1
|
Hu Y, Luo H, Zhao L, Guo X, Wang S, Hu R, Yang G. A chalcone-based ESIPT and AIE fluorophore for β-gal imaging in living cells. Org Biomol Chem 2024; 22:1850-1858. [PMID: 38345427 DOI: 10.1039/d3ob01953e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
β-Galactosidase (β-gal), which is responsible for the hydrolysis of the glycosidic bond of lactose to galactose, has been recognized as an important biomarker of cell or organism status, especially cell senescence and primary ovarian cancer. Extensive efforts have been devoted to develop probes for detecting and visualizing β-gal in cells. Herein, a fluorescent probe gal-HCA which possesses both excited-state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) properties was prepared to monitor β-gal in living cells. The probe consists of 2-hydroxy-4'-dimethylamino-chalcone (HCA) capped with a D-galactose group. The cleavage of the glycosidic bond in gal-HCA triggered by β-gal releases HCA, which results in a significant bathochromic shift in fluorescence from 532 to 615 nm. The probe exhibited high selectivity and sensitivity toward β-gal with a detection limit as low as 0.0122 U mL-1. The confocal imaging investigation demonstrated the potential of gal-HCA in monitoring the endocellular overexpressed β-gal in senescent cells and ovarian cancer cells. This study provides a straightforward approach for the development of fluorescent probes to monitor β-gal and detection of β-gal-associated diseases.
Collapse
Affiliation(s)
- Yiran Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haiyan Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
| | - Luyao Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xudong Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shuangqing Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
| | - Rui Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guoqiang Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Pagarin S, Bolognese A, Fornasaro S, Franzin M, Hofmann U, Lucafò M, Franca R, Schwab M, Stocco G, Decorti G, Bonifacio A. SERS spectroscopy as a tool for the study of thiopurine drug pharmacokinetics in a model of human B leukemia cells. Chem Biol Interact 2024; 387:110792. [PMID: 37944627 DOI: 10.1016/j.cbi.2023.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Thiopurine drugs are immunomodulatory antimetabolites relevant for pediatric patients characterized by dose-dependent adverse effects such as myelosuppression and hepatotoxicity, often related to inter-individual differences, involving the activity of important enzymes at the basis of their biotransformation, such as thiopurine S-methyltransferase (TPMT). Surface Enhanced Raman Scattering (SERS) spectroscopy is emerging as a bioanalytical tool and represents a valid alternative in terms of affordable costs, shorter analysis time and easier sample preparation in comparison to the most employed methods for pharmacokinetic analysis of drugs. The aim of this study is to investigate mercaptopurine and thioguanine pharmacokinetics by SERS in cell lysates of a B-lymphoblastoid cell line (NALM-6), that did (TPMT*1) or did not (MOCK) overexpress the wild-type form of TPMT as an in vitro cellular lymphocyte model to discriminate between cells with different levels of TPMT activity on the base of the amount of thioguanosine nucleotides (TGN) metabolites formed. SERS analysis of the cell lysates was carried out using SERS substrates constituted by Ag nanoparticles deposited on paper and parallel samples were used for quantification of thiopurine nucleotides with liquid chromatography-tandem mass spectrometry (LC-MS/MS). A direct SERS detection method has been set up that could be a tool to study thiopurine drug pharmacokinetics in in vitro cellular models to qualitatively discriminate between cells that do and do not overexpress the TPMT enzyme, as an alternative to other more laborious techniques. Results underlined decreased levels of TGN and increased levels of methylated metabolites when TPMT was overexpressed, both after mercaptopurine and thioguanine treatments. A strong positive correlation (Spearman's rank correlation coefficient rho = 0.96) exists between absolute quantification of TGMP (pmol/1 x 106 cells), obtained by LC-MS/MS, and SERS signal (intensity of TGN at 915 cm-1). In future studies, we aim to apply this method to investigate TPMT activity in pediatric patients' leukocytes.
Collapse
Affiliation(s)
- Sofia Pagarin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Anna Bolognese
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Martina Franzin
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Marianna Lucafò
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Raffaella Franca
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Gabriele Stocco
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy; Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Giuliana Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Alois Bonifacio
- Department of Engineering and Architecture, University of Trieste, Italy
| |
Collapse
|
3
|
Ye X, Gao D, Mu X, Wu Q, Ma P, Song D. Dual-Signal Triple-Mode Optical Sensing Platform for Assisting in the Diagnosis of Kidney Disorders. Anal Chem 2023; 95:4653-4661. [PMID: 36863867 DOI: 10.1021/acs.analchem.2c04958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
As known biomarkers of kidney diseases, N-acetyl-β-d-glucosaminidase (NAG) and β-galactosidase (β-GAL) are of great importance for the diagnosis and treatment of diseases. The feasibility of using multiplex sensing methods to simultaneously report the outcome of the two enzymes in the same sample is even more alluring. Herein, we establish a simple sensing platform for the concurrent detection of NAG and β-GAL using silicon nanoparticles (SiNPs) as a fluorescent indicator synthesized by a one-pot hydrothermal route. p-Nitrophenol (PNP), as a common enzymatic hydrolysis product of the two enzymes, led to the attenuation of fluorometric signal caused by the inner filter effect on SiNPs, the enhancement of colorimetric signal due to the increase of intensity of the characteristic absorption peak at around 400 nm with increasing reaction time, and the changes of RGB values of images obtained through a color recognition application on a smartphone. The fluorometric/colorimetric approach combined with the smartphone-assisted RGB mode was able to detect NAG and β-GAL with good linear response. Applying this optical sensing platform to clinical urine samples, we found that the two indicators in healthy individuals and patients (glomerulonephritis) with kidney diseases were significantly different. By expanding to other renal lesion-related specimens, this tool may show great potentials in clinical diagnosis and visual inspection.
Collapse
Affiliation(s)
- Xiwen Ye
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Dejiang Gao
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xiaowei Mu
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Qiong Wu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun 130033, Jilin, China
| | - Pinyi Ma
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
4
|
Liu D, Zhang Z, Chen A, Zhang P. A turn on fluorescent assay for real time determination of β-galactosidase and its application in living cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120345. [PMID: 34492512 DOI: 10.1016/j.saa.2021.120345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
In recent years, fluorescent probes based on chemical reactions have been widely investigated as a powerful and noninvasive method for the diagnosis of diseases. β-Galactosidase (β-gal), a typical lysosomal glycosidase, over expressed in senescent cells and primary ovarian cancer cells, which has been considered as an important biomarker cell senescence and primary ovarian cancers. Fluorescent probes for the determination of β-gal provide an excellent choice for visualization of cell senescence. In this work, a turn on fluorescent probe (HBT-gal) for β-gal activity was developed based on the enzymatic hydrolysis of glycosidic bonds. HBT-gal showed little fluorescence in aqueous buffer excited at 415 nm, while emitted green fluorescence centered at ∼ 492 nm upon incubated with β-gal. The sensing scheme showed high selectivity and sensitivity for β-gal activity with a limit of detection calculated as low as 0.19 mU/mL. Moreover, HBT-gal was successfully applied to image β-gal activity in senescent Hep G2 cells treated with H2O2. Therefore, probe HBT-gal demonstrated a potential usage for the determination of cell senescence using β-gal as a biomarker.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000 PR China.
| | - Zixuan Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Anying Chen
- College of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou 635000 PR China
| | - Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
5
|
A novel AIE fluorescent probe for β-galactosidase detection and imaging in living cells. Anal Chim Acta 2022; 1198:339554. [DOI: 10.1016/j.aca.2022.339554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
|
6
|
Liu J, Li Z, Zhang J, Wang G, Su X. A dual-signal fluorometric-colorimetric sensing platform and visual detection with a smartphone for the determination of β-galactosidase activity based on fluorescence silicon nanoparticles. Talanta 2021; 240:123165. [PMID: 34953382 DOI: 10.1016/j.talanta.2021.123165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023]
Abstract
As one of primary biomarkers of ovarian cancer in early stages, β-galactosidase (β-Gal) is significant in the discovery and diagnosis of the disease. In this work, we constructed a multi-signal sensing platform based on silicon nanoparticles (Si NPs) for β-Gal activity determination. When β-Gal was introduced to the sensing system, 2-Nitrophenyl β-D-galactopyranoside (ONPG) could be converted to o-Nitrophenol (o-NP), which had a characteristic absorption peak at 416 nm and the colorless solution turned yellow. The fluorescence emission of Si NPs at 450 nm can be greatly quenched by o-NP as a consequence of inner filter effect (IFE). This dual-signal fluorometric and colorimetric determination approach could be utilized to detect β-Gal in the range of 2-120 U/L and 6-120 U/L. The limits of detection were 1.36 U/L and 1.07 U/L, respectively. This sensing platform could be successfully utilized to detect β-Gal in real samples. Additionally, a visual detection method was designed to achieve quantitative analysis of β-Gal with the assistance of the smartphone.
Collapse
Affiliation(s)
- Jinying Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ziwen Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiabao Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Guannan Wang
- College of Medical Engineering, Jining Medical University, Jining, 272067, PR China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
7
|
Sloan-Dennison S, Laing S, Graham D, Faulds K. From Raman to SESORRS: moving deeper into cancer detection and treatment monitoring. Chem Commun (Camb) 2021; 57:12436-12451. [PMID: 34734952 PMCID: PMC8609625 DOI: 10.1039/d1cc04805h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is a non-invasive technique that allows specific chemical information to be obtained from various types of sample. The detailed molecular information that is present in Raman spectra permits monitoring of biochemical changes that occur in diseases, such as cancer, and can be used for the early detection and diagnosis of the disease, for monitoring treatment, and to distinguish between cancerous and non-cancerous biological samples. Several techniques have been developed to enhance the capabilities of Raman spectroscopy by improving detection sensitivity, reducing imaging times and increasing the potential applicability for in vivo analysis. The different Raman techniques each have their own advantages that can accommodate the alternative detection formats, allowing the techniques to be applied in several ways for the detection and diagnosis of cancer. This feature article discusses the various forms of Raman spectroscopy, how they have been applied for cancer detection, and the adaptation of the techniques towards their use for in vivo cancer detection and in clinical diagnostics. Despite the advances in Raman spectroscopy, the clinical application of the technique is still limited and certain challenges must be overcome to enable clinical translation. We provide an outlook on the future of the techniques in this area and what we believe is required to allow the potential of Raman spectroscopy to be achieved for clinical cancer diagnostics.
Collapse
Affiliation(s)
- Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Stacey Laing
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
8
|
Li S, Cheng Y, Chen S, Qin M, Li P, Yang L. In-situ SERS readout strategy to improve the reliability of beta-galactosidase activity assay based on X-gal staining in shortening incubation times. Talanta 2021; 234:122689. [PMID: 34364487 DOI: 10.1016/j.talanta.2021.122689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 01/04/2023]
Abstract
Beta-galactosidase (β-gal) activity is closed related with senescence cells and aging-associated diseases, however, the traditional readout of β-gal activity based on X-gal staining was limited to low sensitivity in short incubation times and false positives in long incubation times. Here, we expose the potential role of insoluble X-gal hydrolysates in causing false positives by diffusion pollution depending on organic medium and then propose the in-situ Surface-enhanced Raman spectroscopy (SERS) readout strategy to identify and locate β-gal positive cells. By building the blue-white screening model and fabricating SERS-active needle sensor, the sensitive detection of β-gal has been realized with the detection limit of less than 1 nmol L-1. The in-situ SERS readout strategy is proved to be necessary and feasible to improve the reliability of X-gal staining assay through shortening the time to a few hours. Moreover, its application was also preliminarily evaluated to analyse individual cells and tissues, which showed the well consistency for judgement of β-gal activity cells at different times. Consequently, by improving reliability and reducing time consumption, this SERS readout strategy may be of great significance to promote the application of X-gal staining assay in biology and biomedicine.
Collapse
Affiliation(s)
- Shaofei Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China; School of Life Science, Anhui University Hefei, Anhui, 230601, China
| | - Yizhuang Cheng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Miao Qin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
9
|
Zhan H, Pu S, Liu J, Wang Y, Liu X, Tao Y, Fei X, Tian J. New insights into the detection mechanism of β-galactosidase in living cells with fluorescent probes. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Li S, Cheng Y, Qin M, Chen S, Li P, Yang L. Exploring the utility of Au@PVP-polyamide-Triton X-114 for SERS tracking of extracellular senescence associated-beta-galactosidase activity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2087-2091. [PMID: 33912876 DOI: 10.1039/d1ay00470k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A compound with enrichment and SERS enhancement was successfully developed, which could rapidly adsorb X-gal hydrolysates from a liquid matrix in 5 minutes and further be used for SERS analysis with a detection limit of less than 1 × 10-9 mol L-1. This novel strategy will facilitate the development of an analytical approach for cellular senescence.
Collapse
Affiliation(s)
- Shaofei Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China and School of Life Science, Anhui University, Hefei, Anhui 230601, China
| | - Yizhuang Cheng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Miao Qin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China. and University of Science and Technology of China, Hefei, Anhui 230026, China and Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
11
|
Kok ESK, Lim XJ, Chew SX, Ong SF, See LY, Lim SH, Wong LA, Davamani F, Nagendrababu V, Fawzy A, Daood U. Quaternary ammonium silane (k21) based intracanal medicament triggers biofilm destruction. BMC Oral Health 2021; 21:116. [PMID: 33711992 PMCID: PMC7953794 DOI: 10.1186/s12903-021-01470-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin. METHODOLOGY Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21. RESULTS There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention. CONCLUSION 2%k21 can be considered as alternative intracanal medicament.
Collapse
Affiliation(s)
- Esther Sook Kuan Kok
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Xian Jin Lim
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Soo Xiong Chew
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Shu Fen Ong
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Lok Yin See
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Siao Hua Lim
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Ling Ang Wong
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Fabian Davamani
- Faculty of Biomedical Science, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Venkateshbabu Nagendrababu
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Amr Fawzy
- UWA Dental School, University of Western Australia, Nedlands, Australia
| | - Umer Daood
- Division of Clinical Dentistry, Schoolof Dentistry, International Medical University Kuala Lumpur, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Wu X, Li Y, Wang J, Zhou H, Tang X, Yang Y, Wang Z, Chen D, Zhou X, Guo J, Cai H, Zheng J, Sun P. Click-Reaction-Triggered SERS Signals for Specific Detection of Monoamine Oxidase B Activity. Anal Chem 2020; 92:15050-15058. [PMID: 33103897 DOI: 10.1021/acs.analchem.0c03017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human monoamine oxidases (MAOs) play important roles in maintaining the homeostasis of biogenic amines. One of its isoforms, monoamine oxidase B (MAOB), is thought to be involved in several neurodegenerative diseases, which make the selective detection of MAOB activity essential. In this work, a novel surface-enhanced Raman scattering (SERS) sensor was fabricated and the MAOB activity was specifically determined by detecting the SERS signals of an enzyme-catalyzed reaction product via an amine-aldehyde click reaction. This process was simply achieved by coating core-shell gold-silver nanoparticles (Au@Ag NPs) on 3-aminopropyl aminopropyl triethoxysilane (APTES)-modified glass, and then, a monolayer of cysteamine (CA) was attached to the nanoparticle surface as a linker through Ag-S bonds. Using phenethylamine (PA) as a specific substrate of MAOB, the enzyme product phenylacetaldehyde (PAA) will produce significant Raman signals via the amine-aldehyde click reaction with CA, while other molecules, such as MAOB and PA, have no signal output because they cannot form close interaction with nanoparticles due to the existence of a CA layer. This sensor was further used for the specific determination of MAOB activity in clinical blood samples and the MAOB inhibitor assessment successfully. Meanwhile, by changing the click reaction types and taking advantage of the SERS fingerprint peaks for the specific click reaction products, this strategy offers huge potential to detect multiple enzyme activities simultaneously and can be used for new click reaction screening, enzyme-related disease diagnosis, drug screening, and clinical diagnosis.
Collapse
Affiliation(s)
- Xueqiang Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yifang Li
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jinhua Wang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao Tang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Ying Yang
- First Affiliated Hospital of Jinan University, Guangzhou 510632, P. R. China
| | - Zhigang Wang
- First Affiliated Hospital of Jinan University, Guangzhou 510632, P. R. China
| | - Dong Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xia Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.,First Affiliated Hospital of Jinan University, Guangzhou 510632, P. R. China
| | - Jialiang Guo
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Huaihong Cai
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
13
|
Wu C, Ni Z, Li P, Li Y, Pang X, Xie R, Zhou Z, Li H, Zhang Y. A near-infrared fluorescent probe for monitoring and imaging of β-galactosidase in living cells. Talanta 2020; 219:121307. [PMID: 32887048 DOI: 10.1016/j.talanta.2020.121307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
β-Galactosidase (β-gal) which is overexpressed in primary ovarian cancer can be employed as a valuable biomarker for ovarian cancer. Thus, monitoring and imaging endogenous β-gal in living cells is of great importance. Herein, a dicyanoisophorone-based near-infrared (NIR) fluorescent probe 2-(5,5-dimethyl-3-((E)-4-(((2R,3S,4R,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)styryl)cyclohex-2-en-1-ylidene)malononitrile named DP-βgal, was rationally designed and synthesized for the monitoring of β-gal activity in living cells. In the presence of β-gal, with the breaking of the glycosidic bond, the NIR fluorescence of the dicyanoisophorone derivative gradually recovered, enabling the fluorescence "off-on" quantitative determination of β-gal activity. DP-βgal has the advantages of good selectivity and high sensitivity for the detection of β-gal, with the limit of detection (LOD) of 3.2 × 10-3 U. Furthermore, based on its advantages of long-wavelength emission and excellent biocompatibility, the practical applications of DP-βgal in NIR imaging of β-gal in living ovarian cancer cells (SKOV-3) were demonstrated.
Collapse
Affiliation(s)
- Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Ziqi Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Peijuan Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Yaqian Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Xiao Pang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Ruihua Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Zile Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
14
|
Kapara A, Brunton V, Graham D, Faulds K. Investigation of cellular uptake mechanism of functionalised gold nanoparticles into breast cancer using SERS. Chem Sci 2020; 11:5819-5829. [PMID: 34094083 PMCID: PMC8159335 DOI: 10.1039/d0sc01255f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 01/04/2023] Open
Abstract
Gold nanoparticles (AuNPs) are widely used in various applications such as cancer imaging and drug delivery. The functionalisation of AuNPs has been shown to affect their cellular internalisation, accumulation and targeting efficiency. The mechanism of cellular uptake of functionalised AuNPs by different cancer cells is not well understood. Therefore, a detailed understanding of the molecular processes is necessary to improve AuNPs for their selective uptake and fate in specific cellular systems. This knowledge can greatly help in designing nanotags with higher cellular uptake for more selective and specific targeting capabilities with less off-target effects. Here, we demonstrate for the first time a straightforward and non-destructive 3D surface enhanced Raman spectroscopy (SERS) imaging approach to track the cellular uptake and localisation of AuNPs functionalised with an anti-ERα (estrogen receptor alpha) antibody in MCF-7 ERα-positive human breast cancer cells under different conditions including temperature and dynamin inhibition. 3D SERS enabled information rich monitoring of the intracellular internalisation of the SERS nanotags. It was found that ERα-AuNPs were internalised by MCF-7 cells in a temperature-dependent manner suggesting an active endocytosis-dependent mechanism. 3D SERS cell mapping also indicated that the nanotags entered MCF-7 cells using dynamin dependent endocytosis, since dynamin inhibition resulted in the SERS signal being obtained from, or close to, the cell surface rather than inside the cells. Finally, ERα-AuNPs were found to enter MCF-7 cells using an ERα receptor-mediated endocytosis process. This study addresses the role of functionalisation of SERS nanotags in biological environments and highlights the benefits of using 3D SERS for the investigation of cellular uptake processes.
Collapse
Affiliation(s)
- Anastasia Kapara
- Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde 99 George Street Glasgow Scotland G1 1RD UK
- Edinburgh Cancer Research UK Centre, University of Edinburgh Crewe Road South Edinburgh Scotland EH4 2XU UK
| | - Valerie Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh Crewe Road South Edinburgh Scotland EH4 2XU UK
| | - Duncan Graham
- Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde 99 George Street Glasgow Scotland G1 1RD UK
| | - Karen Faulds
- Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde 99 George Street Glasgow Scotland G1 1RD UK
| |
Collapse
|
15
|
Weiss R, Palatinszky M, Wagner M, Niessner R, Elsner M, Seidel M, Ivleva NP. Surface-enhanced Raman spectroscopy of microorganisms: limitations and applicability on the single-cell level. Analyst 2019; 144:943-953. [PMID: 30574650 DOI: 10.1039/c8an02177e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Detection and characterization of microorganisms is essential for both clinical diagnostics and environmental studies. An emerging technique to analyse microbes at single-cell resolution is surface-enhanced Raman spectroscopy (surface-enhanced Raman scattering: SERS). Optimised SERS procedures enable fast analytical read-outs with specific molecular information, providing insight into the chemical composition of microbiological samples. Knowledge about the origin of microbial SERS signals and parameter(s) affecting their occurrence, intensity and/or reproducibility is crucial for reliable SERS-based analyses. In this work, we explore the feasibility and limitations of the SERS approach for characterizing microbial cells and investigate the applicability of SERS for single-cell sorting as well as for three-dimensional visualization of microbial communities. Analyses of six different microbial species (an archaeon, two Gram-positive bacteria, three Gram-negative bacteria) showed that for several of these organisms distinct features in their SERS spectra were lacking. As additional confounding factor, the physiological conditions of the cells (as influenced by e.g., storage conditions or deuterium-labelling) were systematically addressed, for which we conclude that the respective SERS signal at the single-cell level is strongly influenced by the metabolic activity of the analysed cells. While this finding complicates the interpretation of SERS data, it may on the other hand enable probing of the metabolic state of individual cells within microbial populations of interest.
Collapse
Affiliation(s)
- Ruben Weiss
- Technical University of Munich, Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Marchioninistrasse 17, D-81377 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Muhamadali H, Subaihi A, Mohammadtaheri M, Xu Y, Ellis DI, Ramanathan R, Bansal V, Goodacre R. Rapid, accurate, and comparative differentiation of clinically and industrially relevant microorganisms via multiple vibrational spectroscopic fingerprinting. Analyst 2018; 141:5127-36. [PMID: 27414261 DOI: 10.1039/c6an00883f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the fact that various microorganisms (e.g., bacteria, fungi, viruses, etc.) have been linked with infectious diseases, their crucial role towards sustaining life on Earth is undeniable. The huge biodiversity, combined with the wide range of biochemical capabilities of these organisms, have always been the driving force behind their large number of current, and, as of yet, undiscovered future applications. The presence of such diversity could be said to expedite the need for the development of rapid, accurate and sensitive techniques which allow for the detection, differentiation, identification and classification of such organisms. In this study, we employed Fourier transform infrared (FT-IR), Raman, and surface enhanced Raman scattering (SERS) spectroscopies, as molecular whole-organism fingerprinting techniques, combined with multivariate statistical analysis approaches for the classification of a range of industrial, environmental or clinically relevant bacteria (P. aeruginosa, P. putida, E. coli, E. faecium, S. lividans, B. subtilis, B. cereus) and yeast (S. cerevisiae). Principal components-discriminant function analysis (PC-DFA) scores plots of the spectral data collected from all three techniques allowed for the clear differentiation of all the samples down to sub-species level. The partial least squares-discriminant analysis (PLS-DA) models generated using the SERS spectral data displayed lower accuracy (74.9%) when compared to those obtained from conventional Raman (97.8%) and FT-IR (96.2%) analyses. In addition, whilst background fluorescence was detected in Raman spectra for S. cerevisiae, this fluorescence was quenched when applying SERS to the same species, and conversely SERS appeared to introduce strong fluorescence when analysing P. putida. It is also worth noting that FT-IR analysis provided spectral data of high quality and reproducibility for the whole sample set, suggesting its applicability to a wider range of samples, and perhaps the most suitable for the analysis of mixed cultures in future studies. Furthermore, our results suggest that while each of these spectroscopic approaches may favour different organisms (sample types), when combined, they would provide complementary and more in-depth knowledge (structural and/or metabolic state) of biological systems. To the best of our knowledge, this is the first time that such a comparative and combined spectroscopic study (using FT-IR, Raman and SERS) has been carried out on microbial samples.
Collapse
Affiliation(s)
- Howbeer Muhamadali
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Abdu Subaihi
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Mahsa Mohammadtaheri
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Australia
| | - Yun Xu
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - David I Ellis
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Australia
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Australia
| | - Royston Goodacre
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
17
|
Jamieson LE, Asiala SM, Gracie K, Faulds K, Graham D. Bioanalytical Measurements Enabled by Surface-Enhanced Raman Scattering (SERS) Probes. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:415-437. [PMID: 28301754 DOI: 10.1146/annurev-anchem-071015-041557] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Since its discovery in 1974, surface-enhanced Raman scattering (SERS) has gained momentum as an important tool in analytical chemistry. SERS is used widely for analysis of biological samples, ranging from in vitro cell culture models, to ex vivo tissue and blood samples, and direct in vivo application. New insights have been gained into biochemistry, with an emphasis on biomolecule detection, from small molecules such as glucose and amino acids to larger biomolecules such as DNA, proteins, and lipids. These measurements have increased our understanding of biological systems, and significantly, they have improved diagnostic capabilities. SERS probes display unique advantages in their detection sensitivity and multiplexing capability. We highlight key considerations that are required when performing bioanalytical SERS measurements, including sample preparation, probe selection, instrumental configuration, and data analysis. Some of the key bioanalytical measurements enabled by SERS probes with application to in vitro, ex vivo, and in vivo biological environments are discussed.
Collapse
Affiliation(s)
- Lauren E Jamieson
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Steven M Asiala
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Kirsten Gracie
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Karen Faulds
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| | - Duncan Graham
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, United Kingdom;
| |
Collapse
|
18
|
Taylor J, Huefner A, Li L, Wingfield J, Mahajan S. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy. Analyst 2016; 141:5037-55. [PMID: 27479539 PMCID: PMC5048737 DOI: 10.1039/c6an01003b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023]
Abstract
Surface-enhanced Raman spectrocopy (SERS) offers ultrasensitive vibrational fingerprinting at the nanoscale. Its non-destructive nature affords an ideal tool for interrogation of the intracellular environment, detecting the localisation of biomolecules, delivery and monitoring of therapeutics and for characterisation of complex cellular processes at the molecular level. Innovations in nanotechnology have produced a wide selection of novel, purpose-built plasmonic nanostructures capable of high SERS enhancement for intracellular probing while microfluidic technologies are being utilised to reproducibly synthesise nanoparticle (NP) probes at large scale and in high throughput. Sophisticated multivariate analysis techniques unlock the wealth of previously unattainable biomolecular information contained within large and multidimensional SERS datasets. Thus, with suitable combination of experimental techniques and analytics, SERS boasts enormous potential for cell based assays and to expand our understanding of the intracellular environment. In this review we trace the pathway to utilisation of nanomaterials for intracellular SERS. Thus we review and assess nanoparticle synthesis methods, their toxicity and cell interactions before presenting significant developments in intracellular SERS methodologies and how identified challenges can be addressed.
Collapse
Affiliation(s)
- Jack Taylor
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| | - Anna Huefner
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK. and Sector for Biological and Soft Systems, Cavendish Laboratory, Department of Physics, University of Cambridge, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Li Li
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| | - Jonathan Wingfield
- Discovery Sciences, Screening and Compound Management, AstraZeneca, Unit 310 - Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Sumeet Mahajan
- Department of Chemistry and Institute of Life Sciences (IfLS), University of Southampton, SO17 1BJ, UK.
| |
Collapse
|
19
|
From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis. Bioanalysis 2016; 8:1077-103. [PMID: 27079546 DOI: 10.4155/bio-2015-0030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over recent decades, spreading environmental concern entailed the expansion of green chemistry analytical tools. Vibrational spectroscopy, belonging to this class of analytical tool, is particularly interesting taking into account its numerous advantages such as fast data acquisition and no sample preparation. In this context, near-infrared, Raman and mainly surface-enhanced Raman spectroscopy (SERS) have thus gained interest in many fields including bioanalysis. The two former techniques only ensure the analysis of concentrated compounds in simple matrices, whereas the emergence of SERS improved the performances of vibrational spectroscopy to very sensitive and selective analyses. Complex SERS substrates were also developed enabling biomarker measurements, paving the way for SERS immunoassays. Therefore, in this paper, the strengths and weaknesses of these techniques will be highlighted with a focus on recent progress.
Collapse
|
20
|
Gurale BP, Dhawane AN, Cui X, Das A, Zhang X, Iyer SS. Indirect Detection of Glycosidases Using Amperometry. Anal Chem 2016; 88:4248-53. [DOI: 10.1021/acs.analchem.5b03943] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bharat P. Gurale
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Abasaheb N. Dhawane
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Xikai Cui
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Amrita Das
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Xiaohu Zhang
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| | - Suri S. Iyer
- Department of Chemistry,
Center for Diagnostics and Therapeutics, Georgia State University, 788 Petit Science Center, Atlanta, Georgia 30302, United States
| |
Collapse
|
21
|
Nakamura K, Iizuka R, Nishi S, Yoshida T, Hatada Y, Takaki Y, Iguchi A, Yoon DH, Sekiguchi T, Shoji S, Funatsu T. Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform. Sci Rep 2016; 6:22259. [PMID: 26915788 PMCID: PMC4768102 DOI: 10.1038/srep22259] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022] Open
Abstract
Environmental microbes are a great source of industrially valuable enzymes with potent and unique catalytic activities. Unfortunately, the majority of microbes remain unculturable and thus are not accessible by culture-based methods. Recently, culture-independent metagenomic approaches have been successfully applied, opening access to untapped genetic resources. Here we present a methodological approach for the identification of genes that encode metabolically active enzymes in environmental microbes in a culture-independent manner. Our method is based on activity-based single-cell sequencing, which focuses on microbial cells showing specific enzymatic activities. First, at the single-cell level, environmental microbes were encapsulated in water-in-oil microdroplets with a fluorogenic substrate for the target enzyme to screen for microdroplets that contain microbially active cells. Second, the microbial cells were recovered and subjected to whole genome amplification. Finally, the amplified genomes were sequenced to identify the genes encoding target enzymes. Employing this method, we successfully identified 14 novel β-glucosidase genes from uncultured bacterial cells in marine samples. Our method contributes to the screening and identification of genes encoding industrially valuable enzymes.
Collapse
Affiliation(s)
- Kazuki Nakamura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Iizuka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinro Nishi
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Takao Yoshida
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Yuji Hatada
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Yoshihiro Takaki
- Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan
| | - Ayaka Iguchi
- Department of NanoscieWnce and Nanoengineering (ASE Graduate School), Waseda University, 3-4-1 Okubo, Shinju-ku, Tokyo 169-8555, Japan
| | - Dong Hyun Yoon
- Department of NanoscieWnce and Nanoengineering (ASE Graduate School), Waseda University, 3-4-1 Okubo, Shinju-ku, Tokyo 169-8555, Japan
| | - Tetsushi Sekiguchi
- Research Organization for Nano &Life Innovation, Waseda University, 513, Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Shuichi Shoji
- Department of NanoscieWnce and Nanoengineering (ASE Graduate School), Waseda University, 3-4-1 Okubo, Shinju-ku, Tokyo 169-8555, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Affiliation(s)
- Young-Pil Kim
- Department of Life Science; Research Institute for Natural Sciences, &; Institute of Nano Science and Technology; Hanyang University; Seoul 04763 Republic of Korea
| | - Hak-Sung Kim
- Department of Biological Sciences; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| |
Collapse
|
23
|
McAughtrie S, Faulds K, Graham D. Surface enhanced Raman spectroscopy (SERS): Potential applications for disease detection and treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2014. [DOI: 10.1016/j.jphotochemrev.2014.09.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|