1
|
Mackova V, Raudenska M, Polanska HH, Jakubek M, Masarik M. Navigating the redox landscape: reactive oxygen species in regulation of cell cycle. Redox Rep 2024; 29:2371173. [PMID: 38972297 PMCID: PMC11637001 DOI: 10.1080/13510002.2024.2371173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Objectives: To advance our knowledge of disease mechanisms and therapeutic options, understanding cell cycle regulation is critical. Recent research has highlighted the importance of reactive oxygen species (ROS) in cell cycle regulation. Although excessive ROS levels can lead to age-related pathologies, ROS also play an essential role in normal cellular functions. Many cell cycle regulatory proteins are affected by their redox status, but the precise mechanisms and conditions under which ROS promote or inhibit cell proliferation are not fully understood.Methods: This review presents data from the scientific literature and publicly available databases on changes in redox state during the cell cycle and their effects on key regulatory proteins.Results: We identified redox-sensitive targets within the cell cycle machinery and analysed different effects of ROS (type, concentration, duration of exposure) on cell cycle phases. For example, moderate levels of ROS can promote cell proliferation by activating signalling pathways involved in cell cycle progression, whereas excessive ROS levels can induce DNA damage and trigger cell cycle arrest or cell death.Discussion: Our findings encourage future research focused on identifying redox-sensitive targets in the cell cycle machinery, potentially leading to new treatments for diseases with dysregulated cell proliferation.
Collapse
Affiliation(s)
- Viktoria Mackova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Institute of Pathophysiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Chahla C, Kovacic H, Ferhat L, Leloup L. Pathological Impact of Redox Post-Translational Modifications. Antioxid Redox Signal 2024; 41:152-180. [PMID: 38504589 DOI: 10.1089/ars.2023.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Oxidative stress is involved in the development of several pathologies. The different reactive oxygen species (ROS) produced during oxidative stress are at the origin of redox post-translational modifications (PTMs) on proteins and impact nucleic acids and lipids. This review provides an overview of recent data on cysteine and methionine oxidation and protein carbonylation following oxidative stress in a pathological context. Oxidation, like nitration, is a selective process and not all proteins are impacted. It depends on multiple factors, including amino acid environment, accessibility, and physical and chemical properties, as well as protein structures. Thiols can undergo reversible oxidations and others that are irreversible. On the contrary, carbonylation represents irreversible PTM. To date, hundreds of proteins were shown to be modified by ROS and reactive nitrogen species (RNS). We reviewed recent advances in the impact of redox-induced PTMs on protein functions and activity, as well as its involvement in disease development or treatment. These data show a complex situation of the involvement of redox PTM on the function of targeted proteins. Many proteins can have their activity decreased by the oxidation of cysteine thiols or methionine S-methyl thioethers, while for other proteins, this oxidation will be activating. This complexity of redox PTM regulation suggests that a global antioxidant therapeutic approach, as often proposed, is unlikely to be effective. However, the specificity of the effect obtained by targeting a cysteine or methionine residue to be able to inactivate or activate a particular protein represents a major interest if it is possible to consider this targeting from a therapeutic point of view with our current pharmacological tools. Antioxid. Redox Signal. 41, 152-180.
Collapse
Affiliation(s)
- Charbel Chahla
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Hervé Kovacic
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Lotfi Ferhat
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| | - Ludovic Leloup
- Faculté de Médecine, INP, Institut de neurophysiopathologie, Aix Marseille Université, CNRS, Marseille, France
| |
Collapse
|
3
|
Rius-Pérez S. p53 at the crossroad between mitochondrial reactive oxygen species and necroptosis. Free Radic Biol Med 2023; 207:183-193. [PMID: 37481144 DOI: 10.1016/j.freeradbiomed.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
p53 is a redox-sensitive transcription factor that can regulate multiple cell death programs through different signaling pathways. In this review, we assess the role of p53 in the regulation of necroptosis, a programmed form of lytic cell death highly involved in the pathophysiology of multiple diseases. In particular, we focus on the role of mitochondrial reactive oxygen species (mtROS) as essential contributors to modulate necroptosis execution through p53. The enhanced generation of mtROS during necroptosis is critical for the correct interaction between receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and 3 (RIPK3), two key components of the functional necrosome. p53 controls the occurrence of necroptosis by modulating the levels of mitochondrial H2O2 via peroxiredoxin 3 and sulfiredoxin. Furthermore, in response to increased levels of H2O2, p53 upregulates the long non-coding RNA necrosis-related factor, favoring the translation of RIPK1 and RIPK3. In parallel, a fraction of cytosolic p53 migrates into mitochondria, a process notably involved in necroptosis execution via its interaction with the mitochondrial permeability transition pore. In conclusion, p53 is located at the intersection between mtROS and the necroptosis machinery, making it a key protein to orchestrate redox signaling during necroptosis.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100, Valencia, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| |
Collapse
|
4
|
Zavileyskiy L, Bunik V. Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Biomolecules 2022; 12:biom12020327. [PMID: 35204825 PMCID: PMC8869670 DOI: 10.3390/biom12020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023] Open
Abstract
A transcription factor p53 is activated upon cellular exposure to endogenous and exogenous stresses, triggering either homeostatic correction or cell death. Depending on the stress level, often measurable as DNA damage, the dual outcome is supported by p53 binding to a number of regulatory and metabolic proteins. Apart from the nucleus, p53 localizes to mitochondria, endoplasmic reticulum and cytosol. We consider non-nuclear heterologous protein complexes of p53, their structural determinants, regulatory post-translational modifications and the role in intricate p53 functions. The p53 heterologous complexes regulate the folding, trafficking and/or action of interacting partners in cellular compartments. Some of them mainly sequester p53 (HSP proteins, G6PD, LONP1) or its partners (RRM2B, PRKN) in specific locations. Formation of other complexes (with ATP2A2, ATP5PO, BAX, BCL2L1, CHCHD4, PPIF, POLG, SOD2, SSBP1, TFAM) depends on p53 upregulation according to the stress level. The p53 complexes with SIRT2, MUL1, USP7, TXN, PIN1 and PPIF control regulation of p53 function through post-translational modifications, such as lysine acetylation or ubiquitination, cysteine/cystine redox transformation and peptidyl-prolyl cis-trans isomerization. Redox sensitivity of p53 functions is supported by (i) thioredoxin-dependent reduction of p53 disulfides, (ii) inhibition of the thioredoxin-dependent deoxyribonucleotide synthesis by p53 binding to RRM2B and (iii) changed intracellular distribution of p53 through its oxidation by CHCHD4 in the mitochondrial intermembrane space. Increasing knowledge on the structure, function and (patho)physiological significance of the p53 heterologous complexes will enable a fine tuning of the settings-dependent p53 programs, using small molecule regulators of specific protein–protein interactions of p53.
Collapse
Affiliation(s)
- Lev Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Victoria Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Department of Biokinetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
5
|
Butturini E, Butera G, Pacchiana R, Carcereri de Prati A, Mariotto S, Donadelli M. Redox Sensitive Cysteine Residues as Crucial Regulators of Wild-Type and Mutant p53 Isoforms. Cells 2021; 10:cells10113149. [PMID: 34831372 PMCID: PMC8618966 DOI: 10.3390/cells10113149] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Mariotto
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| | - Massimo Donadelli
- Correspondence: (S.M.); (M.D.); Tel.: +39-045-8027167 (S.M.); +39-045-8027281 (M.D.)
| |
Collapse
|
6
|
p53 Forms Redox-Dependent Protein-Protein Interactions through Cysteine 277. Antioxidants (Basel) 2021; 10:antiox10101578. [PMID: 34679713 PMCID: PMC8533633 DOI: 10.3390/antiox10101578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/31/2023] Open
Abstract
Reversible cysteine oxidation plays an essential role in redox signaling by reversibly altering protein structure and function. Cysteine oxidation may lead to intra- and intermolecular disulfide formation, and the latter can drastically stabilize protein–protein interactions in a more oxidizing milieu. The activity of the tumor suppressor p53 is regulated at multiple levels, including various post-translational modification (PTM) and protein–protein interactions. In the past few decades, p53 has been shown to be a redox-sensitive protein, and undergoes reversible cysteine oxidation both in vitro and in vivo. It is not clear, however, whether p53 also forms intermolecular disulfides with interacting proteins and whether these redox-dependent interactions contribute to the regulation of p53. In the present study, by combining (co-)immunoprecipitation, quantitative mass spectrometry and Western blot we found that p53 forms disulfide-dependent interactions with several proteins under oxidizing conditions. Cysteine 277 is required for most of the disulfide-dependent interactions of p53, including those with 14-3-3θ and 53BP1. These interaction partners may play a role in fine-tuning p53 activity under oxidizing conditions.
Collapse
|
7
|
Titania Nanosheet Generates Peroxynitrite-Dependent S-Nitrosylation and Enhances p53 Function in Lung Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13081233. [PMID: 34452194 PMCID: PMC8401232 DOI: 10.3390/pharmaceutics13081233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
Metal nanomaterials can enhance the efficacy of current cancer therapies. Here, we show that Ti0.8O2 nanosheets cause cytotoxicity in several lung cancer cells but not in normal cells. The nanosheet-treated cells showed certain apoptosis characteristics. Protein analysis further indicated the activation of the p53-dependent death mechanism. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses revealed the cellular uptake of the nanosheets and the induction of cell morphological change. The nanosheets also exhibited a substantial apoptosis effect on drug-resistant metastatic primary lung cancer cells, and it was found that the potency of the nanosheets was dramatically higher than standard drugs. Ti0.8O2 nanosheets induce apoptosis through a molecular mechanism involving peroxynitrite (ONOO−) generation. As peroxynitrite is known to be a potent inducer of S-nitrosylation, we further found that the nanosheets mediated the S-nitrosylation of p53 at C182, resulting in higher protein-protein complex stability, and this was likely to induce the surrounding residues, located in the interface region, to bind more strongly to each other. Molecular dynamics analysis revealed that S-nitrosylation stabilized the p53 dimer with a ΔGbindresidue of <−1.5 kcal/mol. These results provide novel insight on the apoptosis induction effect of the nanosheets via a molecular mechanism involving S-nitrosylation of the p53 protein, emphasizing the mechanism of action of nanomaterials for cancer therapy.
Collapse
|
8
|
Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxid Redox Signal 2020; 33:839-859. [PMID: 32151151 DOI: 10.1089/ars.2020.8074] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: The p53 tumor suppressor has been dubbed the "guardian of genome" because of its various roles in the response to DNA damage such as DNA damage repair, cell cycle arrest, senescence, and apoptosis, all of which are in place to prevent mutations from being passed on down the lineage. Recent Advances: Reactive oxygen species (ROS), for instance hydrogen peroxide derived from mitochondrial respiration, have long been regarded mainly as a major source of cellular damage to DNA and other macromolecules. Critical Issues: More recently, ROS have been shown to also play important physiological roles as second messengers in so-called redox signaling. It is, therefore, not clear whether the observed activation of p53 by ROS is mediated through the DNA damage response, redox signaling, or both. In this review, we will discuss the similarities and differences between p53 activation in response to DNA damage and redox signaling in terms of upstream signaling and downstream transcriptional program activation. Future Directions: Understanding whether and how DNA damage and redox signaling-dependent p53 activation can be dissected could be useful to develop anti-cancer therapeutic p53-reactivation strategies that do not depend on the induction of DNA damage and the resulting additional mutational load.
Collapse
Affiliation(s)
- Tao Shi
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias B Dansen
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Gallagher KJ, Palasser M, Hughes S, Mackay CL, Kilgour DPA, Clarke DJ. Isotope Depletion Mass Spectrometry (ID-MS) for Accurate Mass Determination and Improved Top-Down Sequence Coverage of Intact Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:700-710. [PMID: 32003978 DOI: 10.1021/jasms.9b00119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Top-down mass spectrometry (MS) is an increasingly important technique for protein characterization. However, in many biological MS experiments, the practicality of applying top-down methodologies is still limited at higher molecular mass. In large part, this is due to the detrimental effect resulting from the partitioning of the mass spectral signal into an increasing number of isotopic peaks as molecular mass increases. Reducing the isotopologue distribution of proteins via depletion of heavy stable isotopes was first reported over 20 years ago (Marshall, A. G.; Senko, M. W.; Li, W.; Li, M.; Dillon, S., Guan, S.; Logan, T. M.. Protein Molecular Mass to 1 Da by 13C, 15N Double-Depletion and FT-ICR Mass Spectrometry. J. Am. Chem. Soc. 1997, 119, 433-434.) and has been demonstrated for several small proteins. Here we extend this approach, introducing a new highly efficient method for the production of recombinant proteins depleted in 13C and 15N and demonstrating its advantages for top-down analysis of larger proteins (up to ∼50 kDa). FT-ICR MS of isotopically depleted proteins reveals dramatically reduced isotope distributions with monoisotopic signal observed up to 50 kDa. In top-down fragmentation experiments, the reduced spectral complexity alleviates fragment-ion signal overlap, the presence of monoisotopic signals allows assignment with higher mass accuracy, and the dramatic increase in signal-to-noise ratio (up to 7-fold) permits vastly reduced acquisition times. These compounding benefits allow the assignment of ∼3-fold more fragment ions than comparable analyses of proteins with natural isotopic abundances. Finally, we demonstrate greatly increased sequence coverage in time-limited top-down experiments-highlighting advantages for top-down LC-MS/MS workflows and top-down proteomics.
Collapse
Affiliation(s)
- Kelly J Gallagher
- The EastChem School of Chemistry, University of Edinburgh, Joseph Black Building, Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Michael Palasser
- The EastChem School of Chemistry, University of Edinburgh, Joseph Black Building, Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Sam Hughes
- The EastChem School of Chemistry, University of Edinburgh, Joseph Black Building, Brewster Road, Edinburgh EH9 3FJ, U.K
| | - C Logan Mackay
- The EastChem School of Chemistry, University of Edinburgh, Joseph Black Building, Brewster Road, Edinburgh EH9 3FJ, U.K
| | - David P A Kilgour
- Chemistry and Forensics, Nottingham Trent University, Rosalind Franklin Building, Clifton Lane, Nottingham NG11 8NS, U.K
| | - David J Clarke
- The EastChem School of Chemistry, University of Edinburgh, Joseph Black Building, Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
10
|
Lipoic Acid Synergizes with Antineoplastic Drugs in Colorectal Cancer by Targeting p53 for Proteasomal Degradation. Cells 2019; 8:cells8080794. [PMID: 31366086 PMCID: PMC6721634 DOI: 10.3390/cells8080794] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lipoic acid (LA) is a redox-active disulphide compound, which functions as a pivotal co-factor for mitochondrial oxidative decarboxylation. LA and chemical derivatives were shown to target mitochondria in cancer cells with altered energy metabolism, thereby inducing cell death. In this study, the impact of LA on the tumor suppressor protein p53 was analyzed in various colorectal cancer (CRC) cell lines, with a focus on the mechanisms driving p53 degradation. First, LA was demonstrated to trigger the depletion of both wildtype and mutant p53 protein in all CRC cells tested without influencing its gene expression and preceded LA-triggered cytotoxicity. Depletion of p53 coincided with a moderate, LA-dependent ROS production, but was not rescued by antioxidant treatment. LA induced the autophagy receptor p62 and differentially modulated autophagosome formation in CRC cells. However, p53 degradation was not mediated via autophagy as shown by chemical inhibition and genetic abrogation of autophagy. LA treatment also stabilized and activated the transcription factor Nrf2 in CRC cells, which was however dispensable for p53 degradation. Mechanistically, p53 was found to be readily ubiquitinylated and degraded by the proteasomal machinery following LA treatment, which did not involve the E3 ubiquitin ligase MDM2. Intriguingly, the combination of LA and anticancer drugs (doxorubicin, 5-fluorouracil) attenuated p53-mediated stabilization of p21 and resulted in synergistic killing in CRC cells in a p53-dependant manner.
Collapse
|
11
|
Backus KM, Cao J, Maddox SM. Opportunities and challenges for the development of covalent chemical immunomodulators. Bioorg Med Chem 2019; 27:3421-3439. [PMID: 31204229 DOI: 10.1016/j.bmc.2019.05.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Compounds that react irreversibly with cysteines have reemerged as potent and selective tools for altering protein function, serving as chemical probes and even clinically approved drugs. The exquisite sensitivity of human immune cell signaling pathways to oxidative stress indicates the likely, yet still underexploited, general utility of covalent probes for selective chemical immunomodulation. Here, we provide an overview of immunomodulatory cysteines, including identification of electrophilic compounds available to label these residues. We focus our discussion on three protein classes essential for cell signaling, which span the 'druggability' spectrum from amenable to chemical probes (kinases), somewhat druggable (proteases), to inaccessible (phosphatases). Using existing inhibitors as a guide, we identify general strategies to guide the development of covalent probes for selected undruggable classes of proteins and propose the application of such compounds to alter immune cell functions.
Collapse
Affiliation(s)
- Keriann M Backus
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA.
| | - Jian Cao
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sean M Maddox
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| |
Collapse
|
12
|
Moreira DC, Oliveira MF, Liz-Guimarães L, Diniz-Rojas N, Campos ÉG, Hermes-Lima M. Current Trends and Research Challenges Regarding "Preparation for Oxidative Stress". Front Physiol 2017; 8:702. [PMID: 28993737 PMCID: PMC5622305 DOI: 10.3389/fphys.2017.00702] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Survival under stress, such as exposure to hypoxia, anoxia, freezing, dehydration, air exposure of water breathing organisms, and estivation, is commonly associated to enhanced endogenous antioxidants, a phenomenon coined "preparation for oxidative stress" (POS). The regulation of free radical metabolism seems to be crucial under these selective pressures, since this response is widespread among animals. A hypothesis of how POS works at the molecular level was recently proposed and relies on two main processes: increased reactive species production under hypoxia, and activation of redox-sensitive transcription factors and signaling pathways, increasing the expression of antioxidants. The present paper brings together the current knowledge on POS and considers its future directions. Data indicate the presence of POS in 83 animal species (71.6% among investigated species), distributed in eight animal phyla. Three main research challenges on POS are presented: (i) to identify the molecular mechanism(s) that mediate/induce POS, (ii) to identify the evolutionary origins of POS in animals, and (iii) to determine the presence of POS in natural environments. We firstly discuss the need of evidence for increased RS production in hypoxic conditions that underlie the POS response. Secondly, we discuss the phylogenetic origins of POS back 700 million years, by identifying POS-positive responses in cnidarians. Finally, we present the first reports of the POS adaptation strategy in the wild. The investigation of these research trends and challenges may prove useful to understand the evolution of animal redox adaptations and how they adapt to increasing stressful environments on Earth.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
- Área de Morfologia, Faculdade de Medicina, Universidade de BrasíliaBrasilia, Brazil
| | - Marcus F. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lara Liz-Guimarães
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | - Nilda Diniz-Rojas
- Departamento de Genética e Morfologia, Universidade de BrasíliaBrasilia, Brazil
| | - Élida G. Campos
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | | |
Collapse
|
13
|
Wootton CA, Lam YPY, Willetts M, van Agthoven MA, Barrow MP, Sadler PJ, O Connor PB. Automatic assignment of metal-containing peptides in proteomic LC-MS and MS/MS data sets. Analyst 2017; 142:2029-2037. [PMID: 28513638 DOI: 10.1039/c7an00075h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transition metal-containing proteins and enzymes are critical for the maintenance of cellular function and metal-based (metallo)drugs are commonly used for the treatment of many diseases, such as cancer. Detection and characterisation of metallodrug targets is crucial for improving drug-design and therapeutic efficacy. Due to the unique isotopic ratios of many metal species, and the complexity of proteomic samples, standard MS data analysis of these species is unsuitable for accurate assignment. Herein a new method for differentiating metal-containing species within complex LCMS data is presented based upon the Smart Numerical Annotation Procedure (SNAP). SNAP-LC accounts for the change in isotopic envelopes for analytes containing non-standard species, such as metals, and will accurately identify, record, and display the particular spectra within extended LCMS runs that contain target species, and produce accurate lists of matched peaks, greatly assisting the identification and assignment of modified species and tailored to the metals of interest. Analysis of metallated species obtained from tryptic digests of common blood proteins after reactions with three candidate metallodrugs is presented as proof-of-concept examples and demonstrates the effectiveness of SNAP-LC for the fast and accurate elucidation of metallodrug targets.
Collapse
Affiliation(s)
| | - Yuko P Y Lam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | | | | | - Mark P Barrow
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - Peter B O Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
14
|
ZHANG XQ, CHEN C, FANG CY, LU HJ. Progress of Analytical Methods for Protein Cysteine Post-translational Modifications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60974-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Thurlow SE, Kilgour DP, Campopiano DJ, Mackay CL, Langridge-Smith PRR, Clarke DJ, Campbell CJ. Determination of Protein Thiol Reduction Potential by Isotope Labeling and Intact Mass Measurement. Anal Chem 2016; 88:2727-33. [PMID: 26881737 DOI: 10.1021/acs.analchem.5b04195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation/reduction of thiol residues in proteins is an important type of post-translational modification that is implicated in regulating a range of biological processes. The nature of the modification makes it possible to define a quantifiable electrochemical potential (E(⊕)) for oxidation/reduction that allows cysteine-containing proteins to be ranked based on their propensity to be oxidized. Measuring oxidation of cysteine residues in proteins is difficult using standard electrochemical methods, but top-down mass spectrometry recently has been shown to enable the quantification of E(⊕) for thiol oxidations. In this paper, we demonstrate that mass spectrometry of intact proteins can be used in combination with an isotopic labeling strategy and an automated data analysis algorithm to measure E(⊕) for the thiols in both E. coli Thioredoxin 1 and human Thioredoxin 1. Our methodology relies on accurate mass measurement of proteins using liquid chromatography-mass spectroscopy (LC-MS) analyses and does not necessarily require top-down fragmentation. In addition to analyzing homogeneous protein samples, we also demonstrate that our methodology can be used to determine thiol E(⊕) measurements in samples that contain mixtures of proteins. Thus, the combination of experimential methodology and data analysis regime has the potential to make such measurements in a high-throughput manner and in a manner that is more accessible to a broad community of protein scientists.
Collapse
Affiliation(s)
- Sophie E Thurlow
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - David P Kilgour
- Chemistry and Forensics, Rosalind Franklin Building, Nottingham Trent University , Clifton Campus, Clifton Lane, Nottingham, NG11 8NS, United Kingdom
| | - Dominic J Campopiano
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Pat R R Langridge-Smith
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Colin J Campbell
- EaStCHEM School of Chemistry, University of Edinburgh , David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
16
|
Bai H, Fan C, Zhang W, Pan Y, Ma L, Ying W, Wang J, Deng Y, Qian X, Qin W. A pH-responsive soluble polymer-based homogeneous system for fast and highly efficient N-glycoprotein/glycopeptide enrichment and identification by mass spectrometry. Chem Sci 2015; 6:4234-4241. [PMID: 29218189 PMCID: PMC5707513 DOI: 10.1039/c5sc00396b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022] Open
Abstract
A homogeneous reaction system was developed for facile and highly efficient enrichment of biomolecules by exploiting the reversible self-assembly of a stimuli-responsive polymer.
Liquid phase homogeneous reactions using soluble polymer supports have found numerous applications in homogeneous catalysis and organic synthesis because of their advantages of no interface mass transfer limitation and a high conversion rate. However, their application in analytical separation is limited by the inefficient/inconvenient recovery of the target molecules from the extremely complex biological samples. Here, we report a stimuli-responsive polymer system for facile and efficient enrichment of trace amounts of biomolecules from complex biological samples. The soluble polymer supports provide a homogeneous reaction system with fast mass transfer and facilitate interactions between the supports and the target molecules. More importantly, the stimuli-responsive polymers exhibit reversible self-assembly and phase separation under pH variations, which leads to facial sample recovery with a high yield of the target biomolecules. The stimuli-responsive polymer is successfully applied to the enrichment of low abundant N-glycoproteins/glycopeptides, which play crucial roles in various key biological processes in mammals and are closely correlated with the occurrence, progression and metastasis of cancer. N-Glycoprotein is coupled to the stimuli-responsive polymer using the reported hydrazide chemistry with pre-oxidation of the oligosaccharide structure. Highly efficient enrichment of N-glycoproteins/N-glycopeptides with >95% conversion rate is achieved within 1 h, which is eight times faster than using solid/insoluble hydrazide enrichment materials. Mass spectrometry analysis achieves low femtomolar identification sensitivity and obtained 1317 N-glycopeptides corresponding to 458 N-glycoproteins in mouse brain, which is more than twice the amount obtained after enrichment using commercial solid/insoluble materials. These results demonstrate the capability of this “smart” polymer system to combine stimuli-responsive and target-enrichment moieties to achieve improved identification of key biological and disease related biomolecules.
Collapse
Affiliation(s)
- Haihong Bai
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ; .,School of Life Science and Technology , Beijing Institute of Technology , Beijing , China
| | - Chao Fan
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Wanjun Zhang
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Yiting Pan
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ; .,School of Life Science and Technology , Beijing Institute of Technology , Beijing , China
| | - Lin Ma
- Research Center for Analytical Sciences , College of Sciences , Northeastern University , Shenyang , China
| | - Wantao Ying
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Jianhua Wang
- Research Center for Analytical Sciences , College of Sciences , Northeastern University , Shenyang , China
| | - Yulin Deng
- School of Life Science and Technology , Beijing Institute of Technology , Beijing , China
| | - Xiaohong Qian
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| | - Weijie Qin
- National Center for Protein Sciences Beijing , State Key Laboratory of Proteomics , Beijing Proteome Research Center , Tianjin Baodi Hospital , Beijing Institute of Radiation Medicine , China . ;
| |
Collapse
|
17
|
Verrastro I, Pasha S, Jensen KT, Pitt AR, Spickett CM. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules 2015; 5:378-411. [PMID: 25874603 PMCID: PMC4496678 DOI: 10.3390/biom5020378] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Sabah Pasha
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Karina Tveen Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
18
|
Su CC, Yu Y, Chang PC, Chen YW, Chen IY, Lee YY, Wang CC. VUV Photoelectron Spectroscopy of Cysteine Aqueous Aerosols: A Microscopic View of Its Nucleophilicity at Varying pH Conditions. J Phys Chem Lett 2015; 6:817-23. [PMID: 26262658 DOI: 10.1021/acs.jpclett.5b00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cysteine (Cys) is unique due to its highly reactive thiol group. It often regulates the biological function of proteins by acting as the redox site. Despite its biological significance, however, the valence electronic structure of Cys under the aqueous environments remains unavailable. Here, we report the VUV photoelectron spectroscopy of Cys aqueous aerosols via a newly built aerosol VUV photoelectron spectroscopy apparatus. The photoelectron spectra of Cys show distinct band shapes at varying pH conditions, reflecting the altered molecular orbital characters when its dominating form changes. The ionization energy of Cys is determined to be 8.98 ± 0.05 eV at low pH. A new feature at a binding energy of 6.97 ± 0.05 eV is observed at high pH, suggesting that the negative charge on the thiolate group becomes the first electron to be removed upon ionization. This work implies that when Cys is involved in redox processes, the charge transfer mechanism may be entirely altered under different pH conditions.
Collapse
Affiliation(s)
- Chien-Cheng Su
- †Department of Chemistry, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan, Republic of China
| | - Youqing Yu
- †Department of Chemistry, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan, Republic of China
| | - Po-Chiao Chang
- †Department of Chemistry, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan, Republic of China
| | - Yu-Wei Chen
- †Department of Chemistry, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan, Republic of China
| | - I-Ying Chen
- †Department of Chemistry, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan, Republic of China
| | - Yin-Yu Lee
- ‡National Synchrotron Radiation Research Center, 30076 Hsinchu, Taiwan, Republic of China
| | - Chia C Wang
- †Department of Chemistry, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
19
|
Schaefer K, Geil WM, Sweredoski MJ, Moradian A, Hess S, Barton JK. Oxidation of p53 through DNA charge transport involves a network of disulfides within the DNA-binding domain. Biochemistry 2015; 54:932-41. [PMID: 25584637 PMCID: PMC4310631 DOI: 10.1021/bi501424v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/19/2014] [Indexed: 11/29/2022]
Abstract
Transcription factor p53 plays a critical role in the cellular response to stress stimuli. We have seen that p53 dissociates selectively from various promoter sites as a result of oxidation at long-range through DNA-mediated charge transport (CT). Here, we examine this chemical oxidation and determine the residues in p53 that are essential for oxidative dissociation, focusing on the network of cysteine residues adjacent to the DNA-binding site. Of the eight mutants studied, only the C275S mutation shows decreased affinity for the Gadd45 promoter site. However, both mutations C275S and C277S result in substantial attenuation of oxidative dissociation, with C275S causing the most severe attenuation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide-labeled, whereas oxidized cysteines participating in disulfide bonds were (13)C2D2-iodoacetamide-labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed by mass spectrometry. A distinct shift in peptide labeling toward (13)C2D2-iodoacetamide-labeled cysteines is observed in oxidized samples, confirming that chemical oxidation of p53 occurs at long range. All observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds among the cysteine network. On the basis of these data, it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.
Collapse
Affiliation(s)
- Kathryn
N. Schaefer
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Wendy M. Geil
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Michael J. Sweredoski
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Annie Moradian
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Sonja Hess
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Jacqueline K. Barton
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
20
|
Scotcher J, Bythell BJ, Marshall AG. Unequivocal determination of site-specific protein disulfide bond reduction potentials by top-down FTICR MS: characterization of the N- and C-terminal redox-active sites in human thioredoxin 1. Anal Chem 2013; 85:9164-72. [PMID: 24040747 DOI: 10.1021/ac401850p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report the reliable determination of equilibrium protein disulfide bond reduction potentials (E°') by isotope-coded cysteine alkylation coupled with top-down Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). This technique enables multiple redox-active sites to be characterized simultaneously and unambiguously without the need for proteolysis or site-directed mutagenesis. Our model system was E. coli thioredoxin, and we determined E°' for its CGPC active-site disulfide as -280 mV in accord with literature values. E°' for the homologous disulfide in human thioredoxin 1 (Trx1) was determined as -281 mV, a value considerably more negative than the previously reported -230 mV. We also observed S-glutathionylation of Trx1 and localized that redox modification to Cys72; E°' for the intermolecular disulfide was determined as -186 mV. Intriguingly, that value corresponds to the intracellular glutathione/glutathione disulfide (GSH/GSSG) potential at the redox boundary between cellular differentiation and apoptosis.
Collapse
Affiliation(s)
- Jenna Scotcher
- National High Magnetic Field Laboratory, Florida State University , 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | | | | |
Collapse
|
21
|
Wang J, Jin L, Li X, Deng H, Chen Y, Lian Q, Ge R, Deng H. Gossypol induces apoptosis in ovarian cancer cells through oxidative stress. MOLECULAR BIOSYSTEMS 2013; 9:1489-97. [PMID: 23532321 DOI: 10.1039/c3mb25461e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In the present work, metabolomic and redox proteomic analyses were carried out on an untreated- and gossypol-treated ovarian cancer cell line, SKOV3. Gossypol treatment resulted in cell death through oxidative stress. Metabolite analysis showed that gossypol induces a decrease of the cellular levels of GSH, aspartic acid, and FAD. Using a combination of double labeling and LC-MS-MS, we identified changes in thiol-redox states of 545 cysteine-containing peptides from 356 proteins. The frequently occurring amino acid residue immediately before or after the cysteine in these peptides is the non-polar and neutral leucine, valine, or alanine. These redox sensitive proteins participate in a variety of cellular processes. We have characterized the redox-sensitive cysteine residues in PKM2, HSP60, malate dehydrogenase and other proteins that play important roles in metabolism homeostasis and stress responses. The three cysteine residues of HSP60 exhibit different responses to gossypol treatment: an increase of thiol/disulfide ratio for the Cys447 residue due to a decrease of the cellular GSH level, and a decrease of thiol/disulfide ratios for Cys442 and Cys237 residues due to oxidation and sulfation. This study suggests that thiol/disulfide ratios are dependent on the level of cellular GSH. Our data provide a valuable resource for deciphering the redox regulation of proteins and for understanding gossypol-induced apoptosis in ovarian cancer cells.
Collapse
Affiliation(s)
- Jia Wang
- The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | |
Collapse
|