1
|
Yang G, Zhang K, Xu W, Xu S. A review of clinical use of surface-enhanced Raman scattering-based biosensing for glioma. Front Neurol 2024; 15:1287213. [PMID: 38651101 PMCID: PMC11033440 DOI: 10.3389/fneur.2024.1287213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
Glioma is the most common malignant tumor of the nervous system in recent centuries, and the incidence rate of glioma is increasing year by year. Its invasive growth and malignant biological behaviors make it one of the most challenging malignant tumors. Maximizing the resection range (EOR) while minimizing the impact on normal brain tissue is crucial for patient prognosis. Changes in metabolites produced by tumor cells and their microenvironments might be important indicators. As a powerful spectroscopic technique, surface-enhanced Raman scattering (SERS) has many advantages, including ultra-high sensitivity, high specificity, and non-invasive features, which allow SERS technology to be widely applied in biomedicine, especially in the differential diagnosis of malignant tumor tissues. This review first introduced the clinical use of responsive SERS probes. Next, the sensing mechanisms of microenvironment-responsive SERS probes were summarized. Finally, the biomedical applications of these responsive SERS probes were listed in four sections, detecting tumor boundaries due to the changes of pH-responsive SERS probes, SERS probes to guide tumor resection, SERS for liquid biopsy to achieve early diagnosis of tumors, and the application of free-label SERS technology to detect fresh glioma specimens. Finally, the challenges and prospects of responsive SERS detections were summarized for clinical use.
Collapse
Affiliation(s)
- Guohui Yang
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kaizhi Zhang
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
2
|
Ratiometric pH-responsive SERS strategy for glioma boundary determination. Talanta 2022; 250:123750. [DOI: 10.1016/j.talanta.2022.123750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022]
|
3
|
Harroun SG, Zhang Y, Lin YS, Chang HT. Surface-enhanced Raman spectroscopy and density functional theory study of thymine-1-acetic acid interaction with silver nanoparticles. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thymine-1-acetic acid (TAA) is a modified nucleobase often used to add thymine functionality to materials. This study reports the Raman band assignments for TAA by comparing its experimental and density functional theory (DFT) simulated Raman spectra. Further comparison of experimental surface-enhanced Raman spectroscopy (SERS) of TAA on silver nanoparticles (Ag NPs) with simulated spectra of various complexes of xAg+ (x = 1, 2, or 3) and TAA reveals its likely adsorption orientation on the Ag NPs. This is one of the few studies that has achieved reasonably accurate simulation of SERS by employing multiple unconnected Ag+ ions, which could represent a compromise between a single atom or ion on one hand and a computationally expensive cluster on the other.
Collapse
Affiliation(s)
- Scott G. Harroun
- Département de chimie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Yaoting Zhang
- Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Piotrowski P, Witkowski M, Brosseau C, Ozaki Y, Królikowska A. Editorial: Novel SERS-Active Materials and Substrates: Sensing and (Bio)applications. Front Chem 2021; 9:784735. [PMID: 34790648 PMCID: PMC8591305 DOI: 10.3389/fchem.2021.784735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Christa Brosseau
- Department of Chemistry, Saint Mary's University, Halifax, NS, Canada
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo, Japan
| | | |
Collapse
|
5
|
Zhu G, Cheng L, Liu G, Zhu L. Synthesis of Gold Nanoparticle Stabilized on Silicon Nanocrystal Containing Polymer Microspheres as Effective Surface-Enhanced Raman Scattering (SERS) Substrates. NANOMATERIALS 2020; 10:nano10081501. [PMID: 32751785 PMCID: PMC7466634 DOI: 10.3390/nano10081501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/09/2023]
Abstract
Developing ideal surface-enhanced Raman scattering (SERS) substrates is significant in biological detection. Compared with free non-aggregated noble metal nanoparticles, loading metal nanoparticles on a large matrix can achieve a higher SERS effect due to the existence of many “hot spots”. A novel SERS substrate with intense “hot spots” was prepared through reducing gold ions with silicon nanocrystal containing polymer microspheres. The substrate exhibits high SERS sensitivity with an enhancement factor of 5.4 × 107. By applying 4-mercaptopyridine as a Raman reporter, the developed SERS substrate can realize measurement of pH values. The intensity ratio of 1574 to 1607 cm−1 of 4-mercaptopyridine showed excellent pH sensitivity, which increased as the surrounding pH increased. With good stability and reliability, the pH sensor is promising in the design of biological detection devices.
Collapse
Affiliation(s)
- Guixian Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China; (L.C.); (G.L.)
- Correspondence: (G.Z.); (L.Z.)
| | - Lin Cheng
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China; (L.C.); (G.L.)
| | - Gannan Liu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China; (L.C.); (G.L.)
| | - Lianqing Zhu
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China; (L.C.); (G.L.)
- School of Instrument and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
- Correspondence: (G.Z.); (L.Z.)
| |
Collapse
|
6
|
Duan A, An S, Xue J, Zheng X, Zhao Y. Absorption, fluorescence, Raman spectroscopic and density functional theoretical studies on the singlet and triplet excited state decay of 3-amino-5-mercapto-1,2,4-triazole. RSC Adv 2020; 10:13442-13450. [PMID: 35492984 PMCID: PMC9051463 DOI: 10.1039/d0ra01628d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 11/21/2022] Open
Abstract
The excited state decay process of N-heterocyclic compounds is attracting increasing attention due to their fundamental applications in pharmaceutical and biological sciences. In this study, 3-amino-5-mercapto-1,2,4-triazole (AMT) was investigated in solid, protic, and aprotic solvents using vibrational and electronic spectroscopies combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. The steady absorption and resonance Raman spectra indicated that the AMT structure was quite sensitive to the polarity and proton of the solvent, and the pH environments. The intermolecular hydrogen bonding may contribute significantly to the decay channels of the singlet excited S2(ππ*) state process. Moreover, ns-transient absorption spectroscopy detected the short-time triplet species with ∼200 ns lifetime in solvents. The DFT and TDDFT calculations interpreted the photophysical and photochemical process from the excited S2(ππ*) state, including the singlet and triplet decay mechanisms.
Collapse
Affiliation(s)
- Aimin Duan
- Department of Chemistry, Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Suosuo An
- Department of Chemistry, Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jiadan Xue
- Department of Chemistry, Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Xuming Zheng
- Department of Chemistry, Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Yanying Zhao
- Department of Chemistry, Engineering Research Center for Eco-dyeing and Finishing of Textiles, Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University Hangzhou 310018 China
| |
Collapse
|
7
|
Chen XF, Fan W, Zhou XG, Liu SL. Raman spectra of 1,2,4-Triazole-3-carboxylate solution. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1903060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xue-fei Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-guo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shi-lin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Zhang Z, Bando K, Mochizuki K, Taguchi A, Fujita K, Kawata S. Quantitative Evaluation of Surface-Enhanced Raman Scattering Nanoparticles for Intracellular pH Sensing at a Single Particle Level. Anal Chem 2019; 91:3254-3262. [PMID: 30698014 DOI: 10.1021/acs.analchem.8b03276] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular pH is one of the key factors for understanding various biological processes in biological cells. Plasmonic gold and silver nanoparticles (NPs) have been extensively studied for surface-enhanced Raman scattering (SERS) applications for pH sensing as a local pH probe in a living cell. However, the SERS performance of NPs depends on material, size, and shape, which can be controlled by chemical synthesis. Here, we synthesized 18 types of gold and silver NPs with different morphologies such as sphere, rod, flower, star, core/shell, hollow, octahedra, core/satellites, and chainlike aggregates, and quantitatively compared their SERS performance for pH sensing. The SERS intensity from the most commonly utilized SERS probe molecule ( para-mercaptobenzoic acid, p-MBA) for pH sensing was measured at the single nanoparticle level under the same measurement parameters such as low laser power (0.5 mW/μm2), short integration time (100 ms) at wavelengths of 405, 488, 532, 584, 676, and 785 nm. In our measurement, the Ag chain, Ag core/satellites, Ag@Au core/satellites, and Au core/satellites nanoassemblies showed efficient pH sensing at the single particle level. By using p-MBA-conjugated Au@Ag core/satellites, we performed time-lapse pH measurements during apoptosis of HeLa cells. These experimental results confirmed that the pH measurement using p-MBA-conjugated Au@Ag core/satellites can be applied for long-term measurements of intracellular pH during cellular events.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Applied Physics , Osaka University , Suita , Osaka 565-0871 , Japan.,CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology , Chinese Academy of Sciences , 215163 , Suzhou , China
| | - Kazuki Bando
- Department of Applied Physics , Osaka University , Suita , Osaka 565-0871 , Japan.,Serendip Research, Osaka , Osaka 530-0001 , Japan
| | - Kentaro Mochizuki
- Department of Applied Physics , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Atsushi Taguchi
- Department of Applied Physics , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Katsumasa Fujita
- Department of Applied Physics , Osaka University , Suita , Osaka 565-0871 , Japan.,Advanced Photonics and Biosensing Open Innovation Laboratory , AIST-Osaka Unversity , Suita , Osaka 565-0871 , Japan.,Institute for Open and Transdisciplinary Research Initiatives , Osaka University , Suita , Osaka 565-0871 , Japan
| | - Satoshi Kawata
- Department of Applied Physics , Osaka University , Suita , Osaka 565-0871 , Japan.,Serendip Research, Osaka , Osaka 530-0001 , Japan
| |
Collapse
|
9
|
He JH, Cheng YY, Yang T, Zou HY, Huang CZ. Functional preserving carbon dots-based fluorescent probe for mercury (II) ions sensing in herbal medicines via coordination and electron transfer. Anal Chim Acta 2018; 1035:203-210. [DOI: 10.1016/j.aca.2018.06.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
|
10
|
Zhang QQ, Yang T, Li RS, Zou HY, Li YF, Guo J, Liu XD, Huang CZ. A functional preservation strategy for the production of highly photoluminescent emerald carbon dots for lysosome targeting and lysosomal pH imaging. NANOSCALE 2018; 10:14705-14711. [PMID: 30039824 DOI: 10.1039/c8nr03212b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lysosomes, which can be easily targeted by molecules with abundant amino groups, play critical roles in endocytosis, autophagy, and phagocytosis; thus, it is important to accurately characterize lysosomes, including lysosomal pH, in living cells to understand their physiological and pathological functions. Herein, a new type of highly photoluminescent (PL) emerald carbon dots (CDs) was easily prepared through a functional preservation strategy (FPS) by simply mixing p-benzoquinone and ethanediamine at room temperature. The as-prepared CDs possessed abundant amino groups preserved from ethanediamine owing to FPS, and they exhibited excellent photostability as compared to the commercial LysoTracker probes. Consequently, they actively targeted lysosomes to sensitively respond to lysosomal pH in vitro owing to their abundant amino groups and good hydrophilicity. Thus, we could successfully monitor lysosomal pH dynamics during apoptosis in live cells.
Collapse
Affiliation(s)
- Qian Qian Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Balakrishnan D, Lamblin G, Thomann JS, van den Berg A, Olthuis W, Pascual-García C. Electrochemical Control of pH in Nanoliter Volumes. NANO LETTERS 2018; 18:2807-2815. [PMID: 29617568 DOI: 10.1021/acs.nanolett.7b05054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The electrochemical management of the proton concentration in miniaturized dimensions opens the way to control and parallelize multistep chemical reactions, but still it faces many challenges linked to the efficient proton generation and control of their diffusion. Here we present a device operated electrochemically that demonstrates the control of the pH in a cell of ∼140 nL. The device comprises a microfluidic reactor integrated with a pneumatic mechanism that allows the exchange of reagents and the isolation of protons to decrease the effect of their diffusion. We monitored the pH with a fluorescence marker and calculated the final value from the redox currents. We demonstrate a large pH amplitude control from neutral pH values beyond the fluorescence marker range at pH 5. On the basis of the calculations from the Faradaic currents, the minimum pH reached should undergo pH ∼ 0.9. The pH contrast between neutral and acid pH cells can be maintained during periods longer than 15 min with an appropriate design of a diffusion barrier.
Collapse
Affiliation(s)
- Divya Balakrishnan
- Luxembourg Institute of Science and Technology (LIST) , 41 Rue du Brill , L-4422 Belvaux , Luxembourg
- MESA+ Institute , University of Twente , Drienerlolaan 5 , 7522 NB Enschede , Netherlands
| | - Guillaume Lamblin
- Luxembourg Institute of Science and Technology (LIST) , 41 Rue du Brill , L-4422 Belvaux , Luxembourg
| | - Jean Sebastien Thomann
- Luxembourg Institute of Science and Technology (LIST) , 41 Rue du Brill , L-4422 Belvaux , Luxembourg
| | - Albert van den Berg
- MESA+ Institute , University of Twente , Drienerlolaan 5 , 7522 NB Enschede , Netherlands
| | - Wouter Olthuis
- MESA+ Institute , University of Twente , Drienerlolaan 5 , 7522 NB Enschede , Netherlands
| | - César Pascual-García
- Luxembourg Institute of Science and Technology (LIST) , 41 Rue du Brill , L-4422 Belvaux , Luxembourg
| |
Collapse
|
12
|
Shen Y, Liang L, Zhang S, Huang D, Zhang J, Xu S, Liang C, Xu W. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. NANOSCALE 2018; 10:1622-1630. [PMID: 29239454 DOI: 10.1039/c7nr08636a] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wei H, Willner MR, Marr LC, Vikesland PJ. Highly stable SERS pH nanoprobes produced by co-solvent controlled AuNP aggregation. Analyst 2016; 141:5159-69. [PMID: 27143623 PMCID: PMC4987216 DOI: 10.1039/c6an00650g] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Production of gold nanoparticle (AuNP) surface-enhanced Raman spectroscopy (SERS) nanoprobes requires replicable aggregation to produce multimers with high signal intensity. Herein, we illustrate a novel, yet simple, approach to produce SERS nanoprobes through control of co-solvent composition. AuNP multimers were produced by mixing AuNP monomers in water : ethanol co-solvent for variable periods of time. By varying the water : ethanol ratio and the amount of 4-mercaptobenzoic acid (4-MBA) present, the aggregation rate can be systematically controlled. Thiolated poly(ethylene glycol) was then added to halt the aggregation process and provide steric stability. This approach was used to produce pH nanoprobes with excellent colloidal stability in high ionic strength environments and in complex samples. The pH probe exhibits broad pH sensitivity over the range 6-11 and we calculate that a single AuNP dimer in a 35 fL volume is sufficient to generate a detectable SERS signal. As a proof-of-concept, the probes were used to detect the intracellular pH of human prostate cancer cells (PC-3). The internalized probes exhibit a strong 4-MBA signal without any interfering bands from either the cells or the culture media and produce exceptionally detailed pH maps. pH maps obtained from 19 xy surface scans and 14 yz depth scans exhibit highly consistent intracellular pH in the range of 5 to 7, thus indicating the greater reliability and reproducibility of our pH probes compared with other probes previously reported in the literature. Our water : ethanol co-solvent production process is fast, simple, and efficient. Adjustment of solvent composition may become a powerful way to produce SERS tags or nanoprobes in the future.
Collapse
Affiliation(s)
- Haoran Wei
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA. and Institute for Critical Technology and Applied Science (ICTAS) Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, VA, USA and NSF-EPA Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, USA
| | - Marjorie R Willner
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA. and Institute for Critical Technology and Applied Science (ICTAS) Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, VA, USA and NSF-EPA Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, USA
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA. and Institute for Critical Technology and Applied Science (ICTAS) Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, VA, USA and NSF-EPA Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, USA
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA. and Institute for Critical Technology and Applied Science (ICTAS) Center for Sustainable Nanotechnology (VTSuN), Virginia Tech, Blacksburg, VA, USA and NSF-EPA Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Liang F, Wang D, Ma P, Wang X, Song D, Yu Y. A highly selective and sensitive ratiometric fluorescent probe for pH measurement based on fluorescence resonance energy transfer. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5124-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Zheng XS, Hu P, Cui Y, Zong C, Feng JM, Wang X, Ren B. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing. Anal Chem 2014; 86:12250-7. [PMID: 25418952 DOI: 10.1021/ac503404u] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Local microenvironment pH sensing is one of the key parameters for the understanding of many biological processes. As a noninvasive and high sensitive technique, surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in the detection of the local pH of live cells. We herein develop a facile way to prepare Au-(4-MPy)-BSA (AMB) pH nanosensor. The 4-MPy (4-mercaptopyridine) was used as the pH sensing molecule. The modification of the nanoparticles with BSA not only provides a high sensitive response to pH changes ranging from pH 4.0 to 9.0 but also exhibits a high sensitivity and good biocompatibility, stability, and reliability in various solutions (including the solutions of high ionic strength or with complex composition such as the cell culture medium), both in the aggregation state or after long-term storage. The AMB pH nanosensor shows great advantages for reliable intracellular pH analysis and has been successfully used to monitor the pH distribution of live cells and can address the grand challenges in SERS-based pH sensing for practical biological applications.
Collapse
Affiliation(s)
- Xiao-Shan Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, ‡The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, and §Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, and ∥School of Physics and Mechanical & Electrical Engineering, Xiamen University , Xiamen 361005, China
| | | | | | | | | | | | | |
Collapse
|