- CSIR- Institute of Genomics and Integrative Biology (IGIB), Mall Road, Delhi 110007, India
| |
Collapse
|
7
|
Ashton NN, Allyn G, Porter ST, Haussener TJ, Sebahar PR, Looper RE, Williams DL. In vitro testing of a first-in-class tri-alkylnorspermidine-biaryl antibiotic in an anti-biofilm silicone coating. Acta Biomater 2019; 93:25-35. [PMID: 30769135 DOI: 10.1016/j.actbio.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/22/2019] [Accepted: 02/09/2019] [Indexed: 01/02/2023]
Abstract
Biofilm-related infection is among the worst complication to prosthetic joint replacement procedures; once established on the implant surface, biofilms show strong recalcitrance to clinical antibiotic therapy, frequently requiring costly revision procedures and prolonged systemic antibiotics for their removal. A well-designed active release coating might assist host immunity in clearing bacterial contaminants within the narrow perioperative window and ultimately prevent microbial colonization of the joint prosthesis. A first-in-class compound (CZ-01127) was tested as the active release agent in a silicone (Si) coating using an in vitro dynamic flow model of surgical site contamination and compared with analogous coatings containing clinical gold-standard antibiotics vancomycin and gentamicin; the CZ-01127 coating outperformed both vancomycin and gentamicin coatings and was the only to decrease the methicillin-resistant Staphylococcus aureus (MRSA) inocula below detectable limits for the first 3 days. The antimicrobial activity of CZ-01127, and for comparison vancomycin and gentamicin, were characterized against both planktonic and biofilm MRSA using the minimum inhibitory concentration (MIC) assay, serial passages, and serial dilution tests against established biofilms grown with a CBR 90 CDC biofilm reactor. Despite a similar MIC (1 µg/ml) and behavior in a 25-day serial passage analysis, CZ-01127 displayed much greater bactericidal activity against established biofilms and was the only to decrease biofilm colony forming units (CFUs) below detectable limits at the highest concentration tested (500 µg/ml). Coating release profiles were characterized using ATR-FTIR and displayed burst release kinetics within the decisive period of the perioperative window suggesting the silicon carrier is broadly useful for screening antibiotic compound for local delivery applications. STATEMENT OF SIGNIFICANCE: With an aging population, an increasing number of people are undergoing total joint replacement procedures in which diseased joint tissues are replaced with permanent metallic implants. Some of these procedures are burdened by costly and debilitating infections. A promising approach to prevent infections is the use of an antimicrobial coating on the surface of the implant which releases antibiotics into the surgical site to prevent infection. In this study, we tested a new antibiotic compound formulated in a silicone coating. Data showed that this compound was more effective at killing pathogenic methicillin resistant Staphylococcus aureus (MRSA) bacteria than two clinical gold-standard antibiotics-vancomycin and gentamicin-and could be a promising agent for antimicrobial coating technologies.
Collapse
Affiliation(s)
- Nicholas N Ashton
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Gina Allyn
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Scott T Porter
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Travis J Haussener
- Curza Global, LLC, Salt Lake City, UT, United States; Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, UT, United States
| | - Paul R Sebahar
- Curza Global, LLC, Salt Lake City, UT, United States; Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, UT, United States
| | - Ryan E Looper
- Curza Global, LLC, Salt Lake City, UT, United States; Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, UT, United States; Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Dustin L Williams
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States; Curza Global, LLC, Salt Lake City, UT, United States; Department of Pathology, University of Utah, Salt Lake City, UT, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT, United States; Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
8
|
Design and synthesis of cell selective α/β-diastereomeric peptidomimetic with potent in vivo antibacterial activity against methicillin resistant S. Aureus. Bioorg Chem 2018; 76:538-547. [DOI: 10.1016/j.bioorg.2017.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 01/24/2023]
|
9
|
Joshi S, Mumtaz S, Singh J, Pasha S, Mukhopadhyay K. Novel Miniature Membrane Active Lipopeptidomimetics against Planktonic and Biofilm Embedded Methicillin-Resistant Staphylococcus aureus. Sci Rep 2018; 8:1021. [PMID: 29348589 PMCID: PMC5773577 DOI: 10.1038/s41598-017-17234-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
Escalating multidrug resistance and highly evolved virulence mechanisms have aggravated the clinical menace of methicillin-resistant Staphylococcus aureus (MRSA) infections. Towards development of economically viable staphylocidal agents here we report eight structurally novel tryptophan-arginine template based peptidomimetics. Out of the designed molecules, three lipopeptidomimetics (S-6, S-7 and S-8) containing 12-amino dodecanoic acid exhibited cell selectivity and good to potent activity against clinically relevant pathogens MRSA, methicillin-resistant Staphylococcus epidermidis and vancomycin-resistant Enterococcus faecium (MIC: 1.4–22.7 μg/mL). Mechanistically, the active peptidomimetics dissipated membrane potential and caused massive permeabilization on MRSA concomitant with loss of viability. Against stationary phase MRSA under nutrient-depleted conditions, active peptidomimetics S-7 and S-8 achieved > 6 log reduction in viability upon 24 h incubation while both S-7 (at 226 μg/mL) and S-8 (at 28 μg/mL) also destroyed 48 h mature MRSA biofilm causing significant decrease in viability (p < 0.05). Encouragingly, most active peptidomimetic S-8 maintained efficacy against MRSA in presence of serum/plasma while exhibiting no increase in MIC over 17 serial passages at sub-MIC concentrations implying resistance development to be less likely. Therefore, we envisage that the current template warrants further optimization towards the development of cell selective peptidomimetics for the treatment of device associated MRSA infections.
Collapse
Affiliation(s)
- Seema Joshi
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Sana Mumtaz
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyotsna Singh
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Santosh Pasha
- Peptide Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, New Delhi, 110007, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
10
|
Koh JJ, Lin S, Beuerman RW, Liu S. Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids 2017; 49:1653-1677. [PMID: 28823054 DOI: 10.1007/s00726-017-2476-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Abstract
Infectious diseases impose serious public health burdens and continue to be a global public health crisis. The treatment of infections caused by multidrug-resistant pathogens is challenging because only a few viable therapeutic options are clinically available. The emergence and risk of drug-resistant superbugs and the dearth of new classes of antibiotics have drawn increasing awareness that we may return to the pre-antibiotic era. To date, lipopeptides have been received considerable attention because of the following properties: They exhibit potent antimicrobial activities against a broad spectrum of pathogens, rapid bactericidal activity and have a different antimicrobial action compared with most of the conventional antibiotics used today and very slow development of drug resistance tendency. In general, lipopeptides can be structurally classified into two parts: a hydrophilic peptide moiety and a hydrophobic fatty acyl chain. To date, a significant amount of design and synthesis of lipopeptides have been done to improve the therapeutic potential of lipopeptides. This review will present the current knowledge and the recent research in design and synthesis of new lipopeptides and their derivatives in the last 5 years.
Collapse
Affiliation(s)
- Jun-Jie Koh
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore
| | - Shuimu Lin
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Roger W Beuerman
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore.
- SRP Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore.
| | - Shouping Liu
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore, 169856, Singapore.
- SRP Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore.
| |
Collapse
|
11
|
Li YJ, Harroun SG, Su YC, Huang CF, Unnikrishnan B, Lin HJ, Lin CH, Huang CC. Synthesis of Self-Assembled Spermidine-Carbon Quantum Dots Effective against Multidrug-Resistant Bacteria. Adv Healthc Mater 2016; 5:2545-2554. [PMID: 27448287 DOI: 10.1002/adhm.201600297] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/08/2016] [Indexed: 11/08/2022]
Abstract
This study reports a two-step method to synthesize spermidine-capped fluorescent carbon quantum dots (Spd-CQDs) and their potential application as an antibacterial agent. Fluorescent carbon quantum dots (CQDs) are synthesized by pyrolysis of ammonium citrate in the solid state and then modified with spermidine by a simple heating treatment without a coupling agent. Spermidine, a naturally occurring polyamine, binds with DNA, lipids, and proteins involved in many important processes within organisms such as DNA stability, and cell growth, proliferation, and death. The antimicrobial activity of the as-synthesized Spd-CQDs (size ≈4.6 nm) has been tested against non-multidrug-resistant E. coli, S. aureus, B. subtilis, and P. aeruginosa bacteria and also multidrug-resistant bacteria, methicillin-resistant S. aureus (MRSA). The minimal inhibitory concentration value of Spd-CQDs is much lower (>25 000-fold) than that of spermidine, indicating their promising antibacterial characteristics. The mechanism of antibacterial activity is investigated, and the results indicate that Spd-CQDs cause significant damage to the bacterial membrane. In vitro cytotoxicity and hemolysis analyses reveal the high biocompatibility of Spd-CQDs. To demonstrate its practical application, in vitro MRSA-infected wound healing studies in rats have been conducted, which show faster healing, better epithelialization, and formation of collagen fibers when Spd-CQDs are used as a dressing material.
Collapse
Affiliation(s)
- Yu-Jia Li
- Department of Bioscience and Biotechnology; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Scott G. Harroun
- Department of Chemistry; Université de Montréal; Montréal Québec H3C 3J7 Canada
| | - Yu-Chia Su
- National Laboratory Animal Center; Taipei 11599 Taiwan
| | | | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology; National Taiwan Ocean University; Keelung 20224 Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology; National Formosa University; Yunlin 63208 Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology; National Taiwan Ocean University; Keelung 20224 Taiwan
- Center of Excellence for the Oceans; National Taiwan Ocean University; Keelung 20224 Taiwan
- School of Pharmacy; College of Pharmacy; Kaohsiung Medical University; Kaohsiung 80708 Taiwan
| |
Collapse
|
12
|
Cheung Lam AH, Sandoval N, Wadhwa R, Gilkes J, Do TQ, Ernst W, Chiang SM, Kosina S, Howard Xu H, Fujii G, Porter E. Assessment of free fatty acids and cholesteryl esters delivered in liposomes as novel class of antibiotic. BMC Res Notes 2016; 9:337. [PMID: 27391402 PMCID: PMC4938966 DOI: 10.1186/s13104-016-2138-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/28/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Healthcare associated infections (HAI) with multidrug-resistant (MDR) bacteria continue to be a global threat, highlighting an urgent need for novel antibiotics. In this study, we assessed the potential of free fatty acids and cholesteryl esters that form part of the innate host defense as novel antibacterial agents for use against MDR bacteria. METHODS Liposomes of six different phospholipid mixtures were employed as carrier for six different fatty acids and four different cholesteryl esters. Using a modified MIC assay based on DNA quantification with the fluoroprobe Syto9, formulations were tested against Gram-positive and Gram-negative bacteria implicated in HAI. Formulations with MIC values in the low μg/mL range were further subjected to determination of minimal bactericidal activity, hemolysis assay with sheep erythrocytes, and cytotoxicity testing with the human liver cell line HepG2. The potential for synergistic activity with a standard antibiotic was also probed. RESULTS Palmitic acid and stearic acid prepared in carrier 4 (PA4 and SA4, respectively) were identified as most active lipids (MIC against MDR Staphylococcus epidermidis was 0.5 and 0.25 μg/mL, respectively; MIC against vancomycin resistant Enterococcus faecalis (VRE) was 2 and 0.5 μg/mL, respectively). Cholesteryl linoleate formulated with carrier 3 (CL3) exhibited activity against the S. epidermidis strain (MIC 1 μg/mL) and a Pseudomonas aeruginosa strain (MIC 8 μg/mL) and lowered the vancomycin MIC for VRE from 32-64 μg/mL to as low as 4 μg/mL. At 90 μg/mL PA4, SA4, and CL3 effected less than 5 % hemolysis over 3 h and PA4 and CL3 did not exhibit significant cytotoxic activity against HepG2 cells when applied at 100 μg/mL over 48 h. CONCLUSIONS Our results showed that selected fatty acids and cholesteryl esters packaged with phospholipids exhibit antibacterial activity against Gram-positive and Gram-negative bacteria and may augment the activity of antibiotics. Bactericidal activity could be unlinked from hemolytic and cytotoxic activity and the type of phospholipid carrier greatly influenced the activity. Thus, fatty acids and cholesteryl esters packaged in liposomes may have potential as novel lipophilic antimicrobial agents.
Collapse
Affiliation(s)
- Annie H Cheung Lam
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA, 90032, USA
| | - Natalie Sandoval
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA, 90032, USA
| | - Ritambhara Wadhwa
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA, 90032, USA
| | - Janine Gilkes
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA, 90032, USA
| | - Thai Q Do
- Molecular Express, Inc., Rancho Dominguez, CA, USA
| | | | | | | | - H Howard Xu
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA, 90032, USA
| | - Gary Fujii
- Molecular Express, Inc., Rancho Dominguez, CA, USA
| | - Edith Porter
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Drive, Los Angeles, CA, 90032, USA.
| |
Collapse
|
13
|
Pinazo A, Manresa M, Marques A, Bustelo M, Espuny M, Pérez L. Amino acid–based surfactants: New antimicrobial agents. Adv Colloid Interface Sci 2016; 228:17-39. [PMID: 26792016 DOI: 10.1016/j.cis.2015.11.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.
Collapse
|
14
|
Design, synthesis and mode of action of novel 2-(4-aminophenyl)benzothiazole derivatives bearing semicarbazone and thiosemicarbazone moiety as potent antimicrobial agents. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1479-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
Baig N, Singh RP, Chander S, Jha PN, Murugesan S, Sah AK. Synthesis, evaluation and molecular docking studies of amino acid derived N-glycoconjugates as antibacterial agents. Bioorg Chem 2015; 63:110-5. [PMID: 26476390 DOI: 10.1016/j.bioorg.2015.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022]
Abstract
Six amino acid derived N-glycoconjugates of d-glucose were synthesized, characterized and tested for antibacterial activity against G(+)ve (Bacillus cereus) as well as G(-)ve (Escherichia coli and Klebsiella pneumoniae) bacterial strains. All the tested compounds exhibited moderate to good antibacterial activity against these bacterial strains. The results were compared with the antibacterial activity of standard drug Chloramphenicol, where results of A5 (Tryptophan derived glycoconjugates) against E. coli and A4 (Isoleucine derived glycoconjugates) against K. pneumoniae bacterial strains are comparable with the standard drug molecule. In silico docking studies were also performed in order to understand the mode of action and binding interactions of these molecules. The docking studies revealed that, occupation of compound A5 at the ATP binding site of subunit GyrB (DNA gyrase, PDB ID: 3TTZ) via hydrophobic and hydrogen bonding interactions may be the reason for its significant in vitro antibacterial activity.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajnish Prakash Singh
- Department of Biological Science, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Subhash Chander
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Prabhat Nath Jha
- Department of Biological Science, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Ajay K Sah
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
16
|
Sisavath N, Got P, Charrière GM, Destoumieux-Garzon D, Cottet H. Taking Advantage of Electric Field Induced Bacterial Aggregation for the Study of Interactions between Bacteria and Macromolecules by Capillary Electrophoresis. Anal Chem 2015; 87:6761-8. [PMID: 26086209 DOI: 10.1021/acs.analchem.5b00934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The quantification of interaction stoichiometry and binding constant between bacteria (or other microorganism) and (macro)molecules remains a challenging issue for which only a few adapted methods are available. In this paper, a new methodology was developed for the determination of the interaction stoichiometry and binding constant between bacteria and (macro)molecules. The originality of this work is to take advantage of the bacterial aggregation phenomenon to directly quantify the free ligand concentration in equilibrated bacteria-ligand mixtures using frontal analysis continuous capillary electrophoresis. The described methodology does not require any sample preparation such as filtration step or centrifugation. It was applied to the study of interactions between Erwinia carotovora and different generations of dendrigraft poly-L-lysines leading to quantitative information (i.e., stoichiometry and binding site constant). High stoichiometries in the order of 10(6)-10(7) were determined between nanometric dendrimer-like ligands and the rod-shaped micrometric bacteria. The effect of the dendrimer generation on the binding constant and the stoichiometry is discussed. Stoichiometries were compared with those obtained by replacing the bacteria by polystyrene microbeads to demonstrate the internalization of the ligands inside the bacteria and the increase of the specific surface via the formation of vesicles.
Collapse
Affiliation(s)
- Nicolas Sisavath
- †Institut des Biomolécules Max Mousseron (IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| | | | - Guillaume M Charrière
- §Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR 5244), CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Place Eugène Bataillon, CC 80, 34095 Montpellier, France
| | - Delphine Destoumieux-Garzon
- §Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR 5244), CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Place Eugène Bataillon, CC 80, 34095 Montpellier, France
| | - Hervé Cottet
- †Institut des Biomolécules Max Mousseron (IBMM, UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier), Place Eugène Bataillon, CC 1706, 34095 Montpellier, France
| |
Collapse
|
17
|
Joshi S, Dewangan RP, Yar MS, Rawat DS, Pasha S. N-terminal aromatic tag induced self assembly of tryptophan–arginine rich ultra short sequences and their potent antibacterial activity. RSC Adv 2015. [DOI: 10.1039/c5ra12095k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel, ultra short, N-terminal modified tryptophan–arginine rich sequence undergoes facile self assembly in water and exhibit excellent anti-MRSA activity.
Collapse
Affiliation(s)
- Seema Joshi
- CSIR-Institute of Genomics and Integrative Biology
- Delhi
- India
| | - Rikeshwer P. Dewangan
- CSIR-Institute of Genomics and Integrative Biology
- Delhi
- India
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Jamia Hamdard
- New Delhi
- India
| | | | - Santosh Pasha
- CSIR-Institute of Genomics and Integrative Biology
- Delhi
- India
| |
Collapse
|
18
|
N-terminally modified linear and branched spermine backbone dipeptidomimetics against planktonic and sessile methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2014; 58:5435-47. [PMID: 24982082 DOI: 10.1128/aac.03391-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Toward the discovery of useful therapeutic molecules, we report the design and synthesis of a focused library of new ultrashort N-terminally modified dipeptidomimetics, with or without modifications in the spermine backbone leading to linear (series 1) or branched (series 2) tryptophans, as antimicrobial agents. Eight peptidomimetics in the library showed good antibacterial activity (MICs of 1.77 to 14.2 μg/ml) against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis bacterial strains. Tryptophan fluorescence measurements on artificial bacterial or mammalian mimic membranes and assessment of the MRSA potential depolarization ability of the designed compounds revealed membrane interactions dependent on tryptophan positioning and N-terminal tagging. Among active peptidomimetics, compounds 1c and 1d were found to be nonhemolytic, displaying rapid bactericidal activity (at 4× MIC) against exponentially growing MRSA. Further, scanning electron microscopy of peptidomimetic 1c- and 1d-treated MRSA showed morphological changes with damage to cell walls, defining a membrane-active mode of action. Moreover, peptidomimetics 1c and 1d did not induce significant drug resistance in MRSA even after 17 passages. We also investigated the activity of these molecules against MRSA biofilms. At sub-MIC levels (∼2 to 4 μg/ml), both peptidomimetics inhibited biofilm formation. At concentrations higher than the MIC (35 to 140 μg/ml), peptidomimetics 1c and 1d significantly reduced the metabolic activity and biomass of mature (24-h) MRSA biofilms. These results were corroborated by confocal laser scanning microscopy (live/dead assay). The in vitro protease stability and lower cytotoxicity of peptidomimetics against peripheral blood mononuclear cells (PBMCs) support them being novel staphylocidal peptidomimetics. In conclusion, this study provides two peptidomimetics as potential leads for treatment of staphylococcal infections under planktonic and sessile conditions.
Collapse
|
19
|
Lohan S, Monga J, Cameotra SS, Bisht GS. In vitro and in vivo antibacterial evaluation and mechanistic study of ornithine based small cationic lipopeptides against antibiotic resistant clinical isolates. Eur J Med Chem 2014; 88:19-27. [PMID: 24961161 DOI: 10.1016/j.ejmech.2014.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/28/2022]
Abstract
We investigated the in vitro activities of short lipopeptides against a large panel of clinical isolates of antibiotic resistant bacteria. In the animal model, LP16 (5 mg/kg) significantly decreased the burden of viable colony forming unit (CFU) of bacteria. MTT assay results revealed the high selectivity of lipopeptides toward microbial cells. Calcein dye leakage experiments and flow cytometric analysis suggests the membranolytic effect of lipopeptides, which was further confirmed by visualizing bacterial damage via electron microscopy tool (SEM & TEM). Moreover, stability in human blood plasma and no sign of resistance development against clinical isolates of Escherichia coli and Staphylococcus aureus were observed for lead lipopeptides. These results demonstrate the potential of short lipopeptides as a novel class of anti-infectives.
Collapse
Affiliation(s)
- Sandeep Lohan
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India
| | - Jitender Monga
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Swaranjit Singh Cameotra
- Environmental Biotechnology & Microbial Biochemistry, Institute of Microbial Technology, Chandigarh 160036, India
| | - Gopal Singh Bisht
- Department of Pharmacy, Jaypee University of Information Technology, Solan 173234, India.
| |
Collapse
|
20
|
Singh M, Singh SK, Gangwar M, Nath G, Singh SK. Design, synthesis and mode of action of some benzothiazole derivatives bearing an amide moiety as antibacterial agents. RSC Adv 2014. [DOI: 10.1039/c4ra02649g] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic outline of the most potent compound, benzothiazole bearing amide moiety A07, showing antibacterial activity and its mode of action.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Pharmaceutics
- Indian Institute of Technology (BHU)
- Varanasi-221005, India
| | - Sudhir K. Singh
- Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- Lucknow-226031, India
| | - Mayank Gangwar
- Department of Microbiology
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005, India
| | - Gopal Nath
- Department of Microbiology
- Institute of Medical Sciences
- Banaras Hindu University
- Varanasi-221005, India
| | - Sushil K. Singh
- Department of Pharmaceutics
- Indian Institute of Technology (BHU)
- Varanasi-221005, India
| |
Collapse
|