1
|
Yin Y, Arneson R, Apostle A, Eriyagama AMDN, Chillar K, Burke E, Jahfetson M, Yuan Y, Fang S. Long oligodeoxynucleotides: chemical synthesis, isolation via catching-by-polymerization, verification via sequencing, and gene expression demonstration. Beilstein J Org Chem 2023; 19:1957-1965. [PMID: 38170048 PMCID: PMC10760481 DOI: 10.3762/bjoc.19.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Long oligodeoxynucleotides (ODNs) are segments of DNAs having over one hundred nucleotides (nt). They are typically assembled using enzymatic methods such as PCR and ligation from shorter 20 to 60 nt ODNs produced by automated de novo chemical synthesis. While these methods have made many projects in areas such as synthetic biology and protein engineering possible, they have various drawbacks. For example, they cannot produce genes and genomes with long repeats and have difficulty to produce sequences containing stable secondary structures. Here, we report a direct de novo chemical synthesis of 400 nt ODNs, and their isolation from the complex reaction mixture using the catching-by-polymerization (CBP) method. To determine the authenticity of the ODNs, 399 and 401 nt ODNs were synthesized and purified with CBP. The two were joined together using Gibson assembly to give the 800 nt green fluorescent protein (GFP) gene construct. The sequence of the construct was verified via Sanger sequencing. To demonstrate the potential use of the long ODN synthesis method, the GFP gene was expressed in E. coli. The long ODN synthesis and isolation method presented here provides a pathway to the production of genes and genomes containing long repeats or stable secondary structures that cannot be produced or are highly challenging to produce using existing technologies.
Collapse
Affiliation(s)
- Yipeng Yin
- Department of Chemistry and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA,
| | - Reed Arneson
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Alexander Apostle
- Department of Chemistry and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA,
| | - Adikari M D N Eriyagama
- Department of Chemistry and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA,
| | - Komal Chillar
- Department of Chemistry and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA,
| | - Emma Burke
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Martina Jahfetson
- Department of Chemistry and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA,
| | - Yinan Yuan
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Shiyue Fang
- Department of Chemistry and Health Research Institute, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA,
| |
Collapse
|
2
|
Halami B, Eriyagama DNAM, Chillar K, Nelson Z, Prehoda L, Yin Y, Lu BY, Otto B, Haggerty L, Fang S. Linear Oligosulfoxides: Synthesis and Solubility Studies. Tetrahedron Lett 2019; 60:151306. [PMID: 31787786 PMCID: PMC6884079 DOI: 10.1016/j.tetlet.2019.151306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthesis of three linear oligosulfoxides containing up to six sulfoxide groups was achieved by multiple SN2 reactions between an alkanethiol and alkyl tosylate to give a linear oligosulfide followed by oxidation of the oligosulfide with sodium periodate to give an oligosulfoxide. The challenge of complete avoidance of partial oxidation and over oxidation was easily overcome using the sodium periodate oxidation conditions. Although sulfoxide is a highly polar functional group, the oligosulfoxides were found to have limited solubility in many solvents including DMSO and water, which disobeys the "like dissolves like" rule. The surprising solubility pattern of oligosulfoxides was discussed in the context of the drastically different solubility patterns of polyethylene glycol (PEG), poly(butylene oxide), and poly(methylene oxide). According to a dissolution model, solubility properties of linear oligomers including the oligosulfoxides and PEGs may be heavily affected by their conformations and the suitability of their conformations in water for maximizing attractive interactions between them and water. Based on these hypotheses, the limited solubility of the present oligosulfoxides may not imply the low solubility of similar molecules.
Collapse
Affiliation(s)
- Bhaskar Halami
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Dhananjani N A M Eriyagama
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Komal Chillar
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Zack Nelson
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Lucas Prehoda
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Yipeng Yin
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Bao-Yuan Lu
- Nalco Champion, an Ecolab Company, 11177 South Stadium Drive, Sugar Land, Texas 77478, United States
| | - Brett Otto
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Liam Haggerty
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
3
|
Eriyagama DNAM, Shahsavari S, Halami B, Lu BY, Wei F, Fang S. Parallel, Large-Scale, and Long Synthetic Oligodeoxynucleotide Purification Using the Catching Full-Length Sequence by Polymerization Technique. Org Process Res Dev 2018; 22:1282-1288. [PMID: 30906183 PMCID: PMC6428204 DOI: 10.1021/acs.oprd.8b00209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catching by polymerization synthetic oligodeoxynucleotide (ODN) purification technique was shown to be potentially suitable for high throughput purification by purifying 12 ODNs simultaneously, to be convenient for large-scale purification by purifying at 60 μmol synthesis scale, and to be highly powerful for long ODN purification by purifying ODNs as long as 303-mer. LC-MS analysis indicated that the ODNs purified with the technique have excellent purity.
Collapse
Affiliation(s)
| | - Shahien Shahsavari
- Department of Chemistry, Michigan Technological
University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Bhaskar Halami
- Department of Chemistry, Michigan Technological
University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Bao-Yuan Lu
- Nalco Champion, an Ecolab Company, 11177 S. Stadium
Drive, Sugar Land, TX 77478, USA
| | - Fengping Wei
- CGeneTech, Inc., 7202 E. 87th Street, Suite#100,
Indianapolis, IN 46256, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological
University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
4
|
Igata Y, Saito-Tarashima N, Matsumoto D, Sagara K, Minakawa N. A 'catch and release' strategy towards HPLC-free purification of synthetic oligonucleotides by a combination of the strain-promoted alkyne-azide cycloaddition and the photocleavage. Bioorg Med Chem 2017; 25:5962-5967. [PMID: 28986115 DOI: 10.1016/j.bmc.2017.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 10/18/2022]
Abstract
A convenient strategy to purify oligonucleotides (ONs) synthesized by solid phase synthesis on an automatic DNA/RNA synthesizer was described. By attaching a photocleavable azide linker as the last phosphoramidite unit in the ON synthesis, only the desired full-length sequence was 'caught' on a controlled pore glass (CPG) resin possessing an aza-dimethoxycyclooctyne (DIBAC) derivative. Washing the resulting CPG resin to remove all unbounded species, the subsequent photoirradiation allowed the pure ONs to be 'released' without leaving any chemical modifications on native ON structure or chemical reagents from the solid phase ON synthesis.
Collapse
Affiliation(s)
- Yosuke Igata
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Noriko Saito-Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Daiki Matsumoto
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Kazuyuki Sagara
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan.
| |
Collapse
|
5
|
Fueangfung S, Yuan Y, Fang S. Denaturing reversed-phase HPLC using a mobile phase containing urea for oligodeoxynucleotide analysis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:481-8. [PMID: 24972012 DOI: 10.1080/15257770.2014.891740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Denaturing reversed-phase (RP) high performance liquid chromatography (HPLC) is usually achieved by elevating column temperature. In this article, an alternative method involving using a mobile phase that contains urea and performing HPLC at room temperature is described. The efficacy of the new method was demonstrated by analyzing a 61-mer oligodeoxynucleotide (ODN) and double-stranded (ds) ODNs. The multiple peaks of the 61-mer ODN under normal conditions merged into one under the denaturing conditions. The broad single peaks of dsODNs under normal conditions were split into two sharp peaks.
Collapse
Affiliation(s)
- Suntara Fueangfung
- a Department of Chemistry , Michigan Technological University , Houghton , Michigan , USA
| | | | | |
Collapse
|
6
|
Zhang M, Pokharel D, Fang S. Purification of Synthetic Peptides Using a Catching Full-Length Sequence by Polymerization Approach. Org Lett 2014; 16:1290-3. [DOI: 10.1021/ol403426u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingcui Zhang
- Department
of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931 United States
| | - Durga Pokharel
- Department
of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931 United States
| | - Shiyue Fang
- Department
of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931 United States
| |
Collapse
|
7
|
Pokharel D, Yuan Y, Fueangfung S, Fang S. Synthetic oligodeoxynucleotide purification by capping failure sequences with a methacrylamide phosphoramidite followed by polymerization. RSC Adv 2014. [DOI: 10.1039/c3ra46986g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthetic oligodeoxynucleotides are simply purified by capping failure sequences with a methacrylamide phosphoramidite, co-polymerization with N,N-dimethylacrylamide and extraction with water.
Collapse
Affiliation(s)
- Durga Pokharel
- Department of Chemistry
- Michigan Technological University
- Houghton, USA
| | - Yinan Yuan
- School of Forest Resources and Environmental Science
- Michigan Technological University
- Houghton, USA
| | | | - Shiyue Fang
- Department of Chemistry
- Michigan Technological University
- Houghton, USA
| |
Collapse
|