1
|
Sabbouh M, Nikitina A, Rogacheva E, Nebalueva A, Shilovskikh V, Sadovnichii R, Koroleva A, Nikolaev K, Kraeva L, Ulasevich S, Skorb E. Sonochemical fabrication of gradient antibacterial materials based on Cu-Zn alloy. ULTRASONICS SONOCHEMISTRY 2023; 92:106247. [PMID: 36508894 PMCID: PMC9763737 DOI: 10.1016/j.ultsonch.2022.106247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
At present research, we highlight ultrasonic treatment as a new way to create materials with a gradient change of chemical or physical properties. We demonstrate the possibility to fabricate novel materials with biocide activity based on simple and cheap Cu-Zn alloy. In this research, we propose a green preparative technique for the sonication of an alloy in an alkali solution. The method leads to a significant visual change and differentiation of particles into three different fractions. Due to the chemical micro gradients in media near the solid surface under intensive sonication, fast formation of specific functional groups occurs on the particles' surface. The particles were studied X-ray diffraction analysis (XRD) analysis, the field-emission scanning electron microscope (SEM) as well as electron backscatter diffraction (EBSD) mode, X-ray Photoelectron Spectroscopy (XPS), the differential pulse anodic stripping voltammetry (DPASV) technique. A strong correlation of both methods proves a redistribution of copper ions from Fraction I to Fraction III that influence for the antibacterial properties of the prepared material. The different biocidal activity was demonstrated for each separated Fraction that could be related to their different phase content and ability to release the different types of ions.
Collapse
Affiliation(s)
- Mirna Sabbouh
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Anna Nikitina
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg 197101, Russia
| | - Anna Nebalueva
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Vladimir Shilovskikh
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia; Saint-Petersburg State University, Russia
| | | | | | | | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg 197101, Russia
| | | | - Ekaterina Skorb
- ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| |
Collapse
|
2
|
Korolev I, Aliev TA, Orlova T, Ulasevich SA, Nosonovsky M, Skorb EV. When Bubbles Are Not Spherical: Artificial Intelligence Analysis of Ultrasonic Cavitation Bubbles in Solutions of Varying Concentrations. J Phys Chem B 2022; 126:3161-3169. [PMID: 35435685 DOI: 10.1021/acs.jpcb.2c00948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ultrasonic irradiation of liquids, such as water-alcohol solutions, results in cavitation or the formation of small bubbles. Cavitation bubbles are generated in real solutions without the use of optical traps making our system as close to real conditions as possible. Under the action of the ultrasound, bubbles can grow, oscillate, and eventually collapse or decompose. We apply the mathematical method of separation of motions to interpret the acoustic effect on the bubbles. While in most situations, the spherical shape of a bubble is the most energetically profitable as it minimizes the surface energy, when the acoustic frequency is in resonance with the natural frequency of the bubble, shapes with the dihedral symmetry emerge. Some of these resonance shapes turn unstable, so the bubble decomposes. It turns out that bubbles in the solutions of different concentrations (with different surface energies and densities) attain different evolution paths. While it is difficult to obtain a deterministic description of how the solution concentration affects bubble dynamics, it is possible to separate images with different concentrations by applying the artificial neural network (ANN) algorithm. An ANN was trained to detect the concentration of alcohol in a water solution based on the bubble images. This indicates that artificial intelligence (AI) methods can complement deterministic analysis in nonequilibrium, near-unstable situations.
Collapse
Affiliation(s)
- Ilya Korolev
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., St. Petersburg 191002, Russia
| | - Timur A Aliev
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., St. Petersburg 191002, Russia
| | - Tetiana Orlova
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., St. Petersburg 191002, Russia
| | - Sviatlana A Ulasevich
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., St. Petersburg 191002, Russia
| | - Michael Nosonovsky
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., St. Petersburg 191002, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., St. Petersburg 191002, Russia
| |
Collapse
|
3
|
Zhukov M, Hasan MS, Nesterov P, Sabbouh M, Burdulenko O, Skorb EV, Nosonovsky M. Topological Data Analysis of Nanoscale Roughness in Brass Samples. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2351-2359. [PMID: 34955026 DOI: 10.1021/acsami.1c20694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rough surfaces possess complex topographies, which cannot be characterized by a single parameter. The selection of appropriate roughness parameters depends on a particular application. Large datasets representing surface topography possess orderliness, which can be expressed in terms of topological features in high-dimensional dataspaces reflecting properties such as anisotropy and the number of lay directions. The features are scale-dependent because both sampling length and resolution affect them. We study nanoscale surface roughness using 3 × 3, 4 × 4, and 5 × 5 pixel patches obtained from atomic force microscopy (AFM) images of brass (Cu Zn alloy) samples roughened by a sonochemical treatment. We calculate roughness parameters, correlation length, extremum point distribution, persistence diagrams, and barcodes. These parameters of interest are discussed and compared.
Collapse
Affiliation(s)
- Mikhail Zhukov
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Md Syam Hasan
- Mechanical Engineering, University of Wisconsin─Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Pavel Nesterov
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Mirna Sabbouh
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Olga Burdulenko
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Michael Nosonovsky
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
- Mechanical Engineering, University of Wisconsin─Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
4
|
Sabbouh M, Nikitina A, Rogacheva E, Kraeva L, Ulasevich SA, Skorb EV, Nosonovsky M. Separation of motions and vibrational separation of fractions for biocide brass. ULTRASONICS SONOCHEMISTRY 2021; 80:105817. [PMID: 34773755 PMCID: PMC8592938 DOI: 10.1016/j.ultsonch.2021.105817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 05/09/2023]
Abstract
The mathematical method of separation of motions represents the effect of fast high-frequency oscillations by an effective averaged force or potential. Ultrasound acoustic vibrations are an example of such rapid oscillations leading to cavitation in water due to the gas phase formation (bubbles). Ultrasound cavitation is used to treat the surface of brass microparticles submerged in water. The formation of bubbles and their collapse triggers the modification of surface roughness and chemical composition. Consequently, the suspension separates into various fractions related to demonstrating biocide properties. While the exact mechanism of this process is complex, it can be explained phenomenologically by using the Onsager reciprocal relations for coupling the copper ion diffusion with the gas phase separation in water as a result of the action of the effective average vibrational force.
Collapse
Affiliation(s)
- Mirna Sabbouh
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., Saint Petersburg, 191002, Russia
| | - Anna Nikitina
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., Saint Petersburg, 191002, Russia
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg, 197101, Russia
| | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg, 197101, Russia
| | - Sviatlana A Ulasevich
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., Saint Petersburg, 191002, Russia.
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., Saint Petersburg, 191002, Russia
| | - Michael Nosonovsky
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., Saint Petersburg, 191002, Russia.
| |
Collapse
|
5
|
Skorb EV, Möhwald H, Andreeva DV. Effect of Cavitation Bubble Collapse on the Modification of Solids: Crystallization Aspects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11072-11085. [PMID: 27485504 DOI: 10.1021/acs.langmuir.6b02842] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This review examines the concepts how cavitation bubble collapse affects crystalline structure, the crystallization of newly formed structures, and recrystallization. Although this subject can be discussed in a broad sense across the area of metastable crystallization, our main focus is discussing specific examples of the inorganic solids: metal, intermetallics, metal oxides, and silicon. First, the temperature up to which ultrasound heats solids is discussed. Cavitation-induced changes in the crystal size of intermetallic phases in binary AlNi (50 wt % of Ni) alloys allow an estimation of local temperatures on surfaces and in bulk material. The interplay between atomic solid-state diffusion and recrystallization during bubble collapses in heterogeneous systems is revealed. Furthermore, cavitation triggered red/ox processes at solid/liquid interfaces and their influence on recrystallization are discussed for copper aluminum nanocomposites, zinc, titanium, magnesium-based materials, and silicon. Cavitation-driven highly nonequilibrium conditions can affect the thermodynamics and kinetics of mesoscopic phase formation in heterogeneous systems and in many cases boost the macroscopic performance of composite materials, notably in catalytic alloy and photocatalytic semiconductor oxide properties, corrosion resistance, nanostructured surface biocompatibility, and optical properties.
Collapse
Affiliation(s)
- Ekaterina V Skorb
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Daria V Andreeva
- Center for Soft and Living Matter, Institute of Basic Science, Ulsan National Institute of Science and Technology , 50 UNIST-gill, Ulju-gun, 44919 Ulsan South Korea
| |
Collapse
|