1
|
Sunami H, Shimizu Y, Kishimoto H. Shape of scaffold controlling the direction of cell migration. Biophys Physicobiol 2023; 21:e210004. [PMID: 38803333 PMCID: PMC11128307 DOI: 10.2142/biophysico.bppb-v21.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/27/2023] [Indexed: 05/29/2024] Open
Abstract
Cell migration plays an important role in the development and maintenance of multicellular organisms. Factors that induce cell migration and mechanisms controlling their expression are important for determining the mechanisms of factor-induced cell migration. Despite progress in the study of factor-induced cytotaxis, including chemotaxis and haptotaxis, precise control of the direction of cell migration over a wide area has not yet been achieved. Success in this area would update the cell migration assays, superior cell separation technologies, and artificial organs with high biocompatibility. The present study therefore sought to control the direction of cell migration over a wide area by adjusting the three-dimensional shape of the cell scaffold. The direction of cell migration was influenced by the shape of the cell scaffold, thereby optimizing cell adhesion and protrusion. Anisotropic arrangement of these three-dimensional shapes into a periodic structure induced unidirectional cell migration. Three factors were required for unidirectional cell migration: 1) the sizes of the anisotropic periodic structures had to be equal to or lower than the size of the spreading cells, 2) cell migration was restricted to a runway approximately the width of the cell, and 3) cells had to be prone to extension of long protrusions in one direction. Because the first two factors had been identified previously in studies of cell migration in one direction using two-dimensional shaped patterns, these three factors are likely important for the mechanism by which cell scaffold shapes regulate cell migration.
Collapse
Affiliation(s)
- Hiroshi Sunami
- Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yusuke Shimizu
- Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hidehiro Kishimoto
- Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
2
|
Zhou M, Ma Y, Rock EC, Chiang CC, Luker KE, Luker GD, Chen YC. Microfluidic single-cell migration chip reveals insights into the impact of extracellular matrices on cell movement. LAB ON A CHIP 2023; 23:4619-4635. [PMID: 37750357 PMCID: PMC10615797 DOI: 10.1039/d3lc00651d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell migration is a complex process that plays a crucial role in normal physiology and pathologies such as cancer, autoimmune diseases, and mental disorders. Conventional cell migration assays face limitations in tracking a large number of individual migrating cells. To address this challenge, we have developed a high-throughput microfluidic cell migration chip, which seamlessly integrates robotic liquid handling and computer vision to swiftly monitor the movement of 3200 individual cells, providing unparalleled single-cell resolution for discerning distinct behaviors of the fast-moving cell population. This study focuses on the ECM's role in regulating cellular migration, utilizing this cutting-edge microfluidic technology to investigate the impact of ten different ECMs on triple-negative breast cancer cell lines. We found that collagen IV, collagen III, and collagen I coatings were the top enhancers of cell movement. Combining these ECMs increased cell motility, but the effect was sub-additive. Furthermore, we examined 87 compounds and found that while some compounds inhibited migration on all substrates, significantly distinct effects on differently coated substrates were observed, underscoring the importance of considering ECM coating. We also utilized cells expressing a fluorescent actin reporter and observed distinct actin structures in ECM-interacting cells. ScRNA-Seq analysis revealed that ECM coatings induced EMT and enhanced cell migration. Finally, we identified genes that were particularly up-regulated by collagen IV and the selective inhibitors successfully blocked cell migration on collagen IV. Overall, the study provides insights into the impact of various ECMs on cell migration and dynamics of cell movement with implications for developing therapeutic strategies to combat diseases related to cell motility.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Zhou M, Ma Y, Chiang CC, Rock EC, Luker KE, Luker GD, Chen YC. High-Throughput Cellular Heterogeneity Analysis in Cell Migration at the Single-Cell Level. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206754. [PMID: 36449634 PMCID: PMC9908848 DOI: 10.1002/smll.202206754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Cancer cell migration represents an essential step toward metastasis and cancer deaths. However, conventional drug discovery focuses on cytotoxic and growth-inhibiting compounds rather than inhibitors of migration. Drug screening assays generally measure the average response of many cells, masking distinct cell populations that drive metastasis and resist treatments. Here, this work presents a high-throughput microfluidic cell migration platform that coordinates robotic liquid handling and computer vision for rapidly quantifying individual cellular motility. Using this innovative technology, 172 compounds were tested and a surprisingly low correlation between migration and growth inhibition was found. Notably, many compounds were found to inhibit migration of most cells while leaving fast-moving subpopulations unaffected. This work further pinpoints synergistic drug combinations, including Bortezomib and Danirixin, to stop fast-moving cells. To explain the observed cell behaviors, single-cell morphological and molecular analysis were performed. These studies establish a novel technology to identify promising migration inhibitors for cancer treatment and relevant applications.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Edwin C. Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Gary D. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Nordin A, Chowdhury SR, Saim AB, Bt Hj Idrus R. Effect of Kelulut Honey on the Cellular Dynamics of TGFβ-Induced Epithelial to Mesenchymal Transition in Primary Human Keratinocytes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093229. [PMID: 32384749 PMCID: PMC7246951 DOI: 10.3390/ijerph17093229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
Abstract
Over-induction of epithelial to mesenchymal transition (EMT) by tumor growth factor beta (TGFβ) in keratinocytes is a key feature in keloid scar. The present work seeks to investigate the effect of Kelulut honey (KH) on TGFβ-induced EMT in human primary keratinocytes. Image analysis of the real time observation of TGFβ-induced keratinocytes revealed a faster wound closure and individual migration velocity compared to the untreated control. TGFβ-induced keratinocytes also have reduced circularity and display a classic EMT protein expression. Treatment of 0.0015% (v/v) KH reverses these effects. In untreated keratinocytes, KH resulted in slower initial wound closure and individual migration velocity, which sped up later on, resulting in greater wound closure at the final time point. KH treatment also led to greater directional migration compared to the control. KH treatment caused reduced circularity in keratinocytes but displayed a partial EMT protein expression. Taken together, the findings suggest the therapeutic potential of KH in preventing keloid scar by attenuating TGFβ-induced EMT.
Collapse
Affiliation(s)
- Abid Nordin
- Department of Physiology, Faculty of Medicine, Cheras, Kuala Lumpur 56000, Malaysia;
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Ampang, Selangor 68000, Malaysia;
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, Cheras, Kuala Lumpur 56000, Malaysia;
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +60-39-145-7669
| |
Collapse
|
5
|
Influence of multiscale and curved structures on the migration of stem cells. Biointerphases 2018; 13:06D408. [DOI: 10.1116/1.5042747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Lv X, Geng Z, Fan Z, Wang S, Pei W, Chen H. A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay. Appl Biochem Biotechnol 2018; 186:633-643. [PMID: 29707732 DOI: 10.1007/s12010-018-2737-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/12/2018] [Indexed: 02/02/2023]
Abstract
Cell migration and invasion are important factors during tumor progression and metastasis. Wound-healing assay and the Boyden chamber assay are efficient tools to investigate tumor development because both of them could be applied to measure cell migration rate. Therefore, a simple and integrated polydimethylsiloxane (PDMS) device was developed for cell migration assay, which could perform quantitative evaluation of cell migration behaviors, especially for the wound-healing assay. The integrated device was composed of three units, which included cell culture dish, PDMS chamber, and wound generation mold. The PDMS chamber was integrated with cell culture chamber and could perform six experiments under different conditions of stimuli simultaneously. To verify the function of this device, it was utilized to explore the tumor cell migration behaviors under different concentrations of fetal bovine serum (FBS) and transforming growth factor (TGF-β) at different time points. This device has the unique capability to create the "wound" area in parallel during cell migration assay and provides a simple and efficient platform for investigating cell migration assay in biomedical application.
Collapse
Affiliation(s)
- Xiaoqing Lv
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.,College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoxin Geng
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China. .,School of Information Engineering, Minzu University of China, Beijing, 100081, China.
| | - Zhiyuan Fan
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.,College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shicai Wang
- State Key Laboratory of crystal materials, Shandong University, Jinan, 250022, China
| | - WeiHua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Hongda Chen
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
7
|
Lv X, Geng Z, Fan Z, Wang S, Pei W, Chen H. An integrated method for cell isolation and migration on a chip. Sci Rep 2017; 7:8963. [PMID: 28827722 PMCID: PMC5566426 DOI: 10.1038/s41598-017-08661-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
Tumour cell migration has an important impact on tumour metastasis. Magnetic manipulation is an ascendant method for guiding and patterning cells. Here, a unique miniaturized microfluidic chip integrating cell isolation and migration assay was designed to isolate and investigate cell migration. The chip was fabricated and composed of a magnet adapter, a polytetrafluoroethylene(PDMS) microfluidic chip and six magnetic rings. This device was used to isolate MCF-7 cells from MDA-MB-231-RFP cells and evaluate the effects of TGF-β on MCF-7 cells. First, the two cell types were mixed and incubated with magnetic beads modified with an anti-EpCAM antibody. Then, they were slowly introduced into the chip. MCF-7 cells bond to the magnetic beads in a ring-shaped pattern, while MDA-MB-231-RFP cells were washed away by PBS. Cell viability was examined during culturing in the micro-channel. The effects of TGF-β on MCF-7 cells were evaluated by migration distance and protein expression. The integrated method presented here is novel, low-cost and easy for performing cell isolation and migration assay. The method could be beneficial for developing microfluidic device applications for cancer metastasis research and could provide a new method for biological experimentation.
Collapse
Affiliation(s)
- Xiaoqing Lv
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoxin Geng
- School of Information Engineering, Minzu University of China, Beijing, China.
| | - Zhiyuan Fan
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shicai Wang
- State Key Laboratory of crystal materials, Shandong University, Jinan, China
| | - WeiHua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Hongda Chen
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Poudineh M, Labib M, Ahmed S, Nguyen LNM, Kermanshah L, Mohamadi RM, Sargent EH, Kelley SO. Profiling Functional and Biochemical Phenotypes of Circulating Tumor Cells Using a Two‐Dimensional Sorting Device. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mahla Poudineh
- Department of Electrical and Computer Engineering University of Toronto Toronto ON Canada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto ON Canada
| | - Sharif Ahmed
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto ON Canada
| | | | - Leyla Kermanshah
- Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto ON Canada
| | - Reza M. Mohamadi
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto ON Canada
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering University of Toronto Toronto ON Canada
| | - Shana O. Kelley
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto ON Canada
- Department of Biochemistry University of Toronto Toronto ON Canada
| |
Collapse
|
9
|
Poudineh M, Labib M, Ahmed S, Nguyen LNM, Kermanshah L, Mohamadi RM, Sargent EH, Kelley SO. Profiling Functional and Biochemical Phenotypes of Circulating Tumor Cells Using a Two-Dimensional Sorting Device. Angew Chem Int Ed Engl 2016; 56:163-168. [DOI: 10.1002/anie.201608983] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/01/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Mahla Poudineh
- Department of Electrical and Computer Engineering; University of Toronto; Toronto ON Canada
| | - Mahmoud Labib
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Canada
| | - Sharif Ahmed
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Canada
| | | | - Leyla Kermanshah
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Canada
| | - Reza M. Mohamadi
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Canada
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering; University of Toronto; Toronto ON Canada
| | - Shana O. Kelley
- Leslie Dan Faculty of Pharmacy; University of Toronto; Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto ON Canada
- Department of Biochemistry; University of Toronto; Toronto ON Canada
| |
Collapse
|
10
|
Caballero D, Comelles J, Piel M, Voituriez R, Riveline D. Ratchetaxis: Long-Range Directed Cell Migration by Local Cues. Trends Cell Biol 2016; 25:815-827. [PMID: 26615123 DOI: 10.1016/j.tcb.2015.10.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/07/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Directed cell migration is usually thought to depend on the presence of long-range gradients of either chemoattractants or physical properties such as stiffness or adhesion. However, in vivo, chemical or mechanical gradients have not systematically been observed. Here we review recent in vitro experiments, which show that other types of spatial guidance cues can bias cell motility. Introducing local geometrical or mechanical anisotropy in the cell environment, such as adhesive/topographical microratchets or tilted micropillars, show that local and periodic external cues can direct cell motion. Together with modeling, these experiments suggest that cell motility can be viewed as a stochastic phenomenon, which can be biased by various types of local cues, leading to directional migration.
Collapse
Affiliation(s)
- David Caballero
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France
| | - Jordi Comelles
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, Bio6, F-75005, Paris, France.
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Paris, France; Laboratoire Jean Perrin, CNRS UMR 8237, Université Pierre et Marie Curie, Paris, France.
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS, INSERM and University of Strasbourg, Illkirch, France.
| |
Collapse
|
11
|
Abstract
Recent advances in dynamic biointerfaces enable spatiotemporal control over cell position and migration after attachment using substrates that employ chemical, optical, thermal, or electrical triggers. This review focuses on flexible and accessible methods for the fabrication of cellular arrays or co cultures for fundamental studies of cell biology or regenerative medicine.
Collapse
Affiliation(s)
| | - Carlos C Co
- University of Cincinnati, Cincinnati, OH 45221
| | - Chia-Chi Ho
- University of Cincinnati, Cincinnati, OH 45221
| |
Collapse
|
12
|
|
13
|
|
14
|
Caballero D, Voituriez R, Riveline D. Protrusion fluctuations direct cell motion. Biophys J 2015; 107:34-42. [PMID: 24988339 DOI: 10.1016/j.bpj.2014.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/01/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022] Open
Abstract
Many physiological phenomena involve directional cell migration. It is usually attributed to chemical gradients in vivo. Recently, other cues have been shown to guide cells in vitro, including stiffness/adhesion gradients or micropatterned adhesive motifs. However, the cellular mechanism leading to these biased migrations remains unknown, and, often, even the direction of motion is unpredictable. In this study, we show the key role of fluctuating protrusions on ratchet-like structures in driving NIH3T3 cell migration. We identified the concept of efficient protrusion and an associated direction index. Our analysis of the protrusion statistics facilitated the quantitative prediction of cell trajectories in all investigated conditions. We varied the external cues by changing the adhesive patterns. We also modified the internal cues using drug treatments, which modified the protrusion activity. Stochasticity affects the short- and long-term steps. We developed a theoretical model showing that an asymmetry in the protrusion fluctuations is sufficient for predicting all measures associated with the long-term motion, which can be described as a biased persistent random walk.
Collapse
Affiliation(s)
- David Caballero
- Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires/Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg and Centre National de la Recherche Scientifique UMR 7006, Strasbourg, France; Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale (U964),Université de Strasbourg, Illkirch, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique UMR 7600; Laboratoire Jean Perrin, Centre National de la Recherche Scientifique UMR 823, Université Pierre et Marie Curie, Paris, France
| | - Daniel Riveline
- Laboratory of Cell Physics, Institut de Science et d'Ingénierie Supramoléculaires/Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg and Centre National de la Recherche Scientifique UMR 7006, Strasbourg, France; Development and Stem Cells Program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale (U964),Université de Strasbourg, Illkirch, France.
| |
Collapse
|
15
|
Comelles J, Caballero D, Voituriez R, Hortigüela V, Wollrab V, Godeau AL, Samitier J, Martínez E, Riveline D. Cells as active particles in asymmetric potentials: motility under external gradients. Biophys J 2015; 107:1513-22. [PMID: 25296303 DOI: 10.1016/j.bpj.2014.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 07/11/2014] [Accepted: 08/01/2014] [Indexed: 12/11/2022] Open
Abstract
Cell migration is a crucial event during development and in disease. Mechanical constraints and chemical gradients can contribute to the establishment of cell direction, but their respective roles remain poorly understood. Using a microfabricated topographical ratchet, we show that the nucleus dictates the direction of cell movement through mechanical guidance by its environment. We demonstrate that this direction can be tuned by combining the topographical ratchet with a biochemical gradient of fibronectin adhesion. We report competition and cooperation between the two external cues. We also quantitatively compare the measurements associated with the trajectory of a model that treats cells as fluctuating particles trapped in a periodic asymmetric potential. We show that the cell nucleus contributes to the strength of the trap, whereas cell protrusions guided by the adhesive gradients add a constant tunable bias to the direction of cell motion.
Collapse
Affiliation(s)
- Jordi Comelles
- Laboratory of Cell Physics ISIS/IGBMC, CNRS UMR 7006 and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS UMR 7104, INSERM (U964) and University of Strasbourg, Illkirch, France; Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - David Caballero
- Laboratory of Cell Physics ISIS/IGBMC, CNRS UMR 7006 and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS UMR 7104, INSERM (U964) and University of Strasbourg, Illkirch, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Paris, France; Laboratoire Jean Perrin, CNRS FRE 3231, Université Pierre et Marie Curie, Paris, France
| | - Verónica Hortigüela
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain
| | - Viktoria Wollrab
- Laboratory of Cell Physics ISIS/IGBMC, CNRS UMR 7006 and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS UMR 7104, INSERM (U964) and University of Strasbourg, Illkirch, France
| | - Amélie Luise Godeau
- Laboratory of Cell Physics ISIS/IGBMC, CNRS UMR 7006 and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS UMR 7104, INSERM (U964) and University of Strasbourg, Illkirch, France
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain; Department of Electronics, University of Barcelona, Barcelona, Spain
| | - Elena Martínez
- Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza, Spain; Department of Electronics, University of Barcelona, Barcelona, Spain
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS UMR 7006 and University of Strasbourg, Strasbourg, France; Development and Stem Cells Program, IGBMC, CNRS UMR 7104, INSERM (U964) and University of Strasbourg, Illkirch, France.
| |
Collapse
|
16
|
Gao H, Dong H, Cao X, Fu X, Zhu Y, Mao C, Wang Y. Effective Spatial Separation of PC12 and NIH3T3 Cells by the Microgrooved Surface of Biocompatible Polymer Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6797-806. [PMID: 26072918 PMCID: PMC4924521 DOI: 10.1021/acs.langmuir.5b01018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Most organs and tissues are composed of more than one type of cell that is spatially separated and located in different regions. This study used a microgrooved poly(lactic-co-glycolic acid) (PLGA) substrate to guide two types of cocultured cells to two spatially separated regions. Specifically, PC12 pheochromocytoma cells are guided to the inside of microgrooves, whereas NIH3T3 fibroblasts are guided to the ridge area in between neighboring parallel microgrooves. In addition, the microgrooved structures can significantly promote the proliferation and neural differentiation of PC12 cells as well as the osteogenic differentiation of NIH3T3 cells. Therefore, the microgrooved PLGA surface with separated PC12 and NIH3T3 cells can serve as a potential model system for studying nerve reconstruction in bone-repairing scaffolds.
Collapse
Affiliation(s)
- Huichang Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoling Fu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
- Corresponding Authors. .
| | - Yingjun Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
- Corresponding Authors. .
| |
Collapse
|
17
|
Chen YC, Allen SG, Ingram PN, Buckanovich R, Merajver SD, Yoon E. Single-cell Migration Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations. Sci Rep 2015; 5:9980. [PMID: 25984707 PMCID: PMC4435023 DOI: 10.1038/srep09980] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/20/2015] [Indexed: 12/16/2022] Open
Abstract
Tumor cell migration toward and intravasation into capillaries is an early and key event in cancer metastasis, yet not all cancer cells are imbued with the same capability to do so. This heterogeneity within a tumor is a fundamental property of cancer. Tools to help us understand what molecular characteristics allow a certain subpopulation of cells to spread from the primary tumor are thus critical for overcoming metastasis. Conventional in vitro migration platforms treat populations in aggregate, which leads to a masking of intrinsic differences among cells. Some migration assays reported recently have single-cell resolution, but these platforms do not provide for selective retrieval of the distinct migrating and non-migrating cell populations for further analysis. Thus, to study the intrinsic differences in cells responsible for chemotactic heterogeneity, we developed a single-cell migration platform so that individual cells' migration behavior can be studied and the heterogeneous population sorted based upon chemotactic phenotype. Furthermore, after migration, the highly chemotactic and non-chemotactic cells were retrieved and proved viable for later molecular analysis of their differences. Moreover, we modified the migration channel to resemble lymphatic capillaries to better understand how certain cancer cells are able to move through geometrically confining spaces.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Steven G. Allen
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI
| | - Patrick N. Ingram
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| | - Ronald Buckanovich
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Sofia D. Merajver
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Huda S, Pilans D, Makurath M, Hermans T, Kandere-Grzybowska K, Grzybowski BA. Microfabricated Systems and Assays for Studying the Cytoskeletal Organization, Micromechanics, and Motility Patterns of Cancerous Cells. ADVANCED MATERIALS INTERFACES 2014; 1:1400158. [PMID: 26900544 PMCID: PMC4757490 DOI: 10.1002/admi.201400158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cell motions are driven by coordinated actions of the intracellular cytoskeleton - actin, microtubules (MTs) and substrate/focal adhesions (FAs). This coordination is altered in metastatic cancer cells resulting in deregulated and increased cellular motility. Microfabrication tools, including photolithography, micromolding, microcontact printing, wet stamping and microfluidic devices have emerged as a powerful set of experimental tools with which to probe and define the differences in cytoskeleton organization/dynamics and cell motility patterns in non-metastatic and metastatic cancer cells. In this review, we discuss four categories of microfabricated systems: (i) micropatterned substrates for studying of cell motility sub-processes (for example, MT targeting of FAs or cell polarization); (ii) systems for studying cell mechanical properties, (iii) systems for probing overall cell motility patterns within challenging geometric confines relevant to metastasis (for example, linear and ratchet geometries), and (iv) microfluidic devices that incorporate co-cultures of multiple cells types and chemical gradients to mimic in vivo intravasation/extravasation steps of metastasis. Together, these systems allow for creating controlled microenvironments that not only mimic complex soft tissues, but are also compatible with live cell high-resolution imaging and quantitative analysis of single cell behavior.
Collapse
Affiliation(s)
- Sabil Huda
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Didzis Pilans
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Monika Makurath
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Thomas Hermans
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Kristiana Kandere-Grzybowska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Bartosz A Grzybowski
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA; Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| |
Collapse
|