1
|
Sutthasupa S, Pankaew A, Thisan S, Wangngae S, Kumphune S. Approaching Tryptophan-Derived Polynorbornene Fluorescent Chemosensors: Synthesis, Characterization, and Sensing Ability for Biomedical Applications as Biomarkers for Detecting Fe 2+ Ions. Biomacromolecules 2024; 25:2875-2889. [PMID: 38554086 DOI: 10.1021/acs.biomac.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
We present a novel group of tryptophan (Trp)-based fluorescent polymeric probes synthesized via ring-opening metathesis polymerization (ROMP) of Trp-derived norbornene monomers. These probes, in mono- and disubstituted forms, incorporate amide and ester anchoring groups. The quantity of Trp substituents did not affect fluorescence selectivity but influenced quenching percentage. Poly-diamide-Trp, Poly-monoamide-Trp, Poly-diester-Trp, and Poly-monoester-Trp probes displayed selective detection of Fe2+ and Fe3+ ions with fluorescence on-off characteristics. Poly-diamide-Trp and Poly-monoamide-Trp exhibited a limit of detection (LOD) for Fe2+ and Fe3+ ions of 0.86-11.32 μM, while Poly-diester-Trp and Poly-monoester-Trp showed higher LODs (21.8-108.7 μM). These probes exhibited high selectivity over Fe2+, a crucial metal ion in the body known for its redox properties causing oxidative stress and cell damage. Cell cytotoxicity tests in various cell types confirmed biocompatibility. Additionally, Poly-diamide-Trp displayed excellent cell permeability and iron ion detection in EA.hy926 cells, suggesting potential for bioimaging and clinical applications.
Collapse
Affiliation(s)
- Sutthira Sutthasupa
- Division of Packaging Technology, Faculty of Agro Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Aphiwat Pankaew
- Mahidol University-Frontier Research Facility, Mahidol University at Salaya, Phuttamonthon 4 Road, Salaya 73170, Nakhon Pathom, Thailand
| | - Sukanya Thisan
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 502200, Thailand
| | - Sirilak Wangngae
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 502200, Thailand
| |
Collapse
|
2
|
Maity T, Paul S, De P. Side-chain amino acid-based macromolecular architectures. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2023. [DOI: 10.1080/10601325.2023.2169158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Tanmoy Maity
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Soumya Paul
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, West Bengal, India
| |
Collapse
|
3
|
Polymeric nanoparticles tryptophan-graft-p(HEMA): a study on synthesis, characterization, and toxicity. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Mondal S, Lessard JJ, Meena CL, Sanjayan GJ, Sumerlin BS. Janus Cross-links in Supramolecular Networks. J Am Chem Soc 2022; 144:845-853. [PMID: 34984901 DOI: 10.1021/jacs.1c10606] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermosets composed of cross-linked polymers demonstrate enhanced thermal, solvent, chemical, and dimensional stability as compared to their non-cross-linked counterparts. However, these often-desirable material properties typically come at the expense of reprocessability, recyclability, and healability. One solution to this challenge comes from the construction of polymers that are reversibly cross-linked. We relied on lessons from Nature to present supramolecular polymer networks comprised of cooperative Janus-faced hydrogen bonded cross-links. A triazine-based guanine-cytosine base (GCB) with two complementary faces capable of self-assembly through three hydrogen bonding sites was incorporated into poly(butyl acrylate) to create a reprocessable and recyclable network. Rheological experiments and dynamic mechanical analysis (DMA) were employed to investigate the flow behavior of copolymers with randomly distributed GCB units of varying incorporation. Our studies revealed that the cooperativity of multiple hydrogen bonding faces yields excellent network integrity evidenced by a rubbery plateau that spanned the widest temperature range yet reported for any supramolecular network. To verify that each Janus-faced motif engages in multiple cross-links, we studied the effects of local concentration of the incorporated GCB units within the polymer chain. Mechanical strength improved by colocalizing the GCB within a block copolymer morphology. This enhanced performance revealed that the number of effective cross-links in the network increased with the local concentration of hydrogen bonding units. Overall, this study demonstrates that cooperative noncovalent interactions introduced through Janus-faced hydrogen bonding moieties confers excellent network stability and predictable viscoelastic flow behavior in supramolecular networks.
Collapse
Affiliation(s)
- Swagata Mondal
- George & Josephine Butler Polymer Research Laboratory, Center of Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jacob J Lessard
- George & Josephine Butler Polymer Research Laboratory, Center of Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Chhuttan L Meena
- Organic Chemistry Division, Council of Scientific and Industrial Research, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhaba Road, Pune 411008, India
| | - Gangadhar J Sanjayan
- Organic Chemistry Division, Council of Scientific and Industrial Research, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhaba Road, Pune 411008, India
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center of Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
|
6
|
Pushpa Yadav, Hafeez S, Jaishankar J, Srivastava P, Nebhani L. Antimicrobial and Responsive Zwitterionic Polymer Based on Cysteine Methacrylate Synthesized via RAFT Polymerization. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21050163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Biswas G, Jena BC, Samanta P, Mandal M, Dhara D. Synthesis, self-assembly and drug release study of a new dual-responsive biocompatible block copolymer containing phenylalanine derivative. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1947748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Gargi Biswas
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Pousali Samanta
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Dibakar Dhara
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
8
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
9
|
Datta LP, Samanta S, Govindaraju T. Polyampholyte-Based Synthetic Chaperone Modulate Amyloid Aggregation and Lithium Delivery. ACS Chem Neurosci 2020; 11:2812-2826. [PMID: 32816457 DOI: 10.1021/acschemneuro.0c00369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein misfolding and aggregation is the pathological hallmark of Alzheimer's disease (AD). The etiopathogenesis of AD involves the accumulation of amyloid-β (Aβ) plaques in the brain, which disrupt the neuronal network and communication, causing neuronal death and severe cognitive impairment. Modulation of Aβ aggregation by exogenous therapeutic agents is considered an effective strategy to treat AD. Frequent failure of drug candidates in various phases of clinical trials reiterates the need for alternative therapeutic strategies for AD treatment. Polyampholytes with cationic and anionic segments are considered as artificial protein mimics capable of modulating the protein misfolding and aggregation. We report a diblock copolymer of tryptophan-functionalized methacrylic acid (PTMA) polyampholyte synthesized through reversible addition-fragmentation chain transfer (RAFT) polymerization. Investigation revealed that PTMA acts as a synthetic chaperone to protect the native structure of the lysozyme under heat-induced aggregation conditions. PTMA effectively modulates Aβ aggregation and rescues neuronal cells. Lithium has been shown to exhibit therapeutic efficacy in chronic neurological diseases including AD. PTMA sequesters and releases lithium ions in response to neuropathological pH stimuli, making it a promising candidate for lithium transport and delivery. The detailed studies demonstrate PTMA as aggregation modulator and lithium carrier with implications for combinational therapy to treat AD.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and The School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
10
|
Choudhury N, Ruidas B, Saha B, Srikanth K, Das Mukhopadhyay C, De P. Multifunctional tryptophan-based fluorescent polymeric probes for sensing, bioimaging and removal of Cu2+ and Hg2+ ions. Polym Chem 2020. [DOI: 10.1039/c9py01892a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fluorescent polymeric probes were synthesized by amalgamating tryptophan and pyridine side-chain moieties through an imine bond with the aim of selectively sense and remove both Cu2+ and Hg2+ ions from aqueous media.
Collapse
Affiliation(s)
- Neha Choudhury
- Polymer Research Centre
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
- Department of Chemical Sciences
| | - Bhuban Ruidas
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah
- India
| | - Biswajit Saha
- Polymer Research Centre
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
- Department of Chemical Sciences
| | - Kambalapalli Srikanth
- Centre for Advanced Functional Materials
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| | | | - Priyadarsi De
- Polymer Research Centre
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
- Department of Chemical Sciences
| |
Collapse
|
11
|
Kumbhakar K, Saha B, De P, Biswas R. Cloud Point Driven Dynamics in Aqueous Solutions of Thermoresponsive Copolymers: Are They Akin to Criticality Driven Solution Dynamics? J Phys Chem B 2019; 123:11042-11054. [PMID: 31794221 DOI: 10.1021/acs.jpcb.9b07840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cloud point driven interaction and relaxation dynamics of aqueous solutions of amphiphilic thermoresponsive copolymers were explored through picosecond resolved and steady state fluorescence measurements employing hydrophilic (coumarin 343, C343) and hydrophobic (coumarin 153, C153) solute probes of comparable sizes. These thermoresponsive random copolymers, with tunable cloud point temperatures (Tcp's) between 298 and 323 K, were rationally designed first and then synthesized via reversible addition-fragmentation chain transfer (RAFT) copolymerization of methyl methacrylate (MMA) and poly(ethylene glycol) monomethyl ether methacrylate (PEGMA). Subsequently, copolymers were characterized by NMR spectroscopy and size exclusion chromatography (SEC). A balance between the hydrophilic (PEGMA) and the hydrophobic (MMA) content dictates the critical aggregation concentration (CAC), with CAC ∼ 2-14 mg/L for these copolymers in aqueous media. No abrupt changes in the steady state spectral features of both C153 and C343 in the aqueous solutions of these polymers near but below the cloud point temperatures were observed. Interestingly, spectral properties of C153 in these solutions show the impact of hydrophobic/hydrophilic interaction balance but not by those of C343. More specifically, C153 reported a blue shift (relative to that in neat water) and heterogeneity in its local environment. This suggested different locations for the hydrophilic (C343) and the hydrophobic (C153) probes. In addition, the excited state fluorescence lifetime (⟨τlife⟩) of C153 increased with the increase of hydrophobic (MMA) content in these copolymers. However, C343 reported no such variations, although fluorescence anisotropy decays for both solutes were significantly slowed down in these aqueous solutions compared to neat water. Anisotropy decays indicated bimodal time-dependent friction for these solutes in aqueous solutions of these copolymers but monomodal in neat water. A linear dependence of the average rotational relaxation rates (⟨krot⟩ = ⟨τrot⟩-1) of the type ⟨krot⟩ ∝ (|T - Tcp|/Tcp)γ with negative values for the exponent γ was observed for both solutes. No slowing down of the solute rotation with temperature approaching the Tcp was detected; rather, rotation became faster upon increasing the solution temperature, suggesting domination of the local friction.
Collapse
Affiliation(s)
- Kajal Kumbhakar
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake, Kolkata 700106 , India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , Nadia, West Bengal , India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741246 , Nadia, West Bengal , India
| | - Ranjit Biswas
- Chemical, Biological and Macromolecular Sciences (CBMS) , S. N. Bose National Centre for Basic Sciences , JD Block, Sector III, Salt Lake, Kolkata 700106 , India
| |
Collapse
|
12
|
Effects of Main-chain and Chain-ends on the Organogelation of Stearoyl Appended Pendant Valine Based Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2265-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Lazzari F, Manfredi A, Alongi J, Marinotto D, Ferruti P, Ranucci E. d-, l- and d,l-Tryptophan-Based Polyamidoamino Acids: pH-Dependent Structuring and Fluorescent Properties. Polymers (Basel) 2019; 11:E543. [PMID: 30960527 PMCID: PMC6473350 DOI: 10.3390/polym11030543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/29/2022] Open
Abstract
Chiral polyamidoamino acids were obtained by polyaddition of N,N'-methylenebisacrylamide with d-, d,l- and l-tryptophan (M-d-Trp, M-d,l-Trp and M-l-Trp). l-tryptophan/glycine copolymers, M-G-l-Trp₅, M-G-l-Trp10, M-G-l-Trp20 and M-G-l-Trp40, were prepared from l-tryptophan/glycine mixtures. These polymers were amphoteric, with acid-base properties similar to those of the parent amino acids. The l-tryptophan/glycine copolymers with high glycine content were water soluble in the pH range 2-12. M-G-l-Trp40 showed a solubility gap centred at pH 4.5 and all tryptophan homopolymers were soluble only at pH > 7. Dynamic light scattering measurements performed in their solubility ranges, namely 2-11 M-G-l-Trp₅, M-G-l-Trp10 and M-G-l-Trp20 and 7-11 for M-G-l-Trp40, M-d-Trp, M-l-Trp and M-d,l-Trp, showed that the size of all samples did not significantly vary with pH. Both M-l-Trp and M-G-l-Trp copolymers showed pH-dependent circular dichroism spectra in the wavelength interval 200⁻280 nm, revealing structuring. All samples were fluorescent. Their emission spectra were unstructured and, if normalized for their tryptophan content, almost superimposable at the same pH, providing evidence that only tryptophan governed the photoluminescence properties. Changing pH induced in all cases a slight shift of the emission wavelength maximum ascribed to the modification of the microenvironment surrounding the indole ring induced by different protonation degrees.
Collapse
Affiliation(s)
- Federica Lazzari
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Daniele Marinotto
- Istituto di Scienze e Tecnologie Molecolari (ISTM-CNR), via C. Golgi 19, 20133 Milano, Italy.
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
14
|
Cheng G, Xu D, Lu Z, Liu K. Chiral Self-Assembly of Nanoparticles Induced by Polymers Synthesized via Reversible Addition-Fragmentation Chain Transfer Polymerization. ACS NANO 2019; 13:1479-1489. [PMID: 30702861 DOI: 10.1021/acsnano.8b07151] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chiral inorganic nanomaterials are of great interest because of their excellent optical properties. Most of the attention has been focused on the utilization of biomolecules or their derivatives as linkers or templates to control the chiral structure of assembled inorganic nanoparticles. Chiral polymers are promising synthetic materials that can be used to replace their biological counterparts. Here, by using poly(methacrylate hydroxyethyl-3-indole propionate) (PIPEMA) and poly(2-hydroxyethyl methacrylate) (PHEMA) synthesized via syndioselective reversible addition-fragmentation chain transfer polymerization, we successfully realized chiral self-assembly of gold nanorods with strong circular dichroism response in the vis-NIR region. Moreover, the intensity of the chiral signal of the assemblies can be regulated by the molecular weight of the polymers. Notably, although the monomers are achiral and no chiral reagents are involved in their synthesis, the main chains of PIPEMA and PHEMA exhibit a preferred-handed helical conformation, which is the origin of chirality of the nanorod assemblies. The preferred-handed helical conformation of polymers is attributed to their syndiotacticity and stabilized by the steric hindrance of the side groups. The addition of chiral carbon atoms at the side groups does not change the preferred-handedness of the polymer main chain, resulting in the assembled nanorod structures with the same chirality. This strategy provides inspiration for the rational design and synthesis of optically active functional synthetic polymers for the preparation of promising chiral nanomaterials.
Collapse
Affiliation(s)
- Guiqing Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , 130012 , People's Republic of China
| | - Duo Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun , 130023 , People's Republic of China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , 130012 , People's Republic of China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry , Jilin University , Changchun , 130023 , People's Republic of China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , 130012 , People's Republic of China
| |
Collapse
|
15
|
Jana S, Anas M, Maji T, Banerjee S, Mandal TK. Tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH-induced UCST. Polym Chem 2019. [DOI: 10.1039/c8py01512k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-stimuli responsive tryptophan-based styryl homopolymer and polyzwitterions with solvent-induced UCST, ion-induced LCST and pH-induced UCST under different conditions are presented.
Collapse
Affiliation(s)
- Somdeb Jana
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Mahammad Anas
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tanmoy Maji
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Sanjib Banerjee
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
16
|
Datta LP, Dutta D, Chakraborty A, Das TK. Tyrosine based cationic acrylates as potent antimicrobial agents against shigellosis. Biomater Sci 2019; 7:2611-2622. [DOI: 10.1039/c8bm01588k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Design of tyrosine-based cationic polymers with antimicrobial activities.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| | - Debanjan Dutta
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| | - Arpita Chakraborty
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| | - Tapan Kumar Das
- Department of Biochemistry and Biophysics
- University of Kalyani
- Kalyani-741235
- India
| |
Collapse
|
17
|
Datta LP, De D, Ghosh U, Das TK. RAFT derived fatty acid based stimuli responsive fluorescent block copolymers as DNA sensor and cargo delivery agent. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Bauri K, Nandi M, De P. Amino acid-derived stimuli-responsive polymers and their applications. Polym Chem 2018. [DOI: 10.1039/c7py02014g] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The recent advances achieved in the study of various stimuli-responsive polymers derived from natural amino acids have been reviewed.
Collapse
Affiliation(s)
- Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- India
| | - Mridula Nandi
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|
19
|
Ahn G, Kweon S, Yang C, Hwang JE, Kim K, Kim BS. One-pot synthesis of hyperbranched polyamines based on novel amino glycidyl ether. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gyunhyeok Ahn
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Songa Kweon
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Chungmi Yang
- Department of Emergency Medicine; Seoul National University Bundang Hospital; Seongnam Gyeonggi-do 13620 Republic of Korea
| | - Ji Eun Hwang
- Department of Emergency Medicine; Seoul National University Bundang Hospital; Seongnam Gyeonggi-do 13620 Republic of Korea
| | - Kyuseok Kim
- Department of Emergency Medicine; Seoul National University Bundang Hospital; Seongnam Gyeonggi-do 13620 Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| |
Collapse
|
20
|
Poly(amino acid-hydroxyethyl methacrylate)s with chiral lysine and/or leucine side moieties and their antibacterial abilities for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1112-1120. [DOI: 10.1016/j.msec.2017.03.177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/07/2017] [Accepted: 03/21/2017] [Indexed: 12/27/2022]
|
21
|
Maiti B, Dutta P, Seal S, Pal S, De P, Maiti S. Side-chain amino acid based cationic polymer induced actin polymerization. J Mater Chem B 2017; 5:1218-1226. [PMID: 32263591 DOI: 10.1039/c6tb02814d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Actin filament dynamics is important for proper cellular functions and is controlled by hundreds of actin binding proteins inside the cells. There are several natural and synthetic compounds that are able to bind actin and alter the actin filament dynamics. Since the actin dynamics changes due to nonspecific electrostatic interactions between negatively charged actin and positively charged proteins, and natural or synthetic compounds, herein we report the synthesis of poly(tert-butyl carbamate (Boc)-l-alanine methacryloyloxyethyl ester) (P(Boc-Ala-HEMA)) homopolymer in a controlled fashion by the reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequent deprotection of the Boc groups in the homopolymer under acidic conditions resulted in a positively charged polymer with primary amine moieties at the side chains. This cationic polymer (P(NH3 +-Ala-HEMA)), is able to nucleate actin in vitro. The cationic polymer and corresponding partially fluorescence tagged polymer are able to nucleate actin filament in vivo. These polymers are nontoxic to the cultured cells and also stabilize the filamentous actin in vitro.
Collapse
Affiliation(s)
- Binoy Maiti
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | | | | | | | | | | |
Collapse
|
22
|
Murariu M, Nechifor M, Fifere N, Buruiana EC. Pyrene functionalized side chain alanine and histidine containing copolyacrylates prepared by free radical copolymerization. J Appl Polym Sci 2017. [DOI: 10.1002/app.44457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mioara Murariu
- “Petru Poni” Institute of Macromolecular Chemistry; 41 A Grigore Ghica Voda Alley Iasi 700487 Romania
| | - Marioara Nechifor
- “Petru Poni” Institute of Macromolecular Chemistry; 41 A Grigore Ghica Voda Alley Iasi 700487 Romania
| | - Nicusor Fifere
- “Petru Poni” Institute of Macromolecular Chemistry; 41 A Grigore Ghica Voda Alley Iasi 700487 Romania
| | - Emil C. Buruiana
- “Petru Poni” Institute of Macromolecular Chemistry; 41 A Grigore Ghica Voda Alley Iasi 700487 Romania
| |
Collapse
|
23
|
Wang HS, Song M, Hang TJ. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2881-2898. [PMID: 26785308 DOI: 10.1021/acsami.5b10465] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
Collapse
Affiliation(s)
- Huai-Song Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University , Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing 210009, China
| | - Min Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University , Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing 210009, China
| | - Tai-Jun Hang
- Department of Pharmaceutical Analysis, China Pharmaceutical University , Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing 210009, China
| |
Collapse
|
24
|
Jena SS, Roy SG, Azmeera V, De P. Solvent-dependent self-assembly behaviour of block copolymers having side-chain amino acid and fatty acid block segments. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2015.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Brisson ERL, Xiao Z, Connal LA. Amino Acid Functional Polymers: Biomimetic Polymer Design Enabling Catalysis, Chiral Materials, and Drug Delivery. Aust J Chem 2016. [DOI: 10.1071/ch16028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Amino acids are the natural building blocks for the world around us. Highly functional, these small molecules have unique catalytic properties, chirality, and biocompatibility. Imparting these properties to surfaces and other macromolecules is highly sought after and represents a fast-growing field. Polymers functionalized with amino acids in the side chains have tunable optical properties, pH responsiveness, biocompatibility, structure and self-assembly properties. Herein, we review the synthesis of amino acid functional polymers, discuss manipulation of available strategies to achieve the desired responsive materials, and summarize some exciting applications in catalysis, chiral particles, and drug delivery.
Collapse
|
26
|
Bauri K, Roy SG, De P. Side-Chain Amino-Acid-Derived Cationic Chiral Polymers by Controlled Radical Polymerization. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500271] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kamal Bauri
- Polymer Research Centre; Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata Mohanpur; 741246 Nadia West Bengal India
| | - Saswati Ghosh Roy
- Polymer Research Centre; Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata Mohanpur; 741246 Nadia West Bengal India
| | - Priyadarsi De
- Polymer Research Centre; Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata Mohanpur; 741246 Nadia West Bengal India
| |
Collapse
|
27
|
Narayanan A, Maiti B, De P. Exploring the post-polymerization modification of side-chain amino acid containing polymers via Michael addition reactions. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Haldar U, Bauri K, Li R, Faust R, De P. Polyisobutylene-Based pH-Responsive Self-Healing Polymeric Gels. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8779-88. [PMID: 25844579 DOI: 10.1021/acsami.5b01272] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This work demonstrates the successful application of dynamic covalent chemistry for the construction of self-healing gels from side-chain primary amine leucine pendant diblock copolymers of polyisobutylene (PIB) ((P(H2N-Leu-HEMA)-b-PIB)) in the presence of PIB based dialdehyde functionalized cross-linker (HOC-PIB-CHO) through imine (-HC═N-) bond formation without aiding any external stimuli. Gels were synthesized in 1,4-dioxane at room temperature at varied wt % of gelator concentration, [H2N]/[CHO] ratios and molecular weight of the block segments. The mechanical property of gels was examined by rheological measurements. We observed higher value of storage modulus (G') than the loss modulus (G″) within the linearity limits of deformation, indicating the rheological behavior in the gel is dominated by an elastic property rather than a viscous property. The G' values significantly depend upon the extent of cross-linking in the gel network. To establish self-healing property of the gels, rheology analysis through step-strain measurements (strain = 0.1 to 200%) at 25 °C was performed. The polymeric gel network shows reversible sol-gel transition for several cycles by adjusting the pH of the medium with the help of hydrochloric acid (HCl) and triethylamine (Et3N) triggers. FT-IR spectroscopy established formation of imine bonds in the gel network and these gels showed poor swelling behavior in various organic solvents because of the small interstitial porosity, confirmed by field emission-scanning electron microscopy (FE-SEM).
Collapse
Affiliation(s)
- Ujjal Haldar
- †Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal India
| | - Kamal Bauri
- †Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal India
| | - Ren Li
- ‡Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Rudolf Faust
- ‡Polymer Science Program, Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Priyadarsi De
- †Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal India
| |
Collapse
|
29
|
Vaish A, Roy SG, De P. Synthesis of amino acid based covalently cross-linked polymeric gels using tetrakis(hydroxymethyl) phosphonium chloride as a cross-linker. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Moore BL, Lu A, Moatsou D, O’Reilly RK. The effect of polymer nanostructure on diffusion of small molecules using tryptophan as a FRET probe. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Abstract
Side-chain l-methionine containing polymers show the ability to donate a methyl group in the absence of a methyltransferase enzyme, which confirms their enzyme-like activity.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246, Nadia
- India
| | - Binoy Maiti
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246, Nadia
- India
| | - Priyadarsi De
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246, Nadia
- India
| |
Collapse
|
32
|
Iqbal HMN, Kyazze G, Tron T, Keshavarz T. “One-pot” synthesis and characterisation of novel P(3HB)–ethyl cellulose based graft composites through lipase catalysed esterification. Polym Chem 2014. [DOI: 10.1039/c4py00857j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Ghosh Roy S, De P. Facile RAFT synthesis of side-chain amino acids containing pH-responsive hyperbranched and star architectures. Polym Chem 2014. [DOI: 10.1039/c4py00766b] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Roy SG, De P. pH responsive polymers with amino acids in the side chains and their potential applications. J Appl Polym Sci 2014. [DOI: 10.1002/app.41084] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saswati Ghosh Roy
- Polymer Research Centre; Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur-741252 Nadia, West Bengal India
| | - Priyadarsi De
- Polymer Research Centre; Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur-741252 Nadia, West Bengal India
| |
Collapse
|
35
|
Roy SG, Haldar U, De P. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4233-4241. [PMID: 24556036 DOI: 10.1021/am405932f] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work reports design and synthesis of side chain amino acid based cross-linked polymeric gels, able to switch over from organogel to hydrogel by a simple deprotection reaction and showing superabsorbancy in water. Amino acid based methacrylate monomers, tert-butoxycarbonyl (Boc)-l/d-alanine methacryloyloxyethyl ester (Boc-l/d-Ala-HEMA), have been polymerized in the presence of a cross-linker via conventional free radical polymerization (FRP) and the reversible addition-fragmentation chain transfer (RAFT) technique for the synthesis of cross-linked polymer gels. The swelling behaviors of these organogels are investigated in organic solvents, and they behave as superabsorbent materials for organic solvents such as dichloromethane, acetone, tetrahydrofuran, etc. Swollen cross-linked polymer gels release the absorbed organic solvent rapidly. After Boc group deprotection from the pendant alanine moiety, the organogels transform to the hydrogels due to the formation of side chain ammonium (-NH3(+)) groups, and these hydrogels showed a significantly high swelling ratio (∼560 times than their dry volumes) in water. The morphology of organogels and hydrogels is studied by field emission scanning electron microscopy (FE-SEM). Amino acid based cross-linked gels could find applications as absorbents for oil spilled on water as well as superabsorbent hydrogels.
Collapse
Affiliation(s)
- Saswati Ghosh Roy
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , PO: BCKV, Mohanpur, 741252, Nadia, West Bengal, India
| | | | | |
Collapse
|
36
|
Fluorescent labelled dual-stimuli (pH/thermo) responsive self-assembled side-chain amino acid based polymers. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.12.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Liu J, Zhang J, Zhang S, Suzuki N, Fujiki M, Wang L, Li L, Zhang W, Zhou N, Zhu X. Chiroptical generation and amplification of hyperbranched π-conjugated polymers in aggregation states driven by limonene chirality. Polym Chem 2014. [DOI: 10.1039/c3py01037f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Roy SG, Bauri K, Pal S, De P. Tryptophan containing covalently cross-linked polymeric gels with fluorescence and pH-induced reversible sol–gel transition properties. Polym Chem 2014. [DOI: 10.1039/c3py01691a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Kumar S, Acharya R, Chatterji U, De P. Controlled synthesis of β-sheet polymers based on side-chain amyloidogenic short peptide segments via RAFT polymerization. Polym Chem 2014. [DOI: 10.1039/c4py00620h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A strategy was developed for the controlled synthesis of side-chain peptide containing pH-responsive polymers with an antiparallel β-sheet motif, which was independent of solvent polarity, PEGylation of homopolymers, the block length of PEG or peptidic segments in the block copolymer and temperature.
Collapse
Affiliation(s)
- Sonu Kumar
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia, India
| | | | - Urmi Chatterji
- Department of Zoology
- University of Calcutta
- Kolkata – 700 019, India
| | - Priyadarsi De
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia, India
| |
Collapse
|
40
|
Mori H, Takahashi E, Ishizuki A, Nakabayashi K. Tryptophan-Containing Block Copolymers Prepared by RAFT Polymerization: Synthesis, Self-Assembly, and Chiroptical and Sensing Properties. Macromolecules 2013. [DOI: 10.1021/ma400596r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hideharu Mori
- Department
of Polymer Science and Engineering and ‡Department of Organic Device Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Eri Takahashi
- Department
of Polymer Science and Engineering and ‡Department of Organic Device Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Ai Ishizuki
- Department
of Polymer Science and Engineering and ‡Department of Organic Device Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| | - Kazuhiro Nakabayashi
- Department
of Polymer Science and Engineering and ‡Department of Organic Device Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Japan
| |
Collapse
|
41
|
Bauri K, De P, Shah PN, Li R, Faust R. Polyisobutylene-Based Helical Block Copolymers with pH-Responsive Cationic Side-Chain Amino Acid Moieties by Tandem Living Polymerizations. Macromolecules 2013. [DOI: 10.1021/ma401395f] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kamal Bauri
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research − Kolkata, PO: BCKV, Mohanpur 741252, Nadia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research − Kolkata, PO: BCKV, Mohanpur 741252, Nadia, West Bengal, India
| | - Priyank N. Shah
- Polymer Science Program, Department
of Chemistry, University of Massachusetts Lowell, One University
Avenue, Lowell, Massachusetts 01854, United States
| | - Ren Li
- Polymer Science Program, Department
of Chemistry, University of Massachusetts Lowell, One University
Avenue, Lowell, Massachusetts 01854, United States
| | - Rudolf Faust
- Polymer Science Program, Department
of Chemistry, University of Massachusetts Lowell, One University
Avenue, Lowell, Massachusetts 01854, United States
| |
Collapse
|
42
|
Singh P, Srivastava A, Kumar R. Nanoporous well-defined reversible addition-fragmentation chain transfer polymer of N
-acrylamido-
l
-tryptophan: synthesis and characterization. POLYM INT 2013. [DOI: 10.1002/pi.4549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pooja Singh
- Organic Polymer Laboratory, Department of Chemistry, Centre of Advance Studies in Chemistry, Faculty of Science; Banaras Hindu University; Varanasi 221005 UP India
| | - Ambika Srivastava
- Organic Polymer Laboratory, Department of Chemistry, Centre of Advance Studies in Chemistry, Faculty of Science; Banaras Hindu University; Varanasi 221005 UP India
| | - Rajesh Kumar
- Organic Polymer Laboratory, Department of Chemistry, Centre of Advance Studies in Chemistry, Faculty of Science; Banaras Hindu University; Varanasi 221005 UP India
| |
Collapse
|
43
|
Bauri K, Roy SG, Pant S, De P. Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2764-74. [PMID: 23346856 DOI: 10.1021/la304918s] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Leucine/isoleucine side chain polymers are of interest due to their hydrophobicity and reported role in the formation of α-helical structures. The synthesis and reversible addition-fragmentation chain transfer (RAFT) polymerization of amino acid-based chiral monomers, namely Boc-L-leucine methacryloyloxyethyl ester (Boc-L-Leu-HEMA, 1a), Boc-L-leucine acryloyloxyethyl ester (Boc-L-Leu-HEA, 1b), Boc-L-isoleucine methacryloyloxyethyl ester (Boc-L-Ile-HEMA, 1c), and Boc-L-isoleucine acryloyloxyethyl ester (Boc-L-Ile-HEA, 1d), are reported. The controlled nature of the polymerization of the said chiral monomers in N, N-dimethylformamide (DMF) at 70 °C is evident from the formation of narrow polydisperse polymers, the molecular weight controlled by the monomer/chain transfer agent (CTA) molar ratio and the linear relationship between molecular weight and monomer conversion. The resulting well-defined polymers were used as macro-CTAs to prepare corresponding diblock copolymers by RAFT polymerization of methyl (meth)acrylate monomers. Deprotection of Boc groups in the homopolymers and block copolymers under acidic conditions produced cationic, pH-responsive polymers with primary amine moieties at the side chains. The optical activity of the homopolymers and block copolymers were studied using circular dichroism (CD) spectroscopy and specific rotation measurements. The self-assembling nature of the block copolymers to produce highly ordered structures was illustrated through dynamic light scattering (DLS) and atomic force microscopy (AFM) studies. The side chain amine functionality instills pH-responsive behavior, which makes these cationic polymers attractive candidates for drug delivery applications, as well as for conjugation of biomolecules.
Collapse
Affiliation(s)
- Kamal Bauri
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, PO: BCKV Campus Main Office, Mohanpur-741252 Nadia, West Bengal, India
| | | | | | | |
Collapse
|
44
|
Saad Aly MA, Nguon O, Gauthier M, Yeow JTW. Antibacterial porous polymeric monolith columns with amphiphilic and polycationic character on cross-linked PMMA substrates for cell lysis applications. RSC Adv 2013. [DOI: 10.1039/c3ra43087a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
45
|
Maiti B, De P. RAFT polymerization of fatty acid containing monomers: controlled synthesis of polymers from renewable resources. RSC Adv 2013. [DOI: 10.1039/c3ra45541f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Bauri K, Pant S, Roy SG, De P. Dual pH and temperature responsive helical copolymer libraries with pendant chiral leucine moieties. Polym Chem 2013. [DOI: 10.1039/c3py00434a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|