1
|
Panhwar S, Keerio HA, Ilhan H, Boyacı IH, Tamer U. Principles, Methods, and Real-Time Applications of Bacteriophage-Based Pathogen Detection. Mol Biotechnol 2024; 66:3059-3076. [PMID: 37914863 DOI: 10.1007/s12033-023-00926-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Bacterial pathogens in water, food, and the environment are spreading diseases around the world. According to a World Health Organization (WHO) report, waterborne pathogens pose the most significant global health risks to living organisms, including humans and animals. Conventional bacterial detection approaches such as colony counting, microscopic analysis, biochemical analysis, and molecular analysis are expensive, time-consuming, less sensitive, and require a pre-enrichment step. However, the bacteriophage-based detection of pathogenic bacteria is a robust approach that utilizes bacteriophages, which are viruses that specifically target and infect bacteria, for rapid and accurate detection of targets. This review shed light on cutting-edge technologies about the novel structure of phages and the immobilization process on the surface of electrodes to detect targeted bacterial cells. Similarly, the purpose of this study was to provide a comprehensive assessment of bacteriophage-based biosensors utilized for pathogen detection, as well as their trends, outcomes, and problems. This review article summaries current phage-based pathogen detection strategies for the development of low-cost lab-on-chip (LOC) and point-of-care (POC) devices using electrochemical and optical methods such as surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Sallahuddin Panhwar
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Department of Civil Engineering, National University of Sciences and Technology, Quetta, 24090, Balochistan, Pakistan.
| | - Hareef Ahmed Keerio
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hasan Ilhan
- Department of Chemistry, Faculty of Science, Ordu University, Altinordu, 52200, Ordu, Turkey
| | - Ismail Hakkı Boyacı
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06330, Ankara, Turkey.
- Metu MEMS Center, Ankara, Turkey.
| |
Collapse
|
2
|
Makky S, Abdelrahman F, Rezk N, Easwaran M, El-Shibiny A. Phages for treatment Pseudomonas aeruginosa infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:1-19. [PMID: 37770166 DOI: 10.1016/bs.pmbts.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pseudomonas aeruginosa is denoted as one of the highly threatening bacteria to the public health. It has acquired many virulent factors and resistant genes that make it difficult to control with conventional antibiotics. Thus, bacteriophage therapy (phage therapy) is a proposed alternative to antibiotics to fight against multidrug-resistant P. aeruginosa. Many phages have been isolated that exhibit a broad spectrum of activity against P. aeruginosa. In this chapter, the common virulent factors and the prevalence of antibiotic-resistance genes in P. aeruginosa were reported. In addition, recent efforts in the field of phage therapy against P. aeruginosa were highlighted, including wild-type phages, genetically modified phages, phage cocktails, and phage in combination with antibiotics against P. aeruginosa in the planktonic and biofilm forms. Recent regulations on phage therapy were also covered in this chapter.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
3
|
Elois MA, da Silva R, Pilati GVT, Rodríguez-Lázaro D, Fongaro G. Bacteriophages as Biotechnological Tools. Viruses 2023; 15:349. [PMID: 36851563 PMCID: PMC9963553 DOI: 10.3390/v15020349] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Bacteriophages are ubiquitous organisms that can be specific to one or multiple strains of hosts, in addition to being the most abundant entities on the planet. It is estimated that they exceed ten times the total number of bacteria. They are classified as temperate, which means that phages can integrate their genome into the host genome, originating a prophage that replicates with the host cell and may confer immunity against infection by the same type of phage; and lytics, those with greater biotechnological interest and are viruses that lyse the host cell at the end of its reproductive cycle. When lysogenic, they are capable of disseminating bacterial antibiotic resistance genes through horizontal gene transfer. When professionally lytic-that is, obligately lytic and not recently descended from a temperate ancestor-they become allies in bacterial control in ecological imbalance scenarios; these viruses have a biofilm-reducing capacity. Phage therapy has also been advocated by the scientific community, given the uniqueness of issues related to the control of microorganisms and biofilm production when compared to other commonly used techniques. The advantages of using bacteriophages appear as a viable and promising alternative. This review will provide updates on the landscape of phage applications for the biocontrol of pathogens in industrial settings and healthcare.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Raphael da Silva
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
4
|
Paramasivam K, Shen Y, Yuan J, Waheed I, Mao C, Zhou X. Advances in the Development of Phage-Based Probes for Detection of Bio-Species. BIOSENSORS 2022; 12:30. [PMID: 35049658 PMCID: PMC8773867 DOI: 10.3390/bios12010030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 05/10/2023]
Abstract
Bacteriophages, abbreviated as "phages", have been developed as emerging nanoprobes for the detection of a wide variety of biological species, such as biomarker molecules and pathogens. Nanosized phages can display a certain length of exogenous peptides of arbitrary sequence or single-chain variable fragments (scFv) of antibodies that specifically bind to the targets of interest, such as animal cells, bacteria, viruses, and protein molecules. Metal nanoparticles generally have unique plasmon resonance effects. Metal nanoparticles such as gold, silver, and magnetism are widely used in the field of visual detection. A phage can be assembled with metal nanoparticles to form an organic-inorganic hybrid probe due to its nanometer-scale size and excellent modifiability. Due to the unique plasmon resonance effect of this composite probe, this technology can be used to visually detect objects of interest under a dark-field microscope. In summary, this review summarizes the recent advances in the development of phage-based probes for ultra-sensitive detection of various bio-species, outlining the advantages and limitations of detection technology of phage-based assays, and highlighting the commonly used editing technologies of phage genomes such as homologous recombination and clustered regularly interspaced palindromic repeats/CRISPR-associated proteins system (CRISPR-Cas). Finally, we discuss the possible scenarios for clinical application of phage-probe-based detection methods.
Collapse
Affiliation(s)
- Kameshpandian Paramasivam
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuanzhao Shen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
| | - Jiasheng Yuan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
| | - Ibtesam Waheed
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
| | - Chuanbin Mao
- Stephenson Life Sciences Research Center, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5300, USA;
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.P.); (Y.S.); (J.Y.); (I.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
On the Use of Surface Plasmon Resonance-Based Biosensors for Advanced Bioprocess Monitoring. Processes (Basel) 2021. [DOI: 10.3390/pr9111996] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biomanufacturers are being incited by regulatory agencies to transition from a quality by testing framework, where they extensively test their product after their production, to more of a quality by design or even quality by control framework. This requires powerful analytical tools and sensors enabling measurements of key process variables and/or product quality attributes during production, preferably in an online manner. As such, the demand for monitoring technologies is rapidly growing. In this context, we believe surface plasmon resonance (SPR)-based biosensors can play a role in enabling the development of improved bioprocess monitoring and control strategies. The SPR technique has been profusely used to probe the binding behavior of a solution species with a sensor surface-immobilized partner in an investigative context, but its ability to detect binding in real-time and without a label has been exploited for monitoring purposes and is promising for the near future. In this review, we examine applications of SPR that are or could be related to bioprocess monitoring in three spheres: biotherapeutics production monitoring, vaccine monitoring, and bacteria and contaminant detection. These applications mainly exploit SPR’s ability to measure solution species concentrations, but performing kinetic analyses is also possible and could prove useful for product quality assessments. We follow with a discussion on the limitations of SPR in a monitoring role and how recent advances in hardware and SPR response modeling could counter them. Mainly, throughput limitations can be addressed by multi-detection spot instruments, and nonspecific binding effects can be alleviated by new antifouling materials. A plethora of methods are available for cell growth and metabolism monitoring, but product monitoring is performed mainly a posteriori. SPR-based biosensors exhibit potential as product monitoring tools from early production to the end of downstream processing, paving the way for more efficient production control. However, more work needs to be done to facilitate or eliminate the need for sample preprocessing and to optimize the experimental protocols.
Collapse
|
6
|
A Proof of Principle for the Detection of Viable Brucella spp. in Raw Milk by qPCR Targeting Bacteriophages. Microorganisms 2020; 8:microorganisms8091326. [PMID: 32878169 PMCID: PMC7565414 DOI: 10.3390/microorganisms8091326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023] Open
Abstract
Brucellosis is still a global health issue, and surveillance and control of this zoonotic disease in livestock remains a challenge. Human outbreaks are mainly linked to the consumption of unpasteurized dairy products. The detection of human pathogenic Brucella species in food of animal origin is time-consuming and laborious. Bacteriophages are broadly applied to the typing of Brucella isolates from pure culture. Since phages intracellularly replicate to very high numbers, they can also be used as specific indicator organisms of their host bacteria. We developed a novel real-time PCR (qPCR) assay targeting the highly conserved helicase sequence harbored in all currently known Brucella-specific lytic phages. Quality and performance tests determined a limit of detection of <1 genomic copy/µL. In raw milk artificially contaminated with Brucella microti, Izv phages were reliably detected after 39 h of incubation, indicating the presence of viable bacteria. The qPCR assay showed high stability in the milk matrix and significantly shortened the time to diagnosis when compared to traditional culture-based techniques. Hence, our molecular assay is a reliable and sensitive method to analyze phage titers, may help to reduce the hands-on time needed for the screening of potentially contaminated food, and reveals infection risks without bacterial isolation.
Collapse
|
7
|
Jaumaux F, P. Gómez de Cadiñanos L, Gabant P. In the Age of Synthetic Biology, Will Antimicrobial Peptides be the Next Generation of Antibiotics? Antibiotics (Basel) 2020; 9:antibiotics9080484. [PMID: 32781540 PMCID: PMC7460114 DOI: 10.3390/antibiotics9080484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Antibiotics have changed human health and revolutionised medical practice since the Second World War. Today, the use of antibiotics is increasingly limited by the rise of antimicrobial-resistant strains. Additionally, broad-spectrum antibiotic activity is not adapted to maintaining a balanced microbiome essential for human health. Targeted antimicrobials could overcome these two drawbacks. Although the rational design of targeted antimicrobial molecules presents a formidable challenge, in nature, targeted genetically encoded killing molecules are used by microbes in their natural ecosystems. The use of a synthetic biology approach allows the harnessing of these natural functions. In this commentary article we illustrate the potential of applying synthetic biology towards bacteriocins to design a new generation of antimicrobials.
Collapse
|
8
|
Ramarao N, Tran SL, Marin M, Vidic J. Advanced Methods for Detection of Bacillus cereus and Its Pathogenic Factors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2667. [PMID: 32392794 PMCID: PMC7273213 DOI: 10.3390/s20092667] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022]
Abstract
Bacillus cereus is an opportunistic foodborne pathogen causing food intoxication and infectious diseases. Different toxins and pathogenic factors are responsible for diarrheal syndrome, like nonhemolytic enterotoxin Nhe, hemolytic enterotoxin Hbl, enterotoxin FM and cytotoxin K, while emetic syndrome is caused by the depsipeptide cereulide toxin. The traditional method of B. cereus detection is based on the bacterial culturing onto selective agars and cells enumeration. In addition, molecular and chemical methods are proposed for toxin gene profiling, toxin quantification and strain screening for defined virulence factors. Finally, some advanced biosensors such as phage-based, cell-based, immunosensors and DNA biosensors have been elaborated to enable affordable, sensitive, user-friendly and rapid detection of specific B. cereus strains. This review intends to both illustrate the state of the B. cereus diagnostic field and to highlight additional research that is still at the development level.
Collapse
Affiliation(s)
- Nalini Ramarao
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (S.-L.T.); (M.M.)
| | | | | | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (S.-L.T.); (M.M.)
| |
Collapse
|
9
|
Bacteriophages as Potential Tools for Detection and Control of Salmonella spp. in Food Systems. Microorganisms 2019; 7:microorganisms7110570. [PMID: 31744260 PMCID: PMC6920764 DOI: 10.3390/microorganisms7110570] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/21/2023] Open
Abstract
The global problem of antibiotic resistance in bacteria is quickly developing in most antibiotics used in hospitals and livestock. Recently, the infections with multi-drug resistant (MDR) bacteria become a major cause of death worldwide. Current antibiotics are not very effective in treating MDR Salmonella infections, which have become a public health threat. Therefore, novel approaches are needed to rapidly detect and effectively control antibiotic-resistant pathogens. Bacteriophages (phages) have seen renewed attention for satisfying those requirements due to their host-specific properties. Therefore, this review aims to discuss the possibility of using phages as a detection tool for recognizing bacterial cell surface receptors and an alternative approach for controlling antibiotic-resistant pathogens in food systems.
Collapse
|
10
|
Imai M, Mine K, Tomonari H, Uchiyama J, Matuzaki S, Niko Y, Hadano S, Watanabe S. Dark-Field Microscopic Detection of Bacteria using Bacteriophage-Immobilized SiO 2@AuNP Core-Shell Nanoparticles. Anal Chem 2019; 91:12352-12357. [PMID: 31464422 DOI: 10.1021/acs.analchem.9b02715] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To replace molecular biological and immunological methods, biosensors have recently been developed for the rapid and sensitive detection of bacteria. Among a wide variety of biological materials, bacteriophages have received increasing attention as promising alternatives to antibodies in biosensor applications. Thus, we herein present a rapid and highly selective detection method for pathogenic bacteria, which combines dark-field light scattering imaging with a plasmonic biosensor system. The plasmonic biosensor system employs bacteriophages as the biorecognition element and the aggregation-induced light scattering signal of gold nanoparticle-assembled silica nanospheres as a signal transducer. Using Staphylococcus aureus strain SA27 as a model analyte, we demonstrated that the plasmonic biosensor system detects S. aureus in the presence of excess Escherichia coli in a highly selective manner. After the sample and the S. aureus phage S13'-conjugated plasmon scattering probe were mixed, S. aureus detection was completed within 15-20 min with a detection limit of 8 × 104 colony forming units per milliliter.
Collapse
Affiliation(s)
| | | | | | - Jumpei Uchiyama
- School of Veterinary Medicine , Azabu University , 1-17-71 Fuchinobe , Sagamihara-shi 229-8501 , Kanagawa , Japan
| | - Shigenobu Matuzaki
- Department of Microbiology and Infection, Kochi Medical School , Kochi University , Kohasu, Okoh-cho , Nankoku-shi 780-8505 , Kochi , Japan
| | | | | | | |
Collapse
|
11
|
Su Y, Geng Z, Fan Z, Wang S, Lv X, Fang W, Pei W, Chen H. Exploring surface sensitivity of Rayleigh anomaly in metal/dielectric multilayer gratings. OPTICS EXPRESS 2019; 27:14152-14162. [PMID: 31163868 DOI: 10.1364/oe.27.014152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Biosensors based on Rayleigh anomaly (RA) in metal gratings exhibit impressive bulk refractive index (RI) sensitivity and narrow linewidth. However, the electric field enhancement extends far away from surface of the gratings, which limits the application on biosensor where the RI changes are restricted at the sensor interface. To overcome this shortcoming, a novel grating composed of a 8-layer Au/Al2O3 stack was optimized by numerical simulation. The electric field is limited in several hundreds of nanometers from surface. The surface sensitivity increases 10 times than that of Au gratings at the detection depth of less than 400 nm. The surface index sensitivity can be improved 5 times under oblique incidence than that under normal incidence when the thickness of cover media is 20 nm.
Collapse
|
12
|
Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan AI, Baskar AV, Ilbeygi H, Ramadass K, Kambala V, Vinu A. Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180280] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gopalan Sai-Anand
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Arumugam Sivanesan
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Metrohm Australia, 56 Buffalo Road, Gladesville, NSW 2111, Australia
| | - Mercy R Benzigar
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Anantha-Iyengar Gopalan
- Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 41566, Korea
| | - Arun Vijay Baskar
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hamid Ilbeygi
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Venkata Kambala
- Hudson Marketing Pty Ltd, Level 2/131 Macquarie St, Sydney NSW 2000, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
13
|
Xia Y, Zhang P, Yuan H, Su R, Huang R, Qi W, He Z. Sequential sandwich immunoassay for simultaneous detection in trace samples using single-channel surface plasmon resonance. Analyst 2019; 144:5700-5705. [DOI: 10.1039/c9an01183h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient and facile method of a sequential sandwich immunoassay was developed for simultaneous detection in trace samples using single-channel SPR with low-dosage samples and testing times.
Collapse
Affiliation(s)
- Yinqiang Xia
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Peiqian Zhang
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Hui Yuan
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Renliang Huang
- School of Environmental Science and Engineering
- Tianjin University
- Tianjin 300072
- PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Zhimin He
- State Key Laboratory of Chemical Engineering
- Tianjin Key Laboratory of Membrane Science and Desalination Technology
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| |
Collapse
|
14
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
15
|
Rippa M, Castagna R, Zhou J, Paradiso R, Borriello G, Bobeico E, Petti L. Dodecagonal plasmonic quasicrystals for phage-based biosensing. NANOTECHNOLOGY 2018; 29:405501. [PMID: 29998850 DOI: 10.1088/1361-6528/aad2f5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, we fabricate and characterize a novel sensitive two-dimensional surface enhanced Raman spectroscopy (SERS) substrate made of plasmonic nanocavities in a photonic quasicrystal arrangement characterized by a 12-fold rotational symmetry. Our SERS device is capable of detecting chemisorbed bacteriophages at a femtomolar range. Most importantly, the paper presents for the first time a study on the procedure to functionalize the plasmonic quasicrystal with bacteriophages of the Podoviridae family. The immobilization of the phages on the plasmonic substrate has been studied and verified through SERS measurements. A new stable peak, visible in the SERS spectra at 1326 cm-1 at a greater than 60 times amplification, confirms the immobilization of the phages on the substrate. This functionalization approach can be used also for other types of phages or plasmonic sensors and hence, our achievements could allow the development of novel systems for the specific detection of different species of bacteria.
Collapse
Affiliation(s)
- M Rippa
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello' of CNR, Pozzuoli, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Hill C, Mills S, Ross RP. Phages & antibiotic resistance: are the most abundant entities on earth ready for a comeback? Future Microbiol 2018; 13:711-726. [PMID: 29792526 DOI: 10.2217/fmb-2017-0261] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacteriophages, which lost out to antibiotic therapy in the past, may be poised to make a comeback. Once discarded because of their narrow activity spectrum, it can now be viewed as a major advantage that these intracellular, self-replicating entities can exert their killing effect with minimal damage to the commensal microbiome. In eastern Europe, phages continue to be used both prophylactically and therapeutically to treat infections. More recently, much needed regulated clinical trials are underway with a view to restoring phage therapy as a tool for mainstream medicine, although current regulations may impede their full potential. One hundred years after their discovery, and amid an antibiotic resistance crisis, we must ask, what can be done to harness their full antibacterial potential?
Collapse
Affiliation(s)
- Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Susan Mills
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Reynolds P Ross
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Chen Y, Wang Z, Liu Y, Wang X, Li Y, Ma P, Gu B, Li H. Recent advances in rapid pathogen detection method based on biosensors. Eur J Clin Microbiol Infect Dis 2018; 37:1021-1037. [DOI: 10.1007/s10096-018-3230-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 12/28/2022]
|
18
|
Zhang Q, Wang Q, Xu S, Zuo L, You X, Hu HY. Aminoglycoside-based novel probes for bacterial diagnostic and therapeutic applications. Chem Commun (Camb) 2018; 53:1366-1369. [PMID: 27935615 DOI: 10.1039/c6cc08292k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Specific detection of pathogens has long been recognized as a vital strategy in the control of infectious diseases. Two novel theranostic neomycin analogs exhibit efficient targeting, labelling and killing of broad spectrum bacteria while not damaging macrophage-like cells. Furthermore, lipidated probe 2 clearly showed antibacterial activity against methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China. and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China. and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Limin Zuo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuefu You
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China. and Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| |
Collapse
|
19
|
Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R. Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov Today 2017; 23:448-455. [PMID: 29158194 DOI: 10.1016/j.drudis.2017.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
Fast and reliable bacteria detection is crucial for lowering the socioeconomic burden related to bacterial infections (e.g., in healthcare, industry or security). Bacteriophages (i.e., viruses with bacterial hosts) pose advantages such as great specificity, robustness, toughness and cheap preparation, making them popular biorecognition elements in biosensors and other assays for bacteria detection. There are several possible designs of bacteriophage-based biosensors. Here, we focus on developments based on whole virions as recognition agents. We divide the review into sections dealing with phage lysis as an analytical signal, phages as capturing elements in assays and phage-based sensing layers, putting the main focus on development reported within the past three years but without omitting the fundamentals.
Collapse
Affiliation(s)
- Łukasz Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Janczuk-Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
20
|
Mustafa F, Hassan RYA, Andreescu S. Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2121. [PMID: 28914769 PMCID: PMC5621351 DOI: 10.3390/s17092121] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 01/30/2023]
Abstract
Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA.
| | - Rabeay Y A Hassan
- Applied Organic Chemistry Department, National Research Centre (NRC), El Bohouth st., Dokki, 12622-Giza, Egypt.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA.
| |
Collapse
|
21
|
Li Y, Yang X, Zhao W. Emerging Microtechnologies and Automated Systems for Rapid Bacterial Identification and Antibiotic Susceptibility Testing. SLAS Technol 2017; 22:585-608. [PMID: 28850804 DOI: 10.1177/2472630317727519] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rapid bacterial identification (ID) and antibiotic susceptibility testing (AST) are in great demand due to the rise of drug-resistant bacteria. Conventional culture-based AST methods suffer from a long turnaround time. By necessity, physicians often have to treat patients empirically with antibiotics, which has led to an inappropriate use of antibiotics, an elevated mortality rate and healthcare costs, and antibiotic resistance. Recent advances in miniaturization and automation provide promising solutions for rapid bacterial ID/AST profiling, which will potentially make a significant impact in the clinical management of infectious diseases and antibiotic stewardship in the coming years. In this review, we summarize and analyze representative emerging micro- and nanotechnologies, as well as automated systems for bacterial ID/AST, including both phenotypic (e.g., microfluidic-based bacterial culture, and digital imaging of single cells) and molecular (e.g., multiplex PCR, hybridization probes, nanoparticles, synthetic biology tools, mass spectrometry, and sequencing technologies) methods. We also discuss representative point-of-care (POC) systems that integrate sample processing, fluid handling, and detection for rapid bacterial ID/AST. Finally, we highlight major remaining challenges and discuss potential future endeavors toward improving clinical outcomes with rapid bacterial ID/AST technologies.
Collapse
Affiliation(s)
- Yiyan Li
- 1 Sue and Bill Gross Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA.,7 Department of Physics and Engineering, Fort Lewis College, Durango, Colorado, USA
| | | | - Weian Zhao
- 1 Sue and Bill Gross Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA.,6 Department of Biological Chemistry, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
22
|
Rippa M, Castagna R, Pannico M, Musto P, Borriello G, Paradiso R, Galiero G, Bolletti Censi S, Zhou J, Zyss J, Petti L. Octupolar Metastructures for a Highly Sensitive, Rapid, and Reproducible Phage-Based Detection of Bacterial Pathogens by Surface-Enhanced Raman Scattering. ACS Sens 2017; 2:947-954. [PMID: 28750539 DOI: 10.1021/acssensors.7b00195] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The development of fast and ultrasensitive methods to detect bacterial pathogens at low concentrations is of high relevance for human and animal health care and diagnostics. In this context, surface-enhanced Raman scattering (SERS) offers the promise of a simplified, rapid, and high-sensitive detection of biomolecular interactions with several advantages over previous assay methodologies. In this work, we have conceived reproducible SERS nanosensors based on tailored multilayer octupolar nanostructures which can combine high enhancement factor and remarkable molecular selectivity. We show that coating novel multilayer octupolar metastructures with proper self-assembled monolayer (SAM) and immobilized phages can provide label-free analysis of pathogenic bacteria via SERS leading to a giant increase in SERS enhancement. The strong relative intensity changes of about 2100% at the maximum scattered SERS wavelength, induced by the Brucella bacterium captured, demonstrate the performance advantages of the bacteriophage sensing scheme. We performed measurements at the single-cell level thus allowing fast identification in less than an hour without any demanding sample preparation process. Our results based on designing well-controlled octupolar coupling platforms open up new opportunities toward the use of bacteriophages as recognition elements for the creation of SERS-based multifunctional biochips for rapid culture and label-free detection of bacteria.
Collapse
Affiliation(s)
- Massimo Rippa
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, 80072 Pozzuoli, Italy
| | - Riccardo Castagna
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, 80072 Pozzuoli, Italy
| | - Marianna Pannico
- Institute for Polymers, Composites, and Biomaterials of CNR, 80072 Pozzuoli, Italy
| | - Pellegrino Musto
- Institute for Polymers, Composites, and Biomaterials of CNR, 80072 Pozzuoli, Italy
| | - Giorgia Borriello
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, 80072 Pozzuoli, Italy
- Zooprofilattico Institute of the South, 80055 Portici, Italy
| | - Rubina Paradiso
- Zooprofilattico Institute of the South, 80055 Portici, Italy
| | - Giorgio Galiero
- Zooprofilattico Institute of the South, 80055 Portici, Italy
| | | | - Jun Zhou
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, 80072 Pozzuoli, Italy
- Institute
of Photonics, Faculty of Science, Ningbo University, Ningbo 315211, China
| | - Joseph Zyss
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, 80072 Pozzuoli, Italy
- Laboratoire
de Photonique Quantique et Moléculaire, CNRS and Ecole Normale Paris-Saclay, 94230 Cachan, France
| | - Lucia Petti
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello” of CNR, 80072 Pozzuoli, Italy
| |
Collapse
|
23
|
Richter Ł, Bielec K, Leśniewski A, Łoś M, Paczesny J, Hołyst R. Dense Layer of Bacteriophages Ordered in Alternating Electric Field and Immobilized by Surface Chemical Modification as Sensing Element for Bacteria Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19622-19629. [PMID: 28523910 DOI: 10.1021/acsami.7b03497] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Faster and more sensitive environmental monitoring should be developed to face the worldwide problem of bacterial infections. To remedy this issue, we demonstrate a bacteria-sensing element that utilizes dense and ordered layers of bacteriophages specific to the given bacteria strain. We combine (1) the chemical modification of a surface to increase the surface coverage of bacteriophages (2) with an alternating electric field to greatly increase the number of properly oriented bacteriophages at the surface. Usually, in sensing elements, a random orientation of bacteriophages results in steric hindrance, which results in no more than a few percent of all receptors being available. An increased number of properly ordered phages results in the optimal performance of phage receptors, manifesting in up to a 64-fold increase in sensitivity and a limit of detection as low as 100 CFU mL-1. Our sensing elements can be applied for selective, sensitive, and fast (15 min) bacterial detection. A well-studied pair T4 bacteriophage-bacteria Escherichia coli, was used as a model; however, the method could be adapted to prepare bacteriophage-based sensors for detection of a variety of bacterial strains.
Collapse
Affiliation(s)
- Łukasz Richter
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Krzysztof Bielec
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Adam Leśniewski
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcin Łoś
- Department of Molecular Biology, University of Gdansk , Wita Stwosza 59, 80-308 Gdansk, Poland
- Phage Consultants , Partyzantów 10/18, 80-254 Gdansk, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
24
|
Chen J, Alcaine SD, Jackson AA, Rotello VM, Nugen SR. Development of Engineered Bacteriophages for Escherichia coli Detection and High-Throughput Antibiotic Resistance Determination. ACS Sens 2017; 2:484-489. [PMID: 28723178 DOI: 10.1021/acssensors.7b00021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
T7 bacteriophages (phages) have been genetically engineered to carry the lacZ operon, enabling the overexpression of beta-galactosidase (β-gal) during phage infection and allowing for the enhanced colorimetric detection of Escherichia coli (E. coli). Following the phage infection of E. coli, the enzymatic activity of the released β-gal was monitored using a colorimetric substrate. Compared with a control T7 phage, our T7lacZ phage generated significantly higher levels of β-gal expression following phage infection, enabling a lower limit of detection for E. coli cells. Using this engineered T7lacZ phage, we were able to detect E. coli cells at 10 CFU·mL-1 within 7 h. Furthermore, we demonstrated the potential for phage-based sensing of bacteria antibiotic resistance profiling using our T7lacZ phage, and subsequent β-gal expression to detect antibiotic resistant profile of E. coli strains.
Collapse
Affiliation(s)
- Juhong Chen
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New
York 14853, United States
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Samuel D. Alcaine
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New
York 14853, United States
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Angelyca A. Jackson
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New
York 14853, United States
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Sam R. Nugen
- Department
of Food Science, Cornell University, Stocking Hall, Ithaca, New
York 14853, United States
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Wang D, Chen J, Nugen SR. Electrochemical Detection of Escherichia coli from Aqueous Samples Using Engineered Phages. Anal Chem 2017; 89:1650-1657. [DOI: 10.1021/acs.analchem.6b03752] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Danhui Wang
- Department
of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department
of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Juhong Chen
- Department
of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department
of Food Science, Cornell University, Ithaca, New York 14853, United States
| | - Sam R. Nugen
- Department
of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Department
of Food Science, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Braff D, Shis D, Collins JJ. Synthetic biology platform technologies for antimicrobial applications. Adv Drug Deliv Rev 2016; 105:35-43. [PMID: 27089812 DOI: 10.1016/j.addr.2016.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/08/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels.
Collapse
Affiliation(s)
- Dana Braff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - David Shis
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
27
|
Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A, Nickho H, Yousefi M, Majidi J. Phage display as a promising approach for vaccine development. J Biomed Sci 2016; 23:66. [PMID: 27680328 PMCID: PMC5041315 DOI: 10.1186/s12929-016-0285-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.
Collapse
Affiliation(s)
- Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Hamid Nickho
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Krithiga N, Viswanath KB, Vasantha V, Jayachitra A. Specific and selective electrochemical immunoassay for Pseudomonas aeruginosa based on pectin–gold nano composite. Biosens Bioelectron 2016; 79:121-9. [DOI: 10.1016/j.bios.2015.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 01/01/2023]
|
29
|
|
30
|
Tai YH, Chang DM, Pan MY, Huang DW, Wei PK. Sensitive Detection of Small Particles in Fluids Using Optical Fiber Tip with Dielectrophoresis. SENSORS 2016; 16:303. [PMID: 26927128 PMCID: PMC4813878 DOI: 10.3390/s16030303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/16/2022]
Abstract
This work presents using a tapered fiber tip coated with thin metallic film to detect small particles in water with high sensitivity. When an AC voltage applied to the Ti/Al coated fiber tip and indium tin oxide (ITO) substrate, a gradient electric field at the fiber tip induced attractive/repulsive force to suspended small particles due to the frequency-dependent dielectrophoresis (DEP) effect. Such DEP force greatly enhanced the concentration of the small particles near the tip. The increase of the local concentration also increased the scattering of surface plasmon wave near the fiber tip. Combined both DEP effect and scattering optical near-field, we show the detection limit of the concentration for 1.36 μm polystyrene beads can be down to 1 particle/mL. The detection limit of the Escherichia coli (E. coli) bacteria was 20 CFU/mL. The fiber tip sensor takes advantages of ultrasmall volume, label-free and simple detection system.
Collapse
Affiliation(s)
- Yi-Hsin Tai
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.
| | - Dao-Ming Chang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Ming-Yang Pan
- Institute of Photonics Technologies, National Tsing-Hua University, Hsinchu 30013, Taiwan.
| | - Ding-Wei Huang
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
31
|
Wang Z, Wang D, Chen J, Sela DA, Nugen SR. Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli. Analyst 2015; 141:1009-16. [PMID: 26689710 DOI: 10.1039/c5an01769f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The application of bacteriophage combined with the use of magnetic separation techniques has emerged as a valuable tool for the sensitive identification and detection of bacteria. In this study, bacteriophage T7 labelled magnetic beads were developed for the detection of viable bacterial cells. Fusion of the biotin acceptor peptide (BAP) with the phage capsid protein gene and the insertion of the biotin ligase (BirA) gene enabled the display of the BAP ligand and the expression protein BirA during the replication cycle of phage infection. The replicated Escherichia coli specific bacteriophage was biotinylated in vivo and coated on magnetic beads via streptavidin-biotin interaction. Immobilization efficiency of the recombinant phage was investigated on magnetic beads and the phage-bead complex was evaluated by detecting E. coli from inoculated broth. When compared to the wild type phage, the recombinant phage T7birA-bap had a high immobilization density on streptavidin-coated magnetic beads and could capture 86.2% of E. coli cells from broth within 20 min. As this phage-based biomagnetic detection approach provided a low detection limit of 10(2) CFU mL(-1) without pre-enrichment, we believe this assay could be further developed to detect other bacteria of interest by applying host-specific phages. This would be of particular use in detecting bacteria which are difficult to grow or replicate slowly in culture.
Collapse
Affiliation(s)
- Ziyuan Wang
- University of Massachusetts, 246 Chenoweth, 102 Holdsworth Way, Amherst, MA, USA.
| | | | | | | | | |
Collapse
|
32
|
Chen J, Li Y, Huang K, Wang P, He L, Carter KR, Nugen SR. Nanoimprinted Patterned Pillar Substrates for Surface-Enhanced Raman Scattering Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22106-13. [PMID: 26402032 DOI: 10.1021/acsami.5b07879] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A pragmatic method to deposit silver nanoparticles on polydopamine-coated nanoimprinted pillars for use as surface-enhanced Raman scattering (SERS) substrates was developed. Pillar arrays consisting of poly(methyl methacrylate) (PMMA) that ranged in diameter from 300 to 500 nm were fabricated using nanoimprint lithography. The arrays had periodicities from 0.6 to 4.0 μm. A polydopamine layer was coated on the pillars in order to facilitate the reduction of silver ions to create silver nucleation sites during the electroless deposition of sliver nanoparticles. The size and density of silver nanoparticles were controlled by adjusting the growth time for the optimization of the SERS performance. The size of the surface-adhered nanoparticles ranged between 75 and 175 nm, and the average particle density was ∼30 particles per μm(2). These functionalized arrays had a high sensitivity and excellent signal reproducibility for the SERS-based detection of 4-methoxybenzoic acid. The substrates were also able to allow the SERS-based differentiation of three types of bacteriophages (λ, T3, and T7).
Collapse
Affiliation(s)
- Juhong Chen
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Yinyong Li
- Department of Polymer Science and Engineering, University of Massachusetts , 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Kang Huang
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Panxue Wang
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Lili He
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Kenneth R Carter
- Department of Polymer Science and Engineering, University of Massachusetts , 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Sam R Nugen
- Department of Food Science, University of Massachusetts , 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
33
|
Chen J, Alcaine SD, Jiang Z, Rotello VM, Nugen SR. Detection of Escherichia coli in Drinking Water Using T7 Bacteriophage-Conjugated Magnetic Probe. Anal Chem 2015; 87:8977-84. [DOI: 10.1021/acs.analchem.5b02175] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Juhong Chen
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Samuel D. Alcaine
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Ziwen Jiang
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Vincent M. Rotello
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Sam R. Nugen
- Department
of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
34
|
Wu F, Liu L, Feng L, Xu D, Lu N. Improving the sensing performance of double gold gratings by oblique incident light. NANOSCALE 2015; 7:13026-13032. [PMID: 26172223 DOI: 10.1039/c5nr02660a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Here we demonstrate a simple method to improve the plasmonic sensing performance of gold gratings. The gratings consist of periodic polymer gratings covered with a gold layer, created by nanoimprint lithography and metal deposition. We investigated the effect of gold thickness and the incident angles on the plasmonic sensing performance. With the optimized gold layer, the full-width at half maximum of this grating was reduced by 60% by using the oblique incident light instead of the normal incident light. A maximum value of the figure of merit at oblique incidence is 12, which is double the one at normal incidence.
Collapse
Affiliation(s)
- Feifei Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | | | | | | | | |
Collapse
|
35
|
A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:437-46. [DOI: 10.1007/s00249-015-1044-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
36
|
Justino CI, Freitas AC, Pereira R, Duarte AC, Rocha Santos TA. Recent developments in recognition elements for chemical sensors and biosensors. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Alcaine SD, Pacitto D, Sela DA, Nugen SR. Phage & phosphatase: a novel phage-based probe for rapid, multi-platform detection of bacteria. Analyst 2015; 140:7629-36. [DOI: 10.1039/c5an01181g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A bacteriophage-based biosensing platform forE. coliis proposed. The bacteriophage T7 was genetically engineered to carry the alkaline phosphatase genephoA. The overexpression of the gene was quantified with colorimetric, fluorescent, and chemiluminescent methods.
Collapse
Affiliation(s)
- S. D. Alcaine
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - D. Pacitto
- Department of Microbiology
- University of Massachusetts
- Amherst
- USA
| | - D. A. Sela
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
- Department of Microbiology
| | - S. R. Nugen
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
- Department of Microbiology
| |
Collapse
|
38
|
Kaur G, Raj T, Kaur N, Singh N. Pyrimidine-based functional fluorescent organic nanoparticle probe for detection of Pseudomonas aeruginosa. Org Biomol Chem 2015; 13:4673-9. [DOI: 10.1039/c5ob00206k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Organic nanoparticles are developed for the sensing of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Centre for Nanoscience & Nanotechnology (UIEAST)
- Panjab University
- Chandigarh 160014
- India
| | - Tilak Raj
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - Navneet Kaur
- Centre for Nanoscience & Nanotechnology (UIEAST)
- Panjab University
- Chandigarh 160014
- India
| | - Narinder Singh
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| |
Collapse
|
39
|
Arutyunov D, Singh U, El-Hawiet A, Seckler HDS, Nikjah S, Joe M, Bai Y, Lowary TL, Klassen JS, Evoy S, Szymanski CM. Mycobacteriophage cell binding proteins for the capture of mycobacteria. BACTERIOPHAGE 2014; 4:e960346. [PMID: 26713219 DOI: 10.4161/21597073.2014.960346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/20/2014] [Accepted: 08/28/2014] [Indexed: 12/20/2022]
Abstract
Slow growing Mycobacteriumavium subsp. paratuberculosis (MAP) causes a deadly condition in cattle known as Johne's disease where asymptomatic carriers are the major source of disease transmission. MAP was also shown to be associated with chronic Crohn's disease in humans. Mycobacterium smegmatis is a model mycobacterium that can cause opportunistic infections in a number of human tissues and, rarely, a respiratory disease. Currently, there are no rapid, culture-independent, reliable and inexpensive tests for the diagnostics of MAP or M. smegmatis infections. Bacteriophages are viruses producing a number of proteins that effectively and specifically recognize the cell envelopes of their bacterial hosts. We demonstrate that the mycobacterial phage L5 minor tail protein Gp6 and lysin Gp10 are useful tools for the rapid capture of mycobacteria. Immobilized Gp10 was able to bind both MAP and M. smegmatis cells whereas Gp6 was M. smegmatis specific. Neither of the 2 proteins was able to capture E. coli, salmonella, campylobacter or Mycobacterium marinum cells. Gp6 was detected previously as a component of the phage particle and shows no homology to proteins with known function. Therefore, electrospray ionization mass spectrometry was used to determine whether recombinant Gp6 could bind to a number of chemically synthesized fragments of mycobacterial surface glycans. These findings demonstrate that mycobacteriophage proteins could be used as a pathogen capturing platform that can potentially improve the effectiveness of existing diagnostic methods.
Collapse
Affiliation(s)
- Denis Arutyunov
- Department of Biological Sciences; University of Alberta , Edmonton, AB Canada ; Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada
| | - Upasana Singh
- Department of Electrical and Computer Engineering; University of Alberta ; Edmonton, AB Canada
| | - Amr El-Hawiet
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - Henrique Dos Santos Seckler
- Department of Biological Sciences; University of Alberta , Edmonton, AB Canada ; Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada
| | - Sanaz Nikjah
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - Maju Joe
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - Yu Bai
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - Todd L Lowary
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - John S Klassen
- Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada ; Department of Chemistry; University of Alberta ; Edmonton, AB Canada
| | - Stephane Evoy
- Department of Electrical and Computer Engineering; University of Alberta ; Edmonton, AB Canada
| | - Christine M Szymanski
- Department of Biological Sciences; University of Alberta , Edmonton, AB Canada ; Alberta Glycomics Center; University of Alberta ; Edmonton, AB Canada
| |
Collapse
|
40
|
Adley CC. Past, Present and Future of Sensors in Food Production. Foods 2014; 3:491-510. [PMID: 28234333 PMCID: PMC5302250 DOI: 10.3390/foods3030491] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022] Open
Abstract
Microbial contamination management is a crucial task in the food industry. Undesirable microbial spoilage in a modern food processing plant poses a risk to consumers' health, causing severe economic losses to the manufacturers and retailers, contributing to wastage of food and a concern to the world's food supply. The main goal of the quality management is to reduce the time interval between the filling and the detection of a microorganism before release, from several days, to minutes or, at most, hours. This would allow the food company to stop the production, limiting the damage to just a part of the entire batch, with considerable savings in terms of product value, thereby avoiding the utilization of raw materials, packaging and strongly reducing food waste. Sensor systems offer major advantages over current systems as they are versatile and affordable but need to be integrated in the existing processing systems as a process analytical control (PAT) tool. The desire for good selectivity, low cost, portable and usable at working sites, sufficiently rapid to be used at-line or on-line, and no sample preparation devices are required. The application of biosensors in the food industry still has to compete with the standard analytical techniques in terms of cost, performance and reliability.
Collapse
Affiliation(s)
- Catherine C Adley
- Microbiology Laboratory, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
41
|
Hwang I. Virus outbreaks in chemical and biological sensors. SENSORS (BASEL, SWITZERLAND) 2014; 14:13592-612. [PMID: 25068866 PMCID: PMC4179090 DOI: 10.3390/s140813592] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 12/11/2022]
Abstract
Filamentous bacteriophages have successfully been used to detect chemical and biological analytes with increased selectivity and sensitivity. The enhancement largely originates not only from the ability of viruses to provide a platform for the surface display of a wide range of biological ligands, but also from the geometric morphologies of the viruses that constitute biomimetic structures with larger surface area-to-volume ratio. This review will appraise the mechanism of multivalent display of the viruses that enables surface modification of virions either by chemical or biological methods. The accommodation of functionalized virions to various materials, including polymers, proteins, metals, nanoparticles, and electrodes for sensor applications will also be discussed.
Collapse
Affiliation(s)
- Inseong Hwang
- The Research Institute of Basic Sciences, Seoul National University, Seoul 147-779, Korea.
| |
Collapse
|
42
|
Bacteriophage-based latex agglutination test for rapid identification of Staphylococcus aureus. J Clin Microbiol 2014; 52:3394-8. [PMID: 25031449 DOI: 10.1128/jcm.01432-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid diagnosis is essential for the management of Staphylococcus aureus infections. A host recognition protein from S. aureus bacteriophage phiSLT was recombinantly produced and used to coat streptavidin latex beads to develop a latex agglutination test (LAT). The diagnostic accuracy of this bacteriophage-based test was compared with that of a conventional LAT, Pastorex Staph-Plus, by investigating a clinical collection of 86 S. aureus isolates and 128 coagulase-negative staphylococci (CoNS) from deep tissue infections. All of the clinical S. aureus isolates were correctly identified by the bacteriophage-based test. While most of the CoNS were correctly identified as non-S. aureus isolates, 7.9% of the CoNS caused agglutination. Thus, the sensitivity of the bacteriophage-based LAT for identification of S. aureus among clinical isolates was 100%, its specificity was 92.1%, its positive predictive value (PPV) was 89.6%, and its negative predictive value (NPV) was 100%. The sensitivity, specificity, PPV, and NPV of the Pastorex LAT for the identification of S. aureus were 100%, 99.2%, 98.9%, and 100%, respectively. Among the additionally tested 35 S. aureus and 91 non-S. aureus staphylococcal reference and type strains, 1 isolate was false negative by each system; 13 and 8 isolates were false positive by the bacteriophage-based and Pastorex LATs, respectively. The ability of the phiSLT protein to detect S. aureus was dependent on the presence of wall teichoic acid (WTA) and corresponded to the production of ribitol phosphate WTA, which is found in most S. aureus clones but only a small minority of CoNS. Bacteriophage-based LAT identification is a promising strategy for rapid pathogen identification. Finding more specific bacteriophage proteins would increase the specificity of this novel diagnostic approach.
Collapse
|
43
|
Citorik RJ, Mimee M, Lu TK. Bacteriophage-based synthetic biology for the study of infectious diseases. Curr Opin Microbiol 2014; 19:59-69. [PMID: 24997401 PMCID: PMC4125527 DOI: 10.1016/j.mib.2014.05.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/14/2014] [Accepted: 05/28/2014] [Indexed: 01/01/2023]
Abstract
Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome.
Collapse
Affiliation(s)
- Robert J. Citorik
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA
| | - Mark Mimee
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA
| | - Timothy K. Lu
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|