1
|
Gkika K, Noorani S, Walsh N, Keyes TE. Os(II)-Bridged Polyarginine Conjugates: The Additive Effects of Peptides in Promoting or Preventing Permeation in Cells and Multicellular Tumor Spheroids. Inorg Chem 2021; 60:8123-8134. [PMID: 33978399 PMCID: PMC8277133 DOI: 10.1021/acs.inorgchem.1c00769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/05/2022]
Abstract
The preparation of two polyarginine conjugates of the complex Os(II) [bis-(4'-(4-carboxyphenyl)-2,2':6',2″-terpyridine)] [Os-(Rn)2]x+ (n = 4 and 8; x = 10 and 18) is reported, to explore whether the R8 peptide sequence that promotes cell uptake requires a contiguous amino acid sequence for membrane permeation or if this can be accomplished in a linearly bridged structure with the additive effect of shorter peptide sequences. The conjugates exhibit NIR emission centered at 754 nm and essentially oxygen-insensitive emission with a lifetime of 89 ns in phosphate-buffered saline. The uptake, distribution, and cytotoxicity of the parent complex and peptide derivatives were compared in 2D cell monolayers and a three-dimensional (3D) multicellular tumor spheroid (MCTS) model. Whereas, the bis-octaarginine sequences were impermeable to cells and spheroids, and the bis-tetraarginine conjugate showed excellent cellular uptake and accumulation in two 2D monolayer cell lines and remarkable in-depth penetration of 3D MCTSs of pancreatic cancer cells. Overall, the data indicates that cell permeability can be promoted via non-contiguous sequences of arginine residues bridged across the metal centre.
Collapse
Affiliation(s)
- Karmel
S. Gkika
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Sara Noorani
- School
of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Naomi Walsh
- School
of Biotechnology, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
2
|
Geng W, Zheng Z, Guo D. Supramolecular design based activatable magnetic resonance imaging. VIEW 2020. [DOI: 10.1002/viw.20200059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Wen‐Chao Geng
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin P. R. China
| | - Zhe Zheng
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin P. R. China
| | - Dong‐Sheng Guo
- College of Chemistry Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento‐Organic Chemistry Nankai University Tianjin P. R. China
| |
Collapse
|
3
|
Lee S, Chung CYS, Liu P, Craciun L, Nishikawa Y, Bruemmer KJ, Hamachi I, Saijo K, Miller EW, Chang CJ. Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper. J Am Chem Soc 2020; 142:14993-15003. [PMID: 32815370 PMCID: PMC7877313 DOI: 10.1021/jacs.0c05727] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is a required nutrient for life and particularly important to the brain and central nervous system. Indeed, copper redox activity is essential to maintaining normal physiological responses spanning neural signaling to metabolism, but at the same time copper misregulation is associated with inflammation and neurodegeneration. As such, chemical probes that can track dynamic changes in copper with spatial resolution, especially in loosely bound, labile forms, are valuable tools to identify and characterize its contributions to healthy and disease states. In this report, we present an activity-based sensing (ABS) strategy for copper detection in live cells that preserves spatial information by a copper-dependent bioconjugation reaction. Specifically, we designed copper-directed acyl imidazole dyes that operate through copper-mediated activation of acyl imidazole electrophiles for subsequent labeling of proximal proteins at sites of elevated labile copper to provide a permanent stain that resists washing and fixation. To showcase the utility of this new ABS platform, we sought to characterize labile copper pools in the three main cell types in the brain: neurons, astrocytes, and microglia. Exposure of each of these cell types to physiologically relevant stimuli shows distinct changes in labile copper pools. Neurons display translocation of labile copper from somatic cell bodies to peripheral processes upon activation, whereas astrocytes and microglia exhibit global decreases and increases in intracellular labile copper pools, respectively, after exposure to inflammatory stimuli. This work provides foundational information on cell type-dependent homeostasis of copper, an essential metal in the brain, as well as a starting point for the design of new activity-based probes for metals and other dynamic signaling and stress analytes in biology.
Collapse
Affiliation(s)
| | | | | | | | - Yuki Nishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | | | | |
Collapse
|
4
|
Ramki K, Sakthivel P. A novel electrochemical platform based on indenoindole for selective detection of Cu2+ ions in Punica granatum fruit juice. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Sedgwick AC, Brewster JT, Harvey P, Iovan DA, Smith G, He XP, Tian H, Sessler JL, James TD. Metal-based imaging agents: progress towards interrogating neurodegenerative disease. Chem Soc Rev 2020; 49:2886-2915. [DOI: 10.1039/c8cs00986d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transition metals and lanthanide ions display unique properties that enable the development of non-invasive diagnostic tools for imaging. In this review, we highlight various metal-based imaging strategies used to interrogate neurodegeneration.
Collapse
Affiliation(s)
- Adam C. Sedgwick
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | | - Peter Harvey
- Department of Biological Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Sir Peter Mansfield Imaging Centre
| | - Diana A. Iovan
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Graham Smith
- Division of Radiotherapy & Imaging
- Institute of Cancer Research
- London
- UK
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | | |
Collapse
|
6
|
Li H, Meade TJ. Molecular Magnetic Resonance Imaging with Gd(III)-Based Contrast Agents: Challenges and Key Advances. J Am Chem Soc 2019; 141:17025-17041. [PMID: 31593630 DOI: 10.1021/jacs.9b09149] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In an era of personalized medicine, the clinical community has become increasingly focused on understanding diseases at the cellular and molecular levels. Magnetic resonance imaging (MRI) is a powerful imaging modality for acquiring anatomical and functional information. However, it has limited applications in the field of molecular imaging due to its low sensitivity. To expand the capability of MRI to encompass molecular imaging applications, we introduced bioresponsive Gd(III)-based magnetic resonance contrast agents (GBCAs) in 1997. Since that time, many research groups across the globe have developed new examples of bioresponsive GBCAs. These contrast agents have shown great promise for visualizing several biochemical processes, such as gene expression, neuronal signaling, and hormone secretion. They are designed to be conditionally retained, or activated, in vivo in response to specific biochemical events of interest. As a result, an observed MR signal change can serve as a read-out for molecular events. A significant challenge for these probes is how to utilize them for noninvasive diagnostic and theranostic applications. This Perspective focuses on the design strategies that underlie bioresponsive probes, and describes the key advances made in recent years that are facilitating their application in vivo and ultimately in clinical translation. While the field of bioresponsive agents is embryonic, it is clear that many solutions to the experimental and clinical radiologic problems of today will be overcome by the probes of tomorrow.
Collapse
Affiliation(s)
- Hao Li
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology Northwestern University , Evanston , Illinois 60208 , United States
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
7
|
Yi XQ, He YF, Cao YS, Shen WX, Lv YY. Porphyrinic Probe for Fluorescence "Turn-On" Monitoring of Cu + in Aqueous Buffer and Mitochondria. ACS Sens 2019; 4:856-864. [PMID: 30868875 DOI: 10.1021/acssensors.8b01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A zinc(II) porphyrin derivative (ZPSN) was designed and synthesized, and this probe exhibited rapid, selective and reversible binding to Cu+ for fluorescence monitoring in pure aqueous buffer. The detection mechanism is based on Cu+-activated disruption of axial coordination between the pyridyl ligand and the zinc center, which changes the molecular geometry and inhibits intramolecular electron transfer (ET), leading to fluorescence enhancement of the probe. The proposed sensing mechanism was supported by UV-vis spectroscopy/fluorescence spectral titration, NMR spectroscopy, mass spectrometry, and time-resolved fluorescence decay studies. The dissociation constant was calculated to be 6.53 × 10-11 M. CLSM analysis strongly suggested that ZPSN could penetrate live cells and successfully visualize Cu+ in mitochondria. This strategy may establish a design and offer a potential building block for construction of other metal sensors based on a similar mechanism.
Collapse
Affiliation(s)
- Xiao-Qin Yi
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
- College of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310027, People’s Republic of China
| | - Yuan-Fan He
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yu-Sheng Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Wang-Xing Shen
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| | - Yuan-Yuan Lv
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang 310015, People’s Republic of China
| |
Collapse
|
8
|
Abstract
Many elegant inorganic designs have been developed to aid medical imaging. We know better now how to improve imaging due to the enormous efforts made by scientists in probe design and other fundamental sciences, including inorganic chemistry, physiochemistry, analytical chemistry, and biomedical engineering. However, despite several years being invested in the development of diagnostic probes, only a few examples have shown applicability in MRI in vivo. In this short review, we aim to show the reader the latest advances in the application of inorganic agents in preclinical MRI.
Collapse
|
9
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 859] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
10
|
Travagin F, Lattuada L, Giovenzana GB. First synthesis of orthogonally 1,7-diprotected cyclens. Org Chem Front 2019. [DOI: 10.1039/c9qo00184k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Six novel orthogonally 1,7-heterodiprotected cyclen derivatives have been prepared through an efficient and chromatography-free procedure.
Collapse
Affiliation(s)
- Fabio Travagin
- Bracco Imaging S.p.A
- Bracco Research Centre
- I-10100 Colleretto Giacosa (TO)
- Italy
- Dipartimento di Scienze del Farmaco
| | - Luciano Lattuada
- Bracco Imaging S.p.A
- Bracco Research Centre
- I-10100 Colleretto Giacosa (TO)
- Italy
| | - Giovanni B. Giovenzana
- Dipartimento di Scienze del Farmaco
- Università del Piemonte Orientale “A. Avogadro”
- I-28100 Novara
- Italy
| |
Collapse
|
11
|
Zhang B, Guo Q, Luo Q, Zhang X, Zeng Q, Zhao L, Yuan Y, Jiang W, Yang Y, Liu M, Ye C, Zhou X. An intracellular diamine oxidase triggered hyperpolarized 129Xe magnetic resonance biosensor. Chem Commun (Camb) 2018; 54:13654-13657. [PMID: 30398489 DOI: 10.1039/c8cc07822j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, a novel method was developed for suppressing 129Xe signals in cucurbit[6]uril (CB6) until the trigger is activated by a specific enzyme. Due to its noncovalent interactions with amino-groups and CB6, putrescine dihydrochloride (Put) was chosen for blocking interactions between 129Xe and CB6. Upon adding diamine oxidase (DAO), Put was released from CB6 and a 129Xe@CB6 Hyper-CEST signal emerged. This proposed 129Xe biosensor was then tested in small intestinal villus epithelial cells.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan 430071, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pierre VC, Harris SM, Pailloux SL. Comparing Strategies in the Design of Responsive Contrast Agents for Magnetic Resonance Imaging: A Case Study with Copper and Zinc. Acc Chem Res 2018; 51:342-351. [PMID: 29356506 DOI: 10.1021/acs.accounts.7b00301] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Magnetic resonance imaging (MRI) has emerged over the years as one of the preferred modalities for medical diagnostic and biomedical research. It has the advantage over other imaging modalities such as positron emission tomography and X-ray of affording high resolution three-dimensional images of the body without using harmful radiation. The use of contrast agents has further expanded this technique by increasing the contrast between regions where they accumulate and background tissues. As MRI most often measures the relaxation rate of water throughout the body, contrast agents function by modulating the intensity of the water signal either via improved relaxation or via saturation transfer to selected exchangeable proton. Among the growing class of MRI contrast agents, a subset of them called "smart" contrast agents function as responsive probes. Their ability to increase or decrease their signal intensity is modulated by the presence of an analyte. These probes offer the unique ability to image the distribution of an analyte in vivo, thereby opening new possibilities for diagnostics and for elucidating the role of specific analytes in various pathologies or biological processes. A number of different strategies can be exploited to design responsive MRI contrast agents. The majority of contrast agents are based on GdIII complexes. These complexes can be rendered responsive in either of two ways: either by modulating the number of inner-sphere water molecules, q, or via modulating the rotational correlation time, τR, of the contrast agent upon substrate binding. The longitudinal relaxivity increases with the number of inner-sphere water molecules. GdIII complexes can be rendered responsive if they contain a recognition moiety that can bind to both the open coordination site of GdIII and to the analyte. When the recognition moiety leaves the lanthanide ion to bind to the analyte, q increases and therefore so does the relaxivity. The dependence of relaxivity on rotational correlation time is more complex and more pronounced at lower magnetic fields. In general, slower tumbling macromolecules have longer rotational correlation times and higher relaxivities. Analyte-triggered formation of macromolecules thus also increases relaxivity. Such macromolecules can either be analyte-templated supramolecular assemblies, or analyte-enhanced protein-contrast agent complexes. Chemical Exchange Saturation Transfer (CEST) agents are a newer class of contrast agents that offer the possibility of multifrequency and thus ratiometric imaging, which in turn enables quantitative mapping of the concentration of an analyte in vivo under conditions where the concentration of the contrast agent is not known. Such agents can be rendered responsive if the analyte changes the number of exchangeable proton(s), its exchange rate, or its chemical shift. All of these approaches have been successfully employed for detecting and imaging both copper and zinc, including in vivo. Magnetic Iron Oxide Nanoparticles (MIONs) are powerful MRI transverse relaxation agents. They can also be rendered responsive to an analyte if the latter can control the aggregation of the nanoparticles. For metal ions, this can be achieved via chemical functionalities that only react to form conjugates in the presence of the metal ion analyte.
Collapse
Affiliation(s)
- Valérie C. Pierre
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Sarah M. Harris
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Sylvie L. Pailloux
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Srivastava K, Ferrauto G, Harris SM, Longo DL, Botta M, Aime S, Pierre VC. Complete on/off responsive ParaCEST MRI contrast agents for copper and zinc. Dalton Trans 2018; 47:11346-11357. [DOI: 10.1039/c8dt01172a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two thulium-based paraCEST contrast agents enable detection and imaging of copper and zinc by MRI with a complete on/off response.
Collapse
Affiliation(s)
- K. Srivastava
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | - G. Ferrauto
- Molecular Imaging Center
- Department of Molecular Biotechnologies and Health Sciences
- University of Torino
- 10126 Torino
- Italy
| | - S. M. Harris
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| | - D. L. Longo
- Molecular Imaging Center
- Department of Molecular Biotechnologies and Health Sciences
- University of Torino
- 10126 Torino
- Italy
| | - M. Botta
- Dipartimento di Scienze e Innovazione Tecnologica
- Università del Piemonte Orientale “Amedeo Avogadro”
- 15121 Alessandria
- Italy
| | - S. Aime
- Molecular Imaging Center
- Department of Molecular Biotechnologies and Health Sciences
- University of Torino
- 10126 Torino
- Italy
| | - V. C. Pierre
- Department of Chemistry
- University of Minnesota
- Minneapolis
- USA
| |
Collapse
|
14
|
|
15
|
Abstract
Magnetic resonance imaging (MRI) is a non-invasive imaging technique with widespread use in diagnosis. Frequently, contrast in MRI is enhanced with the aid of a contrast agent, among which smart, responsive, OFF/ON or activatable probes are of particular interest. These kinds of probes elicit a response to selective stimuli, evidencing the presence of enzymes or acidic pH, for instance. In this review, we will focus on smart probes that are detectable by both 1H and 19F MRI, frequently based on nanomaterials. We will discuss the triggering factors and the strategies employed thus far to activate each probe.
Collapse
Affiliation(s)
- Monica Carril
- CIC biomaGUNE, Paseo Miramón 182, 20014 Donostia, San Sebastian, Spain
| |
Collapse
|
16
|
Ramos-Torres KM, Kolemen S, Chang CJ. Thioether Coordination Chemistry for Molecular Imaging of Copper in Biological Systems. Isr J Chem 2016; 56:724-737. [PMID: 31263315 DOI: 10.1002/ijch.201600023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper is an essential element in biological systems. Its potent redox activity renders it necessary for life, but at the same time, misregulation of its cellular pools can lead to oxidative stress implicated in aging and various disease states. Copper is commonly thought of as a static cofactor buried in protein active sites; however, evidence of a more loosely bound, labile pool of copper has emerged. To help identify and understand new roles for dynamic copper pools in biology, we have developed selective molecular imaging agents for this metal, drawing inspiration from both biological binding motifs and synthetic model complexes that reveal thioether coordination as a general design strategy for selective and sensitive copper recognition. In this review, we summarize some contributions, primarily from our own laboratory, on fluorescence- and magnetic resonance-based molecular-imaging probes for studying copper in living systems using thioether coordination chemistry.
Collapse
Affiliation(s)
| | - Safacan Kolemen
- Department of Chemistry, University of California Berkeley, CA 94704 (USA)
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley, CA 94704 (USA).,Department of Molecular and Cell Biology, University of California Berkeley, CA 94704 (USA).,Howard Hughes Medical Institute, Tel.: (+1) 510-642-4704
| |
Collapse
|
17
|
Lee S, Barin G, Ackerman CM, Muchenditsi A, Xu J, Reimer JA, Lutsenko S, Long JR, Chang CJ. Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson's Disease. J Am Chem Soc 2016; 138:7603-9. [PMID: 27285482 PMCID: PMC5555401 DOI: 10.1021/jacs.6b02515] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Copper is an essential
nutrient for life, but at the same time,
hyperaccumulation of this redox-active metal in biological fluids
and tissues is a hallmark of pathologies such as Wilson’s and
Menkes diseases, various neurodegenerative diseases, and toxic environmental
exposure. Diseases characterized by copper hyperaccumulation are currently
challenging to identify due to costly diagnostic tools that involve
extensive technical workup. Motivated to create simple yet highly
selective and sensitive diagnostic tools, we have initiated a program
to develop new materials that can enable monitoring of copper levels
in biological fluid samples without complex and expensive instrumentation.
Herein, we report the design, synthesis, and properties of PAF-1-SMe,
a robust three-dimensional porous aromatic framework (PAF) densely
functionalized with thioether groups for selective capture and concentration
of copper from biofluids as well as aqueous samples. PAF-1-SMe exhibits
a high selectivity for copper over other biologically relevant metals,
with a saturation capacity reaching over 600 mg/g. Moreover, the combination
of PAF-1-SMe as a material for capture and concentration of copper
from biological samples with 8-hydroxyquinoline as a colorimetric
indicator affords a method for identifying aberrant elevations of
copper in urine samples from mice with Wilson’s disease and
also tracing exogenously added copper in serum. This divide-and-conquer
sensing strategy, where functional and robust porous materials serve
as molecular recognition elements that can be used to capture and
concentrate analytes in conjunction with molecular indicators for
signal readouts, establishes a valuable starting point for the use
of porous polymeric materials in noninvasive diagnostic applications.
Collapse
Affiliation(s)
| | | | | | - Abigael Muchenditsi
- Department of Physiology, Johns Hopkins University, School of Medicine , Baltimore, Maryland 21205, United States
| | | | | | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, School of Medicine , Baltimore, Maryland 21205, United States
| | | | | |
Collapse
|
18
|
Finbloom JA, Slack CC, Bruns CJ, Jeong K, Wemmer DE, Pines A, Francis MB. Rotaxane-mediated suppression and activation of cucurbit[6]uril for molecular detection by 129Xe hyperCEST NMR. Chem Commun (Camb) 2016; 52:3119-22. [DOI: 10.1039/c5cc10410f] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
129Xe–cucurbit[6]uril NMR signals were blocked via rotaxanes until chemically activated. This platform is customizable for a broad range of applications.
Collapse
Affiliation(s)
| | - Clancy C. Slack
- Department of Chemistry
- University of California
- Berkeley
- USA
- Materials Sciences Division
| | | | - Keunhong Jeong
- Department of Chemistry
- University of California
- Berkeley
- USA
- Materials Sciences Division
| | - David E. Wemmer
- Department of Chemistry
- University of California
- Berkeley
- USA
- Physical Biosciences Division
| | - Alexander Pines
- Department of Chemistry
- University of California
- Berkeley
- USA
- Materials Sciences Division
| | - Matthew B. Francis
- Department of Chemistry
- University of California
- Berkeley
- USA
- Materials Sciences Division
| |
Collapse
|
19
|
Srivastava AK, Kadayakkara DK, Bar-Shir A, Gilad AA, McMahon MT, Bulte JWM. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis Model Mech 2015; 8:323-36. [PMID: 26035841 PMCID: PMC4381332 DOI: 10.1242/dmm.018499] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The field of molecular and cellular imaging allows molecules and cells to be visualized in vivo non-invasively. It has uses not only as a research tool but in clinical settings as well, for example in monitoring cell-based regenerative therapies, in which cells are transplanted to replace degenerating or damaged tissues, or to restore a physiological function. The success of such cell-based therapies depends on several critical issues, including the route and accuracy of cell transplantation, the fate of cells after transplantation, and the interaction of engrafted cells with the host microenvironment. To assess these issues, it is necessary to monitor transplanted cells non-invasively in real-time. Magnetic resonance imaging (MRI) is a tool uniquely suited to this task, given its ability to image deep inside tissue with high temporal resolution and sensitivity. Extraordinary efforts have recently been made to improve cellular MRI as applied to regenerative medicine, by developing more advanced contrast agents for use as probes and sensors. These advances enable the non-invasive monitoring of cell fate and, more recently, that of the different cellular functions of living cells, such as their enzymatic activity and gene expression, as well as their time point of cell death. We present here a review of recent advancements in the development of these probes and sensors, and of their functioning, applications and limitations.
Collapse
Affiliation(s)
- Amit K Srivastava
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deepak K Kadayakkara
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amnon Bar-Shir
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Assaf A Gilad
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA. Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Zhang L, Han Y, Zhao F, Shi G, Tian Y. A Selective and Accurate Ratiometric Electrochemical Biosensor for Monitoring of Cu2+ Ions in a Rat Brain. Anal Chem 2015; 87:2931-6. [DOI: 10.1021/ac504448m] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Limin Zhang
- Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China
| | - Yingying Han
- Department
of Chemistry, Tongji University, Shanghai 200092, China
| | - Fan Zhao
- Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China
| | - Guoyue Shi
- Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China
| | - Yang Tian
- Department
of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Road 3663, Shanghai 200062, China
| |
Collapse
|
21
|
Ye D, Shuhendler AJ, Pandit P, Brewer KD, Tee SS, Cui L, Tikhomirov G, Rutt B, Rao J. Caspase-responsive smart gadolinium-based contrast agent for magnetic resonance imaging of drug-induced apoptosis. Chem Sci 2014; 4:3845-3852. [PMID: 25429349 PMCID: PMC4241271 DOI: 10.1039/c4sc01392a] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-invasive detection of caspase-3/7 activity in vivo has provided invaluable predictive information regarding tumor therapeutic efficacy and anti-tumor drug selection. Although a number of caspase-3/7 targeted fluorescence and positron emission tomography (PET) imaging probes have been developed, there is still a lack of gadolinium (Gd)-based magnetic resonance imaging (MRI) probes that enable high spatial resolution detection of caspase-3/7 activity in vivo. Here we employ a self-assembly approach and develop a caspase-3/7 activatable Gd-based MRI probe for monitoring tumor apoptosis in mice. Upon reduction and caspase-3/7 activation, the caspase-sensitive nano-aggregation MR probe (C-SNAM: 1) undergoes biocompatible intramolecular cyclization and subsequent self-assembly into Gd-nanoparticles (GdNPs). This results in enhanced r1 relaxivity-19.0 (post-activation) vs. 10.2 mM-1 s-1 (pre-activation) at 1 T in solution-and prolonged accumulation in chemotherapy-induced apoptotic cells and tumors that express active caspase-3/7. We demonstrate that C-SNAM reports caspase-3/7 activity by generating a significantly brighter T1-weighted MR signal compared to non-treated tumors following intravenous administration of C-SNAM, providing great potential for high-resolution imaging of tumor apoptosis in vivo.
Collapse
Affiliation(s)
- Deju Ye
- Molecular Imaging Program at Stanford, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
| | - Adam J. Shuhendler
- Molecular Imaging Program at Stanford, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
| | - Prachi Pandit
- Molecular Imaging Program at Stanford, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
| | - Kimberly D. Brewer
- Molecular Imaging Program at Stanford, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
| | - Sui Seng Tee
- Molecular Imaging Program at Stanford, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
| | - Lina Cui
- Molecular Imaging Program at Stanford, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
| | - Grigory Tikhomirov
- Molecular Imaging Program at Stanford, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
| | - Brian Rutt
- Molecular Imaging Program at Stanford, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
- Departments of Radiology Chemistry, Stanford University, 1201 Welch Road, Stanford, California 94305-5484, USA
| |
Collapse
|
22
|
Hopper LE, Allen MJ. Rapid synthesis of 1,7-bis( t-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (DO2A- t-Bu ester). Tetrahedron Lett 2014; 55:5560-5561. [PMID: 25506095 DOI: 10.1016/j.tetlet.2014.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A three-step route was used to synthesize 1,7-bis(t-butoxycarbonylmethyl)-1,4,7,10-tetraazacyclododecane (DO2A-t-Bu ester) from 1,4,7,10-tetraazacyclododecane (cyclen). The overall time of reaction was reduced from a combined ~56 h to 2.3 h with an overall yield comparable to previously reported methods.
Collapse
Affiliation(s)
- Lauren E Hopper
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| |
Collapse
|
23
|
Ye D, Pandit P, Kempen P, Lin J, Xiong L, Sinclair R, Rutt B, Rao J. Redox-triggered self-assembly of gadolinium-based MRI probes for sensing reducing environment. Bioconjug Chem 2014; 25:1526-36. [PMID: 24992373 PMCID: PMC4140571 DOI: 10.1021/bc500254g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Controlled
self-assembly of small molecule gadolinium (Gd) complexes
into nanoparticles (GdNPs) is emerging as an effective approach to
design activatable magnetic resonance imaging (MRI) probes and amplify
the r1 relaxivity. Herein, we employ a
reduction-controlled macrocyclization reaction and self-assembly to
develop a redox activated Gd-based MRI probe for sensing a reducing
environment. Upon disulfide reduction at physiological conditions,
an acyclic contrast agent 1 containing dual Gd-chelates
undergoes intramolecular macrocyclization to form rigid and hydrophobic
macrocycles, which subsequently self-assemble into GdNPs, resulting
in a ∼60% increase in r1 relaxivity
at 0.5 T. Probe 1 has high r1 relaxivity (up to 34.2 mM–1 s–1 per molecule at 0.5 T) upon activation, and also shows a high sensitivity
and specificity for MR detection of thiol-containing biomolecules.
Collapse
Affiliation(s)
- Deju Ye
- Molecular Imaging Program, Departments of Radiology and Chemistry, and ‡Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zou C, Gao L, Liu T, Xu Z, Cui J. A fluorescent probe based on N-butylbenzene-1,2-diamine for Cu(II) and its imaging in living cells. J INCL PHENOM MACRO 2014. [DOI: 10.1007/s10847-014-0424-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Peterson KL, Dang JV, Weitz EA, Lewandowski C, Pierre VC. Effect of lanthanide complex structure on cell viability and association. Inorg Chem 2014; 53:6013-21. [PMID: 24901440 PMCID: PMC4060611 DOI: 10.1021/ic500282n] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A systematic study of the effect of hydrophobicity and charge on the cell viability and cell association of lanthanide metal complexes is presented. The terbium luminescent probes feature a macrocyclic polyaminocarboxylate ligand (DOTA) in which the hydrophobicity of the antenna and that of the carboxyamide pendant arms are independently varied. Three sensitizing antennas were investigated in terms of their function in vitro: 2-methoxyisophthalamide (IAM(OMe)), 2-hydroxyisophthalamide (IAM), and 6-methylphenanthridine (Phen). Of these complexes, Tb-DOTA-IAM exhibited the highest quantum yield, although the higher cell viability and more facile synthesis of the structurally related Tb-DOTA-IAM(OMe) platform renders it more attractive. Further modification of this latter core structure with carboxyamide arms featuring hydrophobic benzyl, hexyl, and trifluoro groups as well as hydrophilic amino acid based moieties generated a family of complexes that exhibit high cell viability (ED50 > 300 μM) regardless of the lipophilicity or the overall complex charge. Only the hexyl-substituted complex reduced cell viability to 60% in the presence of 100 μM complex. Additionally, cellular association was investigated by ICP-MS and fluorescence microscopy. Surprisingly, the hydrophobic moieties did not increase cell association in comparison to the hydrophilic amino acid derivatives. It is thus postulated that the hydrophilic nature of the 2-methoxyisophthalamide antenna (IAM(OMe)) disfavors the cellular association of these complexes. As such, responsive luminescent probes based on this scaffold would be appropriate for the detection of extracellular species.
Collapse
Affiliation(s)
- Katie L Peterson
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | |
Collapse
|
26
|
Xiao YM, Zhao GY, Fang XX, Zhao YX, Wang GH, Yang W, Xu JW. A smart copper(ii)-responsive binuclear gadolinium(iii) complex-based magnetic resonance imaging contrast agent. RSC Adv 2014. [DOI: 10.1039/c4ra04526b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The relaxivity of the complex was modulated by Cu2+, that is, in the absence of Cu2+ the complex exhibited a relatively low relaxivity value of 6.40 mM−1 s−1, while the addition of Cu2+ triggered the relaxivity to 11.28 mM−1 s−1, an enhancement of approximately 76%.
Collapse
Affiliation(s)
- Yan-meng Xiao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun 130022, P. R. China
- University of Chinese Academy of Sciences
- Beijing, P. R. China
| | - Gui-yan Zhao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun 130022, P. R. China
- University of Chinese Academy of Sciences
- Beijing, P. R. China
| | - Xin-xiu Fang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun 130022, P. R. China
- University of Chinese Academy of Sciences
- Beijing, P. R. China
| | - Yong-xia Zhao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun 130022, P. R. China
- University of Chinese Academy of Sciences
- Beijing, P. R. China
| | - Guan-hua Wang
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- Guangdong Institute of Analysis
- Guangzhou 510070, P. R. China
| | - Wei Yang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun 130022, P. R. China
| | - Jing-wei Xu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Changchun 130022, P. R. China
| |
Collapse
|
27
|
Abstract
Biomedical imaging techniques can provide a vast amount of anatomical information, enabling diagnosis and the monitoring of disease and treatment profile. MRI uniquely offers convenient, non-invasive, high resolution tomographic imaging. A considerable amount of effort has been invested, across several decades, in the design of non toxic paramagnetic contrast agents capable of enhancing positive MRI signal contrast. Recently, focus has shifted towards the development of agents capable of specifically reporting on their local biochemical environment, where a switch in image contrast is triggered by a specific stimulus/biochemical variable. Such an ability would not only strengthen diagnosis but also provide unique disease-specific biochemical insight. This feature article focuses on recent progress in the development of MRI contrast switching with molecular, macromolecular and nanoparticle-based agents.
Collapse
Affiliation(s)
- Gemma-Louise Davies
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | | | | |
Collapse
|
28
|
|
29
|
Xiong WW, Yang GH, Wu XC, Zhu JJ. Microwave-assisted synthesis of highly luminescent AgInS2/ZnS nanocrystals for dynamic intracellular Cu(ii) detection. J Mater Chem B 2013; 1:4160-4165. [DOI: 10.1039/c3tb20638f] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Tsai CY, Lin YW. A highly selective and sensitive fluorescence assay for determination of copper(ii) and cobalt(ii) ions in environmental water and toner samples. Analyst 2013; 138:1232-8. [DOI: 10.1039/c2an36290b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Promising strategies for Gd-based responsive magnetic resonance imaging contrast agents. Curr Opin Chem Biol 2012; 17:158-66. [PMID: 23141598 DOI: 10.1016/j.cbpa.2012.10.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 10/18/2012] [Accepted: 10/20/2012] [Indexed: 11/22/2022]
Abstract
Magnetic resonance imaging is a powerful imaging modality that is often coupled with paramagnetic contrast agents based on gadolinium to enhance sensitivity and image quality. Responsive contrast agents are key to furthering the diagnostic potential of MRI, both to provide anatomical information and to discern biochemical activity. Recent design of responsive gadolinium-based T₁ agents has made interesting progress, with the development of novel complexes which sense their chemical environment through changes in the coordination of water molecules, the molecular tumbling time or the number of metal centres. Particular promising design strategies include the use of multimeric systems, and the development of dual imaging probes.
Collapse
|