1
|
Hsueh FC, Chen D, Rajeshkumar T, Scopelliti R, Maron L, Mazzanti M. Two-Electron Redox Reactivity of Thorium Supported by Redox-Active Tripodal Frameworks. Angew Chem Int Ed Engl 2024; 63:e202317346. [PMID: 38100190 DOI: 10.1002/anie.202317346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 12/31/2023]
Abstract
The high stability of the + IVoxidation state limits thorium redox reactivity. Here we report the synthesis and the redox reactivity of two Th(IV) complexes supported by the arene-tethered tris(siloxide) tripodal ligands [(KOSiR2 Ar)3 -arene)]. The two-electron reduction of these Th(IV) complexes generates the doubly reduced [KTh((OSi(Ot Bu)2 Ar)3 -arene)(THF)2 ] (2OtBu ) and [K(2.2.2-cryptand)][Th((OSiPh2 Ar)3 -arene)(THF)2 ](2Ph -crypt) where the formal oxidation state of Th is +II. Structural and computational studies indicate that the reduction occurred at the arene anchor of the ligand. The robust tripodal frameworks store in the arene anchor two electrons that become available at the metal center for the two-electron reduction of a broad range of substrates (N2 O, COT, CHT, Ph2 N2 , Ph3 PS and O2 ) while retaining the ligand framework. This work shows that arene-tethered tris(siloxide) tripodal ligands allow implementation of two-electron redox chemistry at the thorium center while retaining the ligand framework unchanged.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Damien Chen
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Tricoire M, Jori N, Fadaei Tirani F, Scopelliti R, Z Ivković I, Natrajan LS, Mazzanti M. A trinuclear metallasilsesquioxane of uranium(III). Chem Commun (Camb) 2023; 60:55-58. [PMID: 38015470 DOI: 10.1039/d3cc05390c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The silsesquioxane ligand (iBu)7Si7O9(OH)3 (iBuPOSSH3) is revealed as an attractive system for the assembly of robust polynuclear complexes of uranium(III) and allowed the isolation of the first example of a trinuclear U(III) complex ([U3(iBuPOSS)3]) that exhibits magnetic communication and promotes dinitrogen reduction in the presence of reducing agent.
Collapse
Affiliation(s)
- Maxime Tricoire
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Nadir Jori
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| | - Farzaneh Fadaei Tirani
- X-ray Diffraction and Surface Analytics Platform, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Rosario Scopelliti
- X-ray Diffraction and Surface Analytics Platform, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Ivica Z Ivković
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Louise S Natrajan
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences and Photon Science Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland.
| |
Collapse
|
3
|
Vitova T, Faizova R, Amaro-Estrada JI, Maron L, Pruessmann T, Neill T, Beck A, Schacherl B, Tirani FF, Mazzanti M. The mechanism of Fe induced bond stability of uranyl(v). Chem Sci 2022; 13:11038-11047. [PMID: 36320468 PMCID: PMC9517057 DOI: 10.1039/d2sc03416f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/03/2022] [Indexed: 08/02/2023] Open
Abstract
The stabilization of uranyl(v) (UO2 1 + ) by Fe(ii) in natural systems remains an open question in uranium chemistry. Stabilization of UVO2 1+ by Fe(ii) against disproportionation was also demonstrated in molecular complexes. However, the relation between the Fe(ii) induced stability and the change of the bonding properties have not been elucidated up to date. We demonstrate that U(v) - oaxial bond covalency decreases upon binding to Fe(ii) inducing redirection of electron density from the U(v) - oaxial bond towards the U(v) - equatorial bonds thereby increasing bond covalency. Our results indicate that such increased covalent interaction of U(v) with the equatorial ligands resulting from iron binding lead to higher stability of uranyl(v). For the first time a combination of U M4,5 high energy resolution X-ray absorption near edge structure (HR-XANES) and valence band resonant inelastic X-ray scattering (VB-RIXS) and ab initio multireference CASSCF and DFT based computations were applied to establish the electronic structure of iron-bound uranyl(v).
Collapse
Affiliation(s)
- Tonya Vitova
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE) P.O. 3640 D-76021 Karlsruhe Germany
| | - Radmila Faizova
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jorge I Amaro-Estrada
- LPCNO, University of Toulouse INSA Toulouse 135, Avenue de Rangueil Toulouse Cedex 31077 France
| | - Laurent Maron
- LPCNO, University of Toulouse INSA Toulouse 135, Avenue de Rangueil Toulouse Cedex 31077 France
| | - Tim Pruessmann
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE) P.O. 3640 D-76021 Karlsruhe Germany
| | - Thomas Neill
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE) P.O. 3640 D-76021 Karlsruhe Germany
| | - Aaron Beck
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE) P.O. 3640 D-76021 Karlsruhe Germany
| | - Bianca Schacherl
- Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE) P.O. 3640 D-76021 Karlsruhe Germany
| | - Farzaneh Fadaei Tirani
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
4
|
Modder DK, Batov MS, Rajeshkumar T, Sienkiewicz A, Zivkovic I, Scopelliti R, Maron L, Mazzanti M. Assembling Diuranium Complexes in Different States of Charge with a Bridging Redox-Active Ligand. Chem Sci 2022; 13:11294-11303. [PMID: 36320571 PMCID: PMC9533398 DOI: 10.1039/d2sc03592h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Radical-bridged diuranium complexes are desirable for their potential high exchange coupling and single molecule magnet (SMM) behavior, but remain rare. Here we report for the first time radical-bridged diuranium(iv) and diuranium(iii) complexes. Reaction of [U{N(SiMe3)2}3] with 2,2′-bipyrimidine (bpym) resulted in the formation of the bpym-bridged diuranium(iv) complex [{((Me3Si)2N)3UIV}2(μ-bpym2−)], 1. Reduction with 1 equiv. KC8 reduces the complex, affording [K(2.2.2-cryptand)][{((Me3Si)2N)3U}2(μ-bpym)], 2, which is best described as a radical-bridged UIII–bpym˙−–UIII complex. Further reduction of 1 with 2 equiv. KC8, affords [K(2.2.2-cryptand)]2[{((Me3Si)2N)3UIII}2(μ-bpym2−)], 3. Addition of AgBPh4 to complex 1 resulted in the oxidation of the ligand, yielding the radical-bridged complex [{((Me3Si)2N)3UIV}2(μ-bpym˙−)][BPh4], 4. X-ray crystallography, electrochemistry, susceptibility data, EPR and DFT/CASSCF calculations are in line with their assignments. In complexes 2 and 4 the presence of the radical-bridge leads to slow magnetic relaxation. Convenient routes to dinuclear complexes of uranium where two uranium centers are bridged by the redox-active ligand bpym were identified resulting in unique and stable radical-bridged dimetallic complexes of U(iii) and U(iv) showing SMM behaviour.![]()
Collapse
Affiliation(s)
- Dieuwertje K Modder
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mikhail S Batov
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Andrzej Sienkiewicz
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- ADSresonances Sàrl Route de Genève 60B 1028 Préverenges Switzerland
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées Cedex 4 31077 Toulouse France
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
5
|
Arumugam K, Burton NA. Disproportionation of the Uranyl(V) Coordination Complexes in Aqueous Solution through Outer-Sphere Electron Transfer. Inorg Chem 2021; 60:18832-18842. [PMID: 34847326 DOI: 10.1021/acs.inorgchem.1c02575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Among the linear actinyl(VI/V) cations, the uranyl(V) species are particularly intriguing because they are unstable and exhibit a unique behavior to undergo H+ promoted disproportionation in aqueous solution and form stable uranyl(VI) and U(IV) complexes. This study uses density functional theory (DFT) combined with the conductor-like polarizable continuum model approach to investigate [UO2]2+/+ to [UIVO2] reduction free energies (RFEs) and explores the stability of uranyl(V) complexes in aqueous solution through computing disproportionation free energies (DFEs) for an outer-sphere electron transfer process. In addition to the aqua complex (U1), another three commonly encountered ligands such as chloride (U2), acetate (U3), and carbonate (U4) in aqueous environmental conditions are taken into account. For the U1 complex, the computed 1e- (V/IV) and 2e- (VI/IV) RFEs are in good agreement with experiments. The computed DFEs reveal that the presence of H+ is imperative for the disproportionation to take place. Although the presence of the alkali cations favors the disproportionation to some extent, they cannot fully make the reaction thermodynamically feasible. For the anionic complexes, the high negative charge does not allow for the formation of a cation-cation encounter complex due to Coulombic repulsion. Furthermore, an additional factor is the ligand exchange reaction which is also an energy-demanding step. Therefore, the current study examined the Kern-Orlemann mechanism and our results validate the mechanism based on DFT computed DFEs and propose that for the anionic complexes, an outer-sphere electron transfer is highly probable and our computed protonation free energies further support this claim.
Collapse
Affiliation(s)
- Krishnamoorthy Arumugam
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Neil A Burton
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
6
|
Ortu F, Randall S, Moulding DJ, Woodward AW, Kerridge A, Meyer K, La Pierre HS, Natrajan LS. Photoluminescence of Pentavalent Uranyl Amide Complexes. J Am Chem Soc 2021; 143:13184-13194. [PMID: 34387466 PMCID: PMC8397311 DOI: 10.1021/jacs.1c05184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pentavalent uranyl species are crucial intermediates in transformations that play a key role for the nuclear industry and have recently been demonstrated to persist in reducing biotic and abiotic aqueous environments. However, due to the inherent instability of pentavalent uranyl, little is known about its electronic structure. Herein, we report the synthesis and characterization of a series of monomeric and dimeric, pentavalent uranyl amide complexes. These synthetic efforts enable the acquisition of emission spectra of well-defined pentavalent uranyl complexes using photoluminescence techniques, which establish a unique signature to characterize its electronic structure and, potentially, its role in biological and engineered environments via emission spectroscopy.
Collapse
Affiliation(s)
- Fabrizio Ortu
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Simon Randall
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David J Moulding
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Adam W Woodward
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Karsten Meyer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Henry S La Pierre
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States.,Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Louise S Natrajan
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
7
|
Evidence for ligand- and solvent-induced disproportionation of uranium(IV). Nat Commun 2021; 12:4832. [PMID: 34376682 PMCID: PMC8355312 DOI: 10.1038/s41467-021-25151-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
Disproportionation, where a chemical element converts its oxidation state to two different ones, one higher and one lower, underpins the fundamental chemistry of metal ions. The overwhelming majority of uranium disproportionations involve uranium(III) and (V), with a singular example of uranium(IV) to uranium(V/III) disproportionation known, involving a nitride to imido/triflate transformation. Here, we report a conceptually opposite disproportionation of uranium(IV)-imido complexes to uranium(V)-nitride/uranium(III)-amide mixtures. This is facilitated by benzene, but not toluene, since benzene engages in a redox reaction with the uranium(III)-amide product to give uranium(IV)-amide and reduced arene. These disproportionations occur with potassium, rubidium, and cesium counter cations, but not lithium or sodium, reflecting the stability of the corresponding alkali metal-arene by-products. This reveals an exceptional level of ligand- and solvent-control over a key thermodynamic property of uranium, and is complementary to isolobal uranium(V)-oxo disproportionations, suggesting a potentially wider prevalence possibly with broad implications for the chemistry of uranium.
Collapse
|
8
|
Marlier EE, Seong CM, Brunclik SA, Nevins MH, Nolan EL, Olson AK, Osnaya M, Reuter A, Swanson ME, Wood OG, Janzen DE. Synthesis and structures of a family of hybrid donor N2P2 beta-diketiminate zinc complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
9
|
Faizova R, Fadaei‐Tirani F, Chauvin A, Mazzanti M. Synthesis and Characterization of Water Stable Uranyl(V) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Radmila Faizova
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Anne‐Sophie Chauvin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
10
|
Faizova R, Fadaei‐Tirani F, Chauvin A, Mazzanti M. Synthesis and Characterization of Water Stable Uranyl(V) Complexes. Angew Chem Int Ed Engl 2021; 60:8227-8235. [DOI: 10.1002/anie.202016123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Radmila Faizova
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Anne‐Sophie Chauvin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
11
|
Wang P, Douair I, Zhao Y, Wang S, Zhu J, Maron L, Zhu C. Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Non‐Innocent Ligand and the Uranium Center. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Penglong Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Iskander Douair
- LPCNO, CNRS & INSA Université Paul Sabatier 135 Avenue de Rangueil 31077 Toulouse France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Laurent Maron
- LPCNO, CNRS & INSA Université Paul Sabatier 135 Avenue de Rangueil 31077 Toulouse France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
12
|
Wang P, Douair I, Zhao Y, Wang S, Zhu J, Maron L, Zhu C. Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Non‐Innocent Ligand and the Uranium Center. Angew Chem Int Ed Engl 2020; 60:473-479. [DOI: 10.1002/anie.202012198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Penglong Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Iskander Douair
- LPCNO, CNRS & INSA Université Paul Sabatier 135 Avenue de Rangueil 31077 Toulouse France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Laurent Maron
- LPCNO, CNRS & INSA Université Paul Sabatier 135 Avenue de Rangueil 31077 Toulouse France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Riedhammer J, Aguilar-Calderón JR, Miehlich M, Halter DP, Munz D, Heinemann FW, Fortier S, Meyer K, Mindiola DJ. Werner-Type Complexes of Uranium(III) and (IV). Inorg Chem 2020; 59:2443-2449. [DOI: 10.1021/acs.inorgchem.9b03229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Judith Riedhammer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - J. Rolando Aguilar-Calderón
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthias Miehlich
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Dominik P. Halter
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Dominik Munz
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Frank W. Heinemann
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
| | - Daniel J. Mindiola
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen 91058, Germany
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Liu J, Wang X, Chen B, Lv L, Li Q, Li X, Ding S, Yang Y. Oxygen and peroxide bridged uranyl( vi) dimers bearing tetradentate hybrid ligands: supramolecular self-assembly and generation pathway. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00480d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Crystals of U(vi) complexes with N,N,N′,N′-tetramethyl-2,2′-bipyridine-6,6′-dicarboxamide and N,N,N′,N′-tetramethyl-1,10-phenanthroline-2,9-dicarboxamide were obtained under variable reaction conditions, and the structures were determined by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Jun Liu
- Institute of Nuclear Physics and Chemistry
- CAEP
- Mianyang
- China
| | - Xueyu Wang
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Baihua Chen
- Institute of Nuclear Physics and Chemistry
- CAEP
- Mianyang
- China
| | - Lina Lv
- Institute of Nuclear Physics and Chemistry
- CAEP
- Mianyang
- China
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory
| | - Qiang Li
- Institute of Nuclear Physics and Chemistry
- CAEP
- Mianyang
- China
| | - Xingliang Li
- Institute of Nuclear Physics and Chemistry
- CAEP
- Mianyang
- China
| | | | - Yanqiu Yang
- Institute of Nuclear Physics and Chemistry
- CAEP
- Mianyang
- China
| |
Collapse
|
15
|
Zegke M, Zhang X, Pidchenko I, Hlina JA, Lord RM, Purkis J, Nichol GS, Magnani N, Schreckenbach G, Vitova T, Love JB, Arnold PL. Differential uranyl(v) oxo-group bonding between the uranium and metal cations from groups 1, 2, 4, and 12; a high energy resolution X-ray absorption, computational, and synthetic study. Chem Sci 2019; 10:9740-9751. [PMID: 32055343 PMCID: PMC6993744 DOI: 10.1039/c8sc05717f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/26/2019] [Indexed: 11/21/2022] Open
Abstract
Uranyl Pacman takes them all: the bonding of s- and d-block cations to uranyl is compared by experiment, spectroscopy and theory.
The uranyl(vi) ‘Pacman’ complex [(UO2)(py)(H2L)] A (L = polypyrrolic Schiff-base macrocycle) is reduced by Cp2Ti(η2-Me3SiC
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CSiMe3) and [Cp2TiCl]2 to oxo-titanated uranyl(v) complexes [(py)(Cp2TiIIIOUO)(py)(H2L)] 1 and [(ClCp2TiIVOUO)(py)(H2L)] 2. Combination of ZrII and ZrIV synthons with A yields the first ZrIV–uranyl(v) complex, [(ClCp2ZrOUO)(py)(H2L)] 3. Similarly, combinations of Ae0 and AeII synthons (Ae = alkaline earth) afford the mono-oxo metalated uranyl(v) complexes [(py)2(ClMgOUO)(py)(H2L)] 4, [(py)2(thf)2(ICaOUO)(py) (H2L)] 5; the zinc complexes [(py)2(XZnOUO)(py)(H2L)] (X = Cl 6, I 7) are formed in a similar manner. In contrast, the direct reactions of Rb or Cs metal with A generate the first mono-rubidiated and mono-caesiated uranyl(v) complexes; monomeric [(py)3(RbOUO)(py)(H2L)] 8 and hexameric [(MOUO)(py)(H2L)]6 (M = Rb 8b or Cs 9). In these uranyl(v) complexes, the pyrrole N–H atoms show strengthened hydrogen-bonding interactions with the endo-oxos, classified computationally as moderate-strength hydrogen bonds. Computational DFT MO (density functional theory molecular orbital) and EDA (energy decomposition analysis), uranium M4 edge HR-XANES (High Energy Resolution X-ray Absorption Near Edge Structure) and 3d4f RIXS (Resonant Inelastic X-ray Scattering) have been used (the latter two for the first time for uranyl(v) in 7 (ZnI)) to compare the covalent character in the UV–O and O–M bonds and show the 5f orbitals in uranyl(vi) complex A are unexpectedly more delocalised than in the uranyl(v) 7 (ZnI) complex. The Oexo–Zn bonds have a larger covalent contribution compared to the Mg–Oexo/Ca–Oexo bonds, and more covalency is found in the U–Oexo bond in 7 (ZnI), in agreement with the calculations.
Collapse
Affiliation(s)
- Markus Zegke
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Xiaobin Zhang
- Department of Chemistry , University of Manitoba , Winnipeg , MB R3T 2N2 , Canada . ; ; Tel: +1-204-474-6261
| | - Ivan Pidchenko
- Institute for Nuclear Waste Disposal (INE) , Karlsruhe Institute of Technology (KIT) , P.O. Box 3640 , 76021 Karlsruhe , Germany .
| | - Johann A Hlina
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Rianne M Lord
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Jamie Purkis
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Gary S Nichol
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Nicola Magnani
- Institute for Transuranium Elements , Joint Research Centre , European Commission , PO Box 2340 , 76125 Karlsruhe , Germany
| | - Georg Schreckenbach
- Department of Chemistry , University of Manitoba , Winnipeg , MB R3T 2N2 , Canada . ; ; Tel: +1-204-474-6261
| | - Tonya Vitova
- Institute for Nuclear Waste Disposal (INE) , Karlsruhe Institute of Technology (KIT) , P.O. Box 3640 , 76021 Karlsruhe , Germany .
| | - Jason B Love
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Polly L Arnold
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| |
Collapse
|
16
|
Palumbo CT, Barluzzi L, Scopelliti R, Zivkovic I, Fabrizio A, Corminboeuf C, Mazzanti M. Tuning the structure, reactivity and magnetic communication of nitride-bridged uranium complexes with the ancillary ligands. Chem Sci 2019; 10:8840-8849. [PMID: 31803458 PMCID: PMC6853081 DOI: 10.1039/c9sc02149c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022] Open
Abstract
The reactivity of the nitride ligand is increased in complexes of uranium(iv) when bound by the OSi(OtBu)3 ligand as opposed to N(SiMe3)2, but magnetic exchange coupling is decreased.
Molecular uranium nitride complexes were prepared to relate their small molecule reactivity to the nature of the U
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
N
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
U bonding imposed by the supporting ligand. The U4+–U4+ nitride complexes, [NBu4][{((tBuO)3SiO)3U}2(μ-N)], [NBu4]-1, and [NBu4][((Me3Si)2N)3U}2(μ-N)], 2, were synthesised by reacting NBu4N3 with the U3+ complexes, [U(OSi(OtBu)3)2(μ-OSi(OtBu)3)]2 and [U(N(SiMe3)2)3], respectively. Oxidation of 2 with AgBPh4 gave the U4+–U5+ analogue, [((Me3Si)2N)3U}2(μ-N)], 4. The previously reported methylene-bridged U4+–U4+ nitride [Na(dme)3][((Me3Si)2)2U(μ-N)(μ-κ2-C,N-CH2SiMe2NSiMe3)U(N(SiMe3)2)2] (dme = 1,2-dimethoxyethane), [Na(dme)3]-3, provided a versatile precursor for the synthesis of the mixed-ligand U4+–U4+ nitride complex, [Na(dme)3][((Me3Si)2N)3U(μ-N)U(N(SiMe3)2)(OSi(OtBu)3)], 5. The reactivity of the 1–5 complexes was assessed with CO2, CO, and H2. Complex [NBu4]-1 displays similar reactivity to the previously reported heterobimetallic complex, [Cs{((tBuO)3SiO)3U}2(μ-N)], [Cs]-1, whereas the amide complexes 2 and 4 are unreactive with these substrates. The mixed-ligand complexes 3 and 5 react with CO and CO2 but not H2. The nitride complexes [NBu4]-1, 2, 4, and 5 along with their small molecule activation products were structurally characterized. Magnetic data measured for the all-siloxide complexes [NBu4]-1 and [Cs]-1 show uncoupled uranium centers, while strong antiferromagnetic coupling was found in complexes containing amide ligands, namely 2 and 5 (with maxima in the χ versus T plot of 90 K and 55 K). Computational analysis indicates that the U(μ-N) bond order decreases with the introduction of oxygen-based ligands effectively increasing the nucleophilicity of the bridging nitride.
Collapse
Affiliation(s)
- Chad T Palumbo
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism , Institute of Physics , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Alberto Fabrizio
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Clémence Corminboeuf
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| |
Collapse
|
17
|
Cowie BE, Purkis JM, Austin J, Love JB, Arnold PL. Thermal and Photochemical Reduction and Functionalization Chemistry of the Uranyl Dication, [UVIO2]2+. Chem Rev 2019; 119:10595-10637. [DOI: 10.1021/acs.chemrev.9b00048] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bradley E. Cowie
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Jamie M. Purkis
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Jonathan Austin
- National Nuclear Laboratory, Chadwick House,
Warrington Road, Birchwood Park, Warrington WA3 6AE, U.K
| | - Jason B. Love
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| | - Polly L. Arnold
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, The King’s Buildings, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
18
|
Teyar B, Boucenina S, Belkhiri L, Le Guennic B, Boucekkine A, Mazzanti M. Theoretical Investigation of the Electronic Structure and Magnetic Properties of Oxo-Bridged Uranyl(V) Dinuclear and Trinuclear Complexes. Inorg Chem 2019; 58:10097-10110. [PMID: 31287673 DOI: 10.1021/acs.inorgchem.9b01237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The uranyl(V) complexes [UO2(dbm)2K(18C6)]2 (dbm = dibenzoylmethanate) and [UO2(L)]3(L = 2-(4-tolyl)-1,3-bis(quinolyl)malondiiminate), exhibiting diamond-shaped U2O2 and triangular-shaped U3O3 cores respectively with 5f1-5f1 and 5f1-5f1-5f1 configurations, have been investigated using relativistic density functional theory (DFT). The bond order and QTAIM analyses reveal that the covalent contribution to the bonding within the oxo cores is slightly more important for U3O3 than for U2O2, in line with the shorter U-O distances existing in the trinuclear complex in comparison to those in the binuclear complex. Using the broken symmetry (BS) approach combined with the B3LYP functional for the calculation of the magnetic exchange coupling constants (J) between the magnetic centers, the antiferromagnetic (AF) character of these complexes was confirmed, the estimated J values being respectively equal to -24.1 and -7.2 cm-1 for the dioxo and trioxo species. It was found that the magnetic exchange is more sensitive to small variations of the core geometry of the dioxo species in comparison to the trioxo species. Although the robust AF exchange coupling within the UxOx cores is generally maintained when small variations of the UOU angle are applied, a weak ferromagnetic character appears in the dioxo species when this angle is higher than 114°, its value for the actual structure being equal to 105.9°. The electronic factors driving the magnetic coupling are discussed.
Collapse
Affiliation(s)
- Billel Teyar
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria.,Université Ziane Achour de Djelfa , 17000 Djelfa , Algeria
| | - Seddik Boucenina
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria
| | - Lotfi Belkhiri
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria
| | | | | | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
19
|
Barluzzi L, Chatelain L, Fadaei-Tirani F, Zivkovic I, Mazzanti M. Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex. Chem Sci 2019; 10:3543-3555. [PMID: 30996946 PMCID: PMC6438153 DOI: 10.1039/c8sc05721d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/08/2019] [Indexed: 11/21/2022] Open
Abstract
Uranium nitride complexes are of high interest because of their ability to effect dinitrogen reduction and functionalization and to promote magnetic communication, but studies of their properties and reactivity remain rare. Here we have prepared in 73% yield the diuranium(v) bis-nitride complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)2}], 4, from the thermal decomposition of the nitride-, azide-bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-N3)}], 3. The bis-nitride 4 reacts in ambient conditions with 1 equiv. of CS2 and 1 equiv. of CO2 resulting in N-C bond formation to afford the diuranium(v) complexes [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-S)(μ-NCS)}], 5 and [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-O)(μ-NCO)}], 6, respectively. Both nitrides in 4 react with CO resulting in oxidative addition of CO to one nitride and CO cleavage by the second nitride to afford the diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-CN)(μ-O)(μ-NCO)}], 7. Complex 4 also effects the remarkable oxidative cleavage of H2 in mild conditions to afford the bis-imido bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-NH)2}], 8 that can be further protonated to afford ammonia in 73% yield. Complex 8 provides a good model for hydrogen cleavage by metal nitrides in the Haber-Bosch process. The measured magnetic data show an unusually strong antiferromagnetic coupling between uranium(v) ions in the complexes 4 and 6 with Neel temperatures of 77 K and 60 K respectively, demonstrating that nitrides are attractives linkers for promoting magnetic communication in uranium complexes.
Collapse
Affiliation(s)
- Luciano Barluzzi
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Lucile Chatelain
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism , Institute of Physics , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
20
|
Abstract
Over the past 25 years, magnetic actinide complexes have been the object of considerable attention, not only at the experimental level, but also at the theoretical one. Such systems are of great interest, owing to the well-known larger spin–orbit coupling for actinide ions, and could exhibit slow relaxation of the magnetization, arising from a large anisotropy barrier, and magnetic hysteresis of purely molecular origin below a given blocking temperature. Furthermore, more diffuse 5f orbitals than lanthanide 4f ones (more covalency) could lead to stronger magnetic super-exchange. On the other hand, the extraordinary experimental challenges of actinide complexes chemistry, because of their rarity and toxicity, afford computational chemistry a particularly valuable role. However, for such a purpose, the use of a multiconfigurational post-Hartree-Fock approach is required, but such an approach is computationally demanding for polymetallic systems—notably for actinide ones—and usually simplified models are considered instead of the actual systems. Thus, Density Functional Theory (DFT) appears as an alternative tool to compute magnetic exchange coupling and to explore the electronic structure and magnetic properties of actinide-containing molecules, especially when the considered systems are very large. In this paper, relevant achievements regarding DFT investigations of the magnetic properties of actinide complexes are surveyed, with particular emphasis on some representative examples that illustrate the subject, including actinides in Single Molecular Magnets (SMMs) and systems featuring metal-metal super-exchange coupling interactions. Examples are drawn from studies that are either entirely computational or are combined experimental/computational investigations in which the latter play a significant role.
Collapse
|
21
|
Arumugam K, Burton NA. Density functional theory (DFT) calculations of VI/V reduction potentials of uranyl coordination complexes in non-aqueous solutions. Phys Chem Chem Phys 2019; 21:3227-3241. [PMID: 30681090 DOI: 10.1039/c8cp05412f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Of particular interest within the +6 uranium complexes is the linear uranyl(vi) cation and it forms numerous coordination complexes in solution and exhibits incongruent redox behavior depending on coordinating ligands. In this study, to determine the reduction potentials of uranyl complexes in non-aqueous solutions, a hybrid density functional theory (DFT) approach was used in which two different DFT functionals, B3LYP and M06, were applied. Bulk solvent effects were invoked through the conductor-like polarizable continuum model. The solute cavities were described with the united-atom Kohn-Sham (UAKS) cavity definition. Inside the cavity the dielectric constant matches the value of a vacuum and outside the cavity the dielectric constant value is the same as that of the solvent of interest, for example, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dichloromethane (DCM), acetonitrile and pyridine. With the help of the Nernst equation the calculated reduction potentials with respect to the ferrocene (Fc) reference electrode are converted into reduction free energies (RFEs). Uranyl complexes of organic ligands which range from mono- to hexa-dentate coordination modes were investigated in non-aqueous solutions of DMSO, DMF, DCM, acetonitrile and pyridine solutions. The effect of the spin-orbit correction and the reference electrode correction on the RFEs and various methods such as the direct method and the isodesmic reaction model were explored. Overall, our computational determination of RFEs of uranyl complexes in various non-aqueous solutions demonstrates that the RFEs can be obtained within ∼0.2 eV of experimental values.
Collapse
Affiliation(s)
- Krishnamoorthy Arumugam
- School of Chemistry, The University of Manchester, Brunswick Street, Manchester M13 9PL, UK.
| | | |
Collapse
|
22
|
Nuzzo S, van Leusen J, Twamley B, Platts JA, Kögerler P, Baker RJ. Oxidation of uranium(iv) thiocyanate complexes: cation–cation interactions in mixed-valent uranium coordination chains. Dalton Trans 2019; 48:6704-6708. [DOI: 10.1039/c9dt01005j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oxidation of Cs4[U(NCS)8] in different solvents results in two mixed-valent uranium compounds. Spectroscopic, magnetic and computational data support a unique [UIVUVUIV][UVI] oxidation state assignment in [U(DMF)8(μ-O)U(NCS)5(μ-O)U(DMF)7(NCS)][UO2(NCS)5].
Collapse
Affiliation(s)
- Stefano Nuzzo
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Jan van Leusen
- Institute of Inorganic Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| | - Brendan Twamley
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | | | - Paul Kögerler
- Institute of Inorganic Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| | - Robert J. Baker
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| |
Collapse
|
23
|
Faizova R, White S, Scopelliti R, Mazzanti M. The effect of iron binding on uranyl(v) stability. Chem Sci 2018; 9:7520-7527. [PMID: 30319752 PMCID: PMC6179087 DOI: 10.1039/c8sc02099j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/31/2018] [Indexed: 11/21/2022] Open
Abstract
The tripodal heptadentate Schiff base trensal3– ligand allowed the synthesis and characterization of stable uranyl(v) complexes presenting UO2+···K+ or UO2+···Fe2+ cation–cation interactions. The presence of Fe2+ bound to the uranyl(v) oxygen leads to increased stability with respect to proton induced disproportionation and to an increased range of stability of the uranyl(v) species with respect both to oxidation and reduction reactions.
Here we report the effect of UO2+···Fe2+ cation–cation interactions on the redox properties of uranyl(v) complexes and on their stability with respect to proton induced disproportionation. The tripodal heptadentate Schiff base trensal3– ligand allowed the synthesis and characterization of the uranyl(vi) complexes [UO2(trensal)K], 1 and [UO2(Htrensal)], 2 and of uranyl(v) complexes presenting UO2+···K+ or UO2+···Fe2+ cation–cation interactions ([UO2(trensal)K]K, 3, [UO2(trensal)] [K(2.2.2crypt)][K(2.2.2crypt)], 4, [UO2(trensal)Fe(py)3], 6). The uranyl(v) complexes show similar stability in pyridine solution, but the presence of Fe2+ bound to the uranyl(v) oxygen leads to increased stability with respect to proton induced disproportionation through the formation of a stable Fe2+–UO2+–U4+ intermediate ([UO2(trensal)Fe(py)3U(trensal)]I, 7) upon addition of 2 eq. of PyHCl to 6. The addition of 2 eq. of PyHCl to 3 results in the immediate formation of U(iv) and UO22+ compounds. The presence of an additional UO2+ bound Fe2+ in [(UO2(trensal)Fe(py)3)2Fe(py)3]I2, 8, does not lead to increased stability. Redox reactivity and cyclic voltammetry studies also show an increased range of stability of the uranyl(v) species in the presence of Fe2+ with respect both to oxidation and reduction reactions, while the presence of a proton in complex 2 results in a smaller stability range for the uranyl(v) species. Cyclic voltammetry studies also show that the presence of a Fe2+ cation bound through one trensal3– arm in the trinuclear complex [{UO2(trensal)}2Fe], 5 does not lead to increased redox stability of the uranyl(v) showing the important role of UO2+···Fe2+ cation–cation interactions in increasing the stability of uranyl(v). These results provide an important insight into the role that iron binding may play in stabilizing uranyl(v) compounds in the environmental mineral-mediated reduction of uranium(vi).
Collapse
Affiliation(s)
- Radmila Faizova
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Sarah White
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
24
|
Faizova R, Scopelliti R, Chauvin AS, Mazzanti M. Synthesis and Characterization of a Water Stable Uranyl(V) Complex. J Am Chem Soc 2018; 140:13554-13557. [PMID: 30289696 DOI: 10.1021/jacs.8b07885] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have identified a polydentate aminocarboxylate ligand that stabilizes uranyl(V) in water. The mononuclear [UO2(dpaea)]X, (dpaeaH2 = Bis(pyridyl-6-methyl-2-carboxylate)-ethylamine; X = CoCp2*+ or X = K(2.2.2.cryptand) complexes have been isolated from anaerobic organic solution, crystallographically and spectroscopically characterized both in water and organic solution. These complexes disproportionate at pH ≤ 6, but are stable in anaerobic water at pH 7-10 for several days.
Collapse
Affiliation(s)
- Radmila Faizova
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Anne-Sophie Chauvin
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
25
|
Tsantis ST, Bekiari V, Raptopoulou CP, Tzimopoulos DI, Psycharis V, Perlepes SP. Dioxidouranium(IV) complexes with Schiff bases possessing an ONO donor set: Synthetic, structural and spectroscopic studies. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Arnold PL, Cowie BE, Suvova M, Zegke M, Magnani N, Colineau E, Griveau JC, Caciuffo R, Love JB. Axially Symmetric U−O−Ln- and U−O−U-Containing Molecules from the Control of Uranyl Reduction with Simple f-Block Halides. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Polly L. Arnold
- EaStCHEM School of Chemistry; University of Edinburgh; The King's Buildings Edinburgh EH9 3FJ UK
| | - Bradley E. Cowie
- EaStCHEM School of Chemistry; University of Edinburgh; The King's Buildings Edinburgh EH9 3FJ UK
| | - Markéta Suvova
- EaStCHEM School of Chemistry; University of Edinburgh; The King's Buildings Edinburgh EH9 3FJ UK
| | - Markus Zegke
- EaStCHEM School of Chemistry; University of Edinburgh; The King's Buildings Edinburgh EH9 3FJ UK
| | - Nicola Magnani
- European Commission; Directorate for Nuclear Safety and Security, Joint Research Centre; Postfach 2340 76125 Karlsruhe Germany
| | - Eric Colineau
- European Commission; Directorate for Nuclear Safety and Security, Joint Research Centre; Postfach 2340 76125 Karlsruhe Germany
| | - Jean-Christophe Griveau
- European Commission; Directorate for Nuclear Safety and Security, Joint Research Centre; Postfach 2340 76125 Karlsruhe Germany
| | - Roberto Caciuffo
- European Commission; Directorate for Nuclear Safety and Security, Joint Research Centre; Postfach 2340 76125 Karlsruhe Germany
| | - Jason B. Love
- EaStCHEM School of Chemistry; University of Edinburgh; The King's Buildings Edinburgh EH9 3FJ UK
| |
Collapse
|
27
|
Arnold PL, Cowie BE, Suvova M, Zegke M, Magnani N, Colineau E, Griveau JC, Caciuffo R, Love JB. Axially Symmetric U-O-Ln- and U-O-U-Containing Molecules from the Control of Uranyl Reduction with Simple f-Block Halides. Angew Chem Int Ed Engl 2017; 56:10775-10779. [PMID: 28686336 PMCID: PMC5697649 DOI: 10.1002/anie.201705197] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/23/2017] [Indexed: 11/08/2022]
Abstract
The reduction of UVI uranyl halides or amides with simple LnII or UIII salts forms highly symmetric, linear, oxo-bridged trinuclear UV /LnIII /UV , LnIII /UIV /LnIII , and UIV /UIV /UIV complexes or linear LnIII /UV polymers depending on the stoichiometry and solvent. The reactions can be tuned to give the products of one- or two-electron uranyl reduction. The reactivity and magnetism of these compounds are discussed in the context of using a series of strongly oxo-coupled homo- and heterometallic poly(f-block) chains to better understand fundamental electronic structure in the f-block.
Collapse
Affiliation(s)
- Polly L Arnold
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Bradley E Cowie
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Markéta Suvova
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Markus Zegke
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| | - Nicola Magnani
- European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany
| | - Eric Colineau
- European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany
| | - Jean-Christophe Griveau
- European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany
| | - Roberto Caciuffo
- European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany
| | - Jason B Love
- EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
28
|
Gardner BM, King DM, Tuna F, Wooles AJ, Chilton NF, Liddle ST. Assessing crystal field and magnetic interactions in diuranium-μ-chalcogenide triamidoamine complexes with U IV-E-U IV cores (E = S, Se, Te): implications for determining the presence or absence of actinide-actinide magnetic exchange. Chem Sci 2017; 8:6207-6217. [PMID: 28989654 PMCID: PMC5628351 DOI: 10.1039/c7sc01998j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022] Open
Abstract
We report the synthesis and characterisation of a family of diuranium(iv)-μ-chalcogenide complexes including a detailed examination of their electronic structures and magnetic behaviours. Treatment of [U(TrenTIPS)] [1, TrenTIPS = N(CH2CH2NSiPri3)3] with Ph3PS, selenium or tellurium affords the diuranium(iv)-sulfide, selenide, and telluride complexes [{U(TrenTIPS)}2(μ-E)] (E = S, 2; Se, 5; Te, 6). Complex 2 is also formed by treatment of [U(TrenTIPS){OP(NMe2)3}] (3) with Ph3PS, whereas treatment of 3 with elemental sulfur gives the diuranium(iv)-persulfido complex [{U(TrenTIPS)}2(μ-η2:η2-S2)] (4). Complexes 2-6 have been variously characterised by single crystal X-ray diffraction, NMR, IR, and optical spectroscopies, room temperature Evans and variable temperature SQUID magnetometry, elemental analyses, and complete active space self consistent field spin orbit calculations. The combined characterisation data present a self-consistent picture of the electronic structure and magnetism of 2, 5, and 6, leading to the conclusion that single-ion crystal field effects, and not diuranium magnetic coupling, are responsible for features in their variable-temperature magnetisation data. The presence of magnetic coupling is often implied and sometimes quantified by such data, and so this study highlights the importance of evaluating other factors, such as crystal field effects, that can produce similar magnetic observables, and to thus avoid misassignments of such phenomena.
Collapse
Affiliation(s)
- Benedict M Gardner
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - David M King
- School of Chemistry , The University of Nottingham , University Park , Nottingham , NG7 2RD , UK
| | - Floriana Tuna
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Ashley J Wooles
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Nicholas F Chilton
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| | - Stephen T Liddle
- School of Chemistry , The University of Manchester , Oxford Road , Manchester , M13 9PL , UK . ;
| |
Collapse
|
29
|
Shivaram BS, Colineau E, Griveau J, Kumar P, Celli V. The linear and non-linear magnetic response of a tri-uranium single molecule magnet. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:095805. [PMID: 28002042 DOI: 10.1088/1361-648x/aa553e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report here low temperature magnetization isotherms for the single molecule magnet, (UO2-L)3. By analyzing the low temperature magnetization in terms of M = χ 1 B + χ 3 B 3 we extract the linear susceptibility χ 1 and the leading order nonlinear susceptibility χ 3. We find that χ 1 exhibits a peak at a temperature of T 1 = 10.4 K with χ 3 also exhibiting a peak but at a reduced temperature T 3 = 5 K. At the lowest temperatures the isotherms exhibit a critical field B c = 11.5 T marked by a clear point of inflection. A minimal Hamiltonian employing S = 1 (pseudo) spins with only a single energy scale (successfully used to model the behavior of bulk f-electron metamagnets) is shown to provide a good description of the observed linear scaling between T 1, T 3 and B c. We further show that a Heisenberg Hamiltonian previously employed by Carretta et al (2013 J. Phys.: Condens. Matter 25 486001) to model this single molecule magnet gives formulas for the angle averaged susceptibilities (in the Ising limit) very similar to those of the minimal model.
Collapse
Affiliation(s)
- B S Shivaram
- Department of Physics, University of Virginia, Charlottesville, VA 22901, USA
| | | | | | | | | |
Collapse
|
30
|
Chatelain L, Tuna F, Pécaut J, Mazzanti M. Synthesis and SMM behaviour of trinuclear versus dinuclear 3d–5f uranyl(v)–cobalt(ii) cation–cation complexes. Dalton Trans 2017; 46:5498-5502. [DOI: 10.1039/c6dt04558h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trinuclear versus dinuclear heterodimetallic UVO2+⋯Co2+ complexes were selectively assembled via a cation–cation interaction by tuning the ligand. The trimeric complex, exhibits magnetic exchange and slow relaxation providing the first example of a U–Co exchange-coupled SMM.
Collapse
Affiliation(s)
- Lucile Chatelain
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute
- The University of Manchester
- Manchester
- UK
| | | | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
31
|
Chatelain L, Pécaut J, Tuna F, Mazzanti M. Heterometallic Fe2II-UVand Ni2II-UVExchange-Coupled Single-Molecule Magnets: Effect of the 3 d Ion on the Magnetic Properties. Chemistry 2015; 21:18038-42. [DOI: 10.1002/chem.201503637] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 11/10/2022]
|
32
|
Guan QL, Bai FY, Xing YH, Liu J, Zhang HZ. Unexpected cis-dioxido uranyl carboxylate compound: Synthesis, characterization and photocatalytic activity of uranyl-succinate complexes. INORG CHEM COMMUN 2015. [DOI: 10.1016/j.inoche.2015.06.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Liddle ST. The Renaissance of Non-Aqueous Uranium Chemistry. Angew Chem Int Ed Engl 2015; 54:8604-41. [PMID: 26079536 DOI: 10.1002/anie.201412168] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Indexed: 12/11/2022]
Abstract
Prior to the year 2000, non-aqueous uranium chemistry mainly involved metallocene and classical alkyl, amide, or alkoxide compounds as well as established carbene, imido, and oxo derivatives. Since then, there has been a resurgence of the area, and dramatic developments of supporting ligands and multiply bonded ligand types, small-molecule activation, and magnetism have been reported. This Review 1) introduces the reader to some of the specialist theories of the area, 2) covers all-important starting materials, 3) surveys contemporary ligand classes installed at uranium, including alkyl, aryl, arene, carbene, amide, imide, nitride, alkoxide, aryloxide, and oxo compounds, 4) describes advances in the area of single-molecule magnetism, and 5) summarizes the coordination and activation of small molecules, including carbon monoxide, carbon dioxide, nitric oxide, dinitrogen, white phosphorus, and alkanes.
Collapse
Affiliation(s)
- Stephen T Liddle
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK).
| |
Collapse
|
34
|
|
35
|
Camp C, Chatelain L, Mougel V, Pécaut J, Mazzanti M. Ferrocene-Based Tetradentate Schiff Bases as Supporting Ligands in Uranium Chemistry. Inorg Chem 2015; 54:5774-83. [DOI: 10.1021/acs.inorgchem.5b00467] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clément Camp
- Univ. Grenoble Alpes, INAC-LCIB,
RICC, and §CEA, INAC-LCIB F-38000 Grenoble, France
| | - Lucile Chatelain
- Univ. Grenoble Alpes, INAC-LCIB,
RICC, and §CEA, INAC-LCIB F-38000 Grenoble, France
- Institut des Sciences et
Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Victor Mougel
- Univ. Grenoble Alpes, INAC-LCIB,
RICC, and §CEA, INAC-LCIB F-38000 Grenoble, France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, INAC-LCIB,
RICC, and §CEA, INAC-LCIB F-38000 Grenoble, France
| | - Marinella Mazzanti
- Institut des Sciences et
Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
36
|
|
37
|
Chatelain L, Tuna F, Pécaut J, Mazzanti M. A zig-zag uranyl(v)–Mn(ii) single chain magnet with a high relaxation barrier. Chem Commun (Camb) 2015; 51:11309-12. [DOI: 10.1039/c5cc02945g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 1D zig-zag coordination polymer based on a cation–cation [(UVO2)MnII] repeated unit shows single chain magnet (SCM) behaviour with a high energy barrier of 122 K.
Collapse
Affiliation(s)
| | - Floriana Tuna
- School of Chemistry and Photon Science Institute
- University of Manchester
- Manchester
- UK
| | | | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| |
Collapse
|
38
|
Abstract
Actinide single-molecule magnets compose a small yet complex consortium, presenting new design and characterization challenges for magnetochemists and physicists.
Collapse
|
39
|
Self-Assembly of a 3d-5f Trinuclear Single-Molecule Magnet from a Pentavalent Uranyl Complex. Angew Chem Int Ed Engl 2014; 53:13434-8. [DOI: 10.1002/anie.201407334] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/26/2014] [Indexed: 11/07/2022]
|
40
|
Chatelain L, Walsh JPS, Pécaut J, Tuna F, Mazzanti M. Self-Assembly of a 3d-5f Trinuclear Single-Molecule Magnet from a Pentavalent Uranyl Complex. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407334] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Schmidt AC, Heinemann FW, Lukens WW, Meyer K. Molecular and Electronic Structure of Dinuclear Uranium Bis-μ-Oxo Complexes with Diamond Core Structural Motifs. J Am Chem Soc 2014; 136:11980-93. [DOI: 10.1021/ja504528n] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna-Corina Schmidt
- Inorganic
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Egerlandstr. 1, 91058 Erlangen, Germany
| | - Frank W. Heinemann
- Inorganic
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Egerlandstr. 1, 91058 Erlangen, Germany
| | - Wayne W. Lukens
- Lawrence
Berkeley National Laboratory, MS 70A-1150, Berkeley, California 94720, United States
| | - Karsten Meyer
- Inorganic
Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Egerlandstr. 1, 91058 Erlangen, Germany
| |
Collapse
|
42
|
Hou YN, Xu XT, Xing N, Bai FY, Duan SB, Sun Q, Wei SY, Shi Z, Zhang HZ, Xing YH. Photocatalytic Application of 4f-5f Inorganic-Organic Frameworks: Influence of Lanthanide Contraction on the Structure and Functional Properties of a Series of Uranyl-Lanthanide Complexes. Chempluschem 2014. [DOI: 10.1002/cplu.201402121] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
|
44
|
La Pierre HS, Meyer K. Activation of Small Molecules by Molecular Uranium Complexes. PROGRESS IN INORGANIC CHEMISTRY 2014. [DOI: 10.1002/9781118792797.ch05] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Mougel V, Chatelain L, Hermle J, Caciuffo R, Colineau E, Tuna F, Magnani N, de Geyer A, Pécaut J, Mazzanti M. A uranium-based UO2(+)-Mn2+ single-chain magnet assembled trough cation-cation interactions. Angew Chem Int Ed Engl 2014; 53:819-23. [PMID: 24311434 PMCID: PMC4232274 DOI: 10.1002/anie.201307366] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Indexed: 01/07/2023]
Abstract
Single-chain magnets (SCMs) are materials composed of magnetically isolated one-dimensional (1D) units exhibiting slow relaxation of magnetization. The occurrence of SCM behavior requires the fulfillment of stringent conditions for exchange and anisotropy interactions. Herein, we report the synthesis, the structure, and the magnetic characterization of the first actinide-containing SCM. The 5f-3d heterometallic 1D chains [{[UO2(salen)(py)][M(py)4](NO3)}]n, (M=Cd (1) and M=Mn (2); py=pyridine) are assembled trough cation-cation interaction from the reaction of the uranyl(V) complex [UO2(salen)py][Cp*2Co] (Cp*=pentamethylcyclopentadienyl) with Cd(NO3)2 or Mn(NO3)2 in pyridine. The infinite UMn chain displays a high relaxation barrier of 134±0.8 K (93±0.5 cm(-1)), probably as a result of strong intra-chain magnetic interactions combined with the high Ising anisotropy of the uranyl(V) dioxo group. It also exhibits an open magnetic hysteresis loop at T<6 K, with an impressive coercive field of 3.4 T at 2 K.
Collapse
Affiliation(s)
- Victor Mougel
- Laboratoire de Reconnaissance Ionique et Chimie de Coordination SCIBUMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France)
| | - Lucile Chatelain
- Laboratoire de Reconnaissance Ionique et Chimie de Coordination SCIBUMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France)
| | - Johannes Hermle
- Laboratoire de Reconnaissance Ionique et Chimie de Coordination SCIBUMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France)
| | - Roberto Caciuffo
- European CommissionJoint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)
| | - Eric Colineau
- European CommissionJoint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany)
| | - Floriana Tuna
- EPSRC UK EPR FacilitySchool of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (UK)
| | - Nicola Magnani
- Institute of NanotechnologyKarlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)
| | - Arnaud de Geyer
- Service Général des Rayons XSP2M, INAC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France)
| | - Jacques Pécaut
- Laboratoire de Reconnaissance Ionique et Chimie de Coordination SCIBUMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France)
| | - Marinella Mazzanti
- Laboratoire de Reconnaissance Ionique et Chimie de Coordination SCIBUMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France)
| |
Collapse
|
46
|
Barbon SM, Staroverov VN, Boyle PD, Gilroy JB. Hydrogen-bond-supported dimeric boron complexes of potentially tetradentate β-diketiminate ligands. Dalton Trans 2014; 43:240-50. [DOI: 10.1039/c3dt52188e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Mougel V, Chatelain L, Hermle J, Caciuffo R, Colineau E, Tuna F, Magnani N, de Geyer A, Pécaut J, Mazzanti M. A Uranium-Based UO2+-Mn2+Single-Chain Magnet Assembled trough Cation-Cation Interactions. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
Carretta S, Amoretti G, Santini P, Mougel V, Mazzanti M, Gambarelli S, Colineau E, Caciuffo R. Magnetic properties and chiral states of a trimetallic uranium complex. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:486001. [PMID: 24169692 DOI: 10.1088/0953-8984/25/48/486001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The magnetic properties of the triangular molecular nanomagnet [UO2L]3 (L = 2-(4-tolyl)-1,3-bis(quinolyl)malondiiminate) have been investigated through electron paramagnetic resonance spectroscopy, high-field magnetization and susceptibility measurements. The experimental findings are well reproduced by a microscopic model including exchange interactions and local crystal fields. These results show that [UO2L]3 is characterized by a non-magnetic ground doublet corresponding to two oppositely twisted chiral arrangements of the uranium moments. The non-axial character of single-ion crystal fields leads to quantum tunneling of the noncollinear magnetization in the presence of a magnetic field applied perpendicularly to the triangle plane.
Collapse
Affiliation(s)
- S Carretta
- Dipartimento di Fisica e Scienze della Terra, Università di Parma, and Unità CNISM di Parma, Viale G P Usberti 7/A, I-43124 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cation‐Mediated Conversion of the State of Charge in Uranium Arene Inverted‐Sandwich Complexes. Chemistry 2013; 19:17528-40. [DOI: 10.1002/chem.201302752] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Indexed: 11/07/2022]
|
50
|
Camp C, Pécaut J, Mazzanti M. Tuning Uranium–Nitrogen Multiple Bond Formation with Ancillary Siloxide Ligands. J Am Chem Soc 2013; 135:12101-11. [DOI: 10.1021/ja405815b] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Clément Camp
- Laboratoire de Reconnaissance
Ionique et Chimie de
Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 09
| | - Jacques Pécaut
- Laboratoire de Reconnaissance
Ionique et Chimie de
Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 09
| | - Marinella Mazzanti
- Laboratoire de Reconnaissance
Ionique et Chimie de
Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble, 17 rue des Martyrs, F-38054 Grenoble Cedex 09
| |
Collapse
|