1
|
Moreno-Gomez N, Athanassiadis AG, Poortinga AT, Fischer P. Antibubbles Enable Tunable Payload Release with Low-Intensity Ultrasound. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305296. [PMID: 37515825 DOI: 10.1002/adma.202305296] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/25/2023] [Indexed: 07/31/2023]
Abstract
The benefits of ultrasound are its ease-of-use and its ability to precisely deliver energy in opaque and complex media. However, most materials responsive to ultrasound show a weak response, requiring the use of high powers, which are associated with undesirable streaming, cavitation, or temperature rise. These effects hinder response control and may even cause damage to the medium where the ultrasound is applied. Moreover, materials that are currently in use rely on all-or-nothing effects, limiting the ability to fine-tune the response of the material on the fly. For these reasons, there is a need for materials that can respond to low intensity ultrasound with programmable responses. Here it is demonstrated that antibubbles are a low-intensity-ultrasound-responsive material system that can controllably release a payload using acoustic pressures in the kilopascal range. Varying their size and composition tunes the release pressure, and the response can be switched between a single release and stepwise release across multiple ultrasound pulses. Observations using confocal and high-speed microscopy reveal different ways that can lead to release. These findings lay the groundwork to design antibubbles that controllably respond to low-intensity ultrasound, opening a wide range of applications ranging from ultrasound-responsive material systems to carriers for targeted delivery.
Collapse
Affiliation(s)
- Nicolas Moreno-Gomez
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Athanasios G Athanassiadis
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Albert T Poortinga
- Polymer Technology Group, Eindhoven University of Technology, De Rondom 70, Eindhoven, 5612 AZ, The Netherlands
| | - Peer Fischer
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Fu Z, Zhang Y, Geng X, Chi K, Liu C, Song C, Cai G, Chen X, Hong Q. Optimization strategies of mesenchymal stem cell-based therapy for acute kidney injury. Stem Cell Res Ther 2023; 14:116. [PMID: 37122024 PMCID: PMC10150535 DOI: 10.1186/s13287-023-03351-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
Considering the high prevalence and the lack of targeted pharmacological management of acute kidney injury (AKI), the search for new therapeutic approaches for it is in urgent demand. Mesenchymal stem cells (MSCs) have been increasingly recognized as a promising candidate for the treatment of AKI. However, clinical translation of MSCs-based therapies is hindered due to the poor retention and survival rates as well as the impaired paracrine ability of MSCs post-delivery. To address these issues, a series of strategies including local administration, three-dimensional culture, and preconditioning have been applied. Owing to the emergence and development of these novel biotechnologies, the effectiveness of MSCs in experimental AKI models is greatly improved. Here, we summarize the different approaches suggested to optimize the efficacy of MSCs therapy, aiming at promoting the therapeutic effects of MSCs on AKI patients.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
- Beidaihe Rehabilitation and Recuperation Center, Chinese People's Liberation Army Joint Logistics Support Force, Qinhuangdao, China
| | - Kun Chi
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengcheng Song
- Department of Nephrology, Beijing Electric Power Hospital, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
3
|
Wang T, Cornel EJ, Li C, Du J. Drug delivery approaches for enhanced antibiofilm therapy. J Control Release 2023; 353:350-365. [PMID: 36473605 DOI: 10.1016/j.jconrel.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Biofilms have attracted increasing attention in recent years. Many bacterial infections are associated with biofilm formation. A bacterial biofilm is an aggregated membrane-like substance that is composed of a large number of bacteria and their secreted extracellular polymeric substances. The traditional antibiofilm approaches, such as chemotherapy based on antibiotics, are often ineffective in eradicating biofilms owing to the limited diffusion ability of antibiotics within biofilms and inactivation of antibiotics by biofilms. Moreover, a larger dosage of antibiotics could be effective, but leads to an increased tolerance. Smart drug delivery systems that deliver antibiotics into the biofilm interior is a promising strategy to meet this challenge. In this review, we focus on the methods to improve drug delivery efficiency for enhanced chemotherapy of biofilms. Furthermore, we have summarized chemical approaches for enhanced drug delivery, such as chemical shields, charge reversal, and dual corona enhanced delivery strategies; these methods focus on physicochemical biofilm properties and specific biofilm features. Afterwards, physical approaches are discussed, such as magnetism-mediated drug delivery, electricity-mediated drug delivery, ultrasound-mediated drug delivery, and shock wave-mediated drug delivery. Finally, a perspective on the development of next-generation antibiofilm drug delivery systems is given.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
4
|
Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-Induced Drug Release from Stimuli-Responsive Hydrogels. Gels 2022; 8:554. [PMID: 36135267 PMCID: PMC9498906 DOI: 10.3390/gels8090554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/16/2022] Open
Abstract
Stimuli-responsive hydrogel drug delivery systems are designed to release a payload when prompted by an external stimulus. These platforms have become prominent in the field of drug delivery due to their ability to provide spatial and temporal control for drug release. Among the different external triggers that have been used, ultrasound possesses several advantages: it is non-invasive, has deep tissue penetration, and can safely transmit acoustic energy to a localized area. This review summarizes the current state of understanding about ultrasound-responsive hydrogels used for drug delivery. The mechanisms of inducing payload release and activation using ultrasound are examined, along with the latest innovative formulations and hydrogel design strategies. We also report on the most recent applications leveraging ultrasound activation for both cancer treatment and tissue engineering. Finally, the future perspectives offered by ultrasound-sensitive hydrogels are discussed.
Collapse
Affiliation(s)
- Tyus J. Yeingst
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Julien H. Arrizabalaga
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| | - Daniel J. Hayes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- Materials Research Institute, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
- The Huck Institute of the Life Sciences, Millennium Science Complex, The Pennsylvania State University, University Park, Centre County, PA 16802, USA
| |
Collapse
|
5
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Ghimire A, Song J. Anti-Periprosthetic Infection Strategies: From Implant Surface Topographical Engineering to Smart Drug-Releasing Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20921-20937. [PMID: 33914499 PMCID: PMC8130912 DOI: 10.1021/acsami.1c01389] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, periprosthetic bacterial infection remains a major challenge for orthopedic and dental implants. Bacterial colonization/biofilm formation around implants and their invasion into the dense skeletal tissue matrices are difficult to treat and could lead to implant failure and osteomyelitis. These complications require major revision surgeries and extended antibiotic therapies that are associated with high treatment cost, morbidity, and even mortality. Effective preventative measures mitigating risks for implant-related infections are thus in dire need. This review focuses on recent developments of anti-periprosthetic infection strategies aimed at either reducing bacterial adhesion, colonization, and biofilm formation or killing bacteria directly in contact with and/or in the vicinity of implants. These goals are accomplished through antifouling, quorum-sensing interfering, or bactericidal implant surface topographical engineering or surface coatings through chemical modifications. Surface topographical engineering of lotus leaf mimicking super-hydrophobic antifouling features and cicada wing-mimicking, bacterium-piercing nanopillars are both presented. Conventional physical coating/passive release of bactericidal agents is contrasted with their covalent tethering to implant surfaces through either stable linkages or linkages labile to bacterial enzyme cleavage or environmental perturbations. Pros and cons of these emerging anti-periprosthetic infection approaches are discussed in terms of their safety, efficacy, and translational potentials.
Collapse
Affiliation(s)
- Ananta Ghimire
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
7
|
Yin Chin S, Cheung Poh Y, Kohler AC, Compton JT, Hsu LL, Lau KM, Kim S, Lee BW, Lee FY, Sia SK. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci Robot 2021; 2. [PMID: 31289767 DOI: 10.1126/scirobotics.aah6451] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Implantable microdevices often have static components rather than moving parts, and exhibit limited biocompatibility. This paper demonstrates a fast manufacturing method which can produce features in biocompatible materials down to tens of microns in scale, with intricate and composite patterns in each layer. By exploiting unique mechanical properties of hydrogels, we developed a "locking mechanism" for precise actuation and movement of freely moving parts, which can provide functions such as valves, manifolds, rotors, pumps, and delivery of payloads. Hydrogel components could be tuned within a wide range of mechanical and diffusive properties, and can be controlled after implantation without a sustained power supply. In a mouse model of osteosarcoma, triggering of release of doxorubicin from the device over ten days showed high treatment efficacy and low toxicity, at one-tenth of a standard systemic chemotherapy dose. Overall, this platform, called "iMEMS", enables development of biocompatible implantable microdevices with a wide range of intricate moving components that can be wirelessly controlled on demand, in a manner that solves issues of device powering and biocompatibility.
Collapse
Affiliation(s)
- Sau Yin Chin
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Yukkee Cheung Poh
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Anne-Céline Kohler
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Jocelyn T Compton
- Department of Orthopedic Surgery, Columbia University Medical Center, 622 West 168 Street, New York, New York 10032, USA
| | - Lauren L Hsu
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Kathryn M Lau
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Sohyun Kim
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Benjamin W Lee
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Francis Y Lee
- Department of Orthopedic Surgery, Columbia University Medical Center, 622 West 168 Street, New York, New York 10032, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
8
|
Auñón Á, Esteban J, Doadrio AL, Boiza-Sánchez M, Mediero A, Eguibar-Blázquez D, Cordero-Ampuero J, Conde A, Arenas MÁ, de-Damborenea JJ, Aguilera-Correa JJ. Staphylococcus aureus Prosthetic Joint Infection Is Prevented by a Fluorine- and Phosphorus-Doped Nanostructured Ti-6Al-4V Alloy Loaded With Gentamicin and Vancomycin. J Orthop Res 2020; 38:588-597. [PMID: 31608498 DOI: 10.1002/jor.24496] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/04/2019] [Indexed: 02/04/2023]
Abstract
Prosthetic joint infection (PJI) is one of the most devastating complications in orthopedic surgery. One approach used to prevent PJI is local antibiotic therapy. This study evaluates the antibiotic release, in vitro cytocompatibility and in vivo effectiveness in preventing PJI caused by Staphylococcus aureus (S. aureus) of the fluorine- and phosphorus-doped, bottle-shaped, nanostructured (bNT) Ti-6Al-4V alloy loaded with a mixture of gentamicin and vancomycin (GV). We evaluated bNT Ti-6Al-4V loading with a mixture of GV, measuring the release of these antibiotics using high-performance liquid chromatography. Further, we describe bNT Ti-6Al-4V GV cytocompatibility and its efficacy against S. aureus using an in vivo rabbit model. GV was released from bNT Ti-6Al-4V following a Boltzmann non-linear model and maximum release values were obtained at 240 min for both antibiotics. The cell proliferation of MCT3T3-E1 osteoblastic cells significantly increased at 48 (28%) and 168 h (68%), as did the matrix mineralization (52%) of these cells and the gene expression of three of the most important markers related to bone differentiation (more than threefold for VEGF and BGLAP, and 65% for RunX) on bNT Ti-6Al-4V GV compared with control. In vivo study results show that bNT Ti-6Al-4V GV can prevent S. aureus PJI according to histopathological and microbiological results. According to our results, bNT Ti-6Al-4V loaded with a mixture of GV using the soaking method is a promising biomaterial with favorable cytocompatibility and osteointegration, demonstrating local bactericidal properties against S. aureus. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:588-597, 2020.
Collapse
Affiliation(s)
- Álvaro Auñón
- Department of Orthopedic Surgery, Fundación Jiménez Díaz University Hospital, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Antonio L Doadrio
- Department of Inorganic and Bioinorganic Chemistry, Health Research Institute, Complutense University of Madrid, 12 de Octubre i+12, 28040, Madrid, Spain
| | - Macarena Boiza-Sánchez
- Department of Pathology, Fundación Jiménez Díaz University Hospital, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Aranzazu Mediero
- Joint and Bone Research Unit, IIS-Fundación Jimenez Diaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Diego Eguibar-Blázquez
- Department of Experimental Surgery and Animal Research, IIS-Fundación Jimenez Diaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - José Cordero-Ampuero
- Department of Orthopaedic Surgery, University Hospital La Princesa, c/Océano Antártico 41, 28760, Tres Cantos, Spain
| | - Ana Conde
- Corrosion and Material Protection Group, Surface Engineering, Corrosion and Durability Department National Center for Metallurgical Research, (CENIM-CSIC) Av. Gregorio del Amo, 8, Madrid, 28040, Spain
| | - María-Ángeles Arenas
- Corrosion and Material Protection Group, Surface Engineering, Corrosion and Durability Department National Center for Metallurgical Research, (CENIM-CSIC) Av. Gregorio del Amo, 8, Madrid, 28040, Spain
| | - Juan-José de-Damborenea
- Corrosion and Material Protection Group, Surface Engineering, Corrosion and Durability Department National Center for Metallurgical Research, (CENIM-CSIC) Av. Gregorio del Amo, 8, Madrid, 28040, Spain
| | - John J Aguilera-Correa
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| |
Collapse
|
9
|
Ghilini F, Pissinis DE, Miñán A, Schilardi PL, Diaz C. How Functionalized Surfaces Can Inhibit Bacterial Adhesion and Viability. ACS Biomater Sci Eng 2019; 5:4920-4936. [DOI: 10.1021/acsbiomaterials.9b00849] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fiorela Ghilini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Diego E. Pissinis
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Alejandro Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Patricia L. Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Carolina Diaz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| |
Collapse
|
10
|
Wang M, Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J Orthop Translat 2018; 17:42-54. [PMID: 31194031 PMCID: PMC6551355 DOI: 10.1016/j.jot.2018.09.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 02/08/2023] Open
Abstract
Orthopaedic implants are recognised as important therapeutic devices in the successful clinical management of a wide range of orthopaedic conditions. However, implant-related infections remain a challenging and not uncommon issue in patients with implanted instrumentation or medical devices. Bacterial adhesion and formation of biofilm on the surface of the implant represent important processes towards progression of infection. Given the intimate association between infection and the implant surface, adequate treatment of the implant surface may help mitigate the risk of infection. This review summarises the current surface treatment technologies and their role in prevention of implant-related infection from the beginning. Translational potential of this article Despite great technological advancements, the prevalence of implant-related infections remains high. Four main challenges can be identified. (i) Insufficient mechanical stability can cause detachment of the implant surface coating, altering the antimicrobial ability of functionalized surfaces. (ii) Regarding drug-loaded coatings, a stable drug release profile is of vital importance for achieving effective bactericidal effect locally; however, burst release of the loaded antibacterial agents remains common. (iii) Although many coatings and modified surfaces provide superior antibacterial action, such functionalisation of surfaces sometimes has a detrimental effect on tissue biocompatibility, impairing the integration of the implants into the surrounding tissue. (iv) Biofilm eradication at the implant surface remains particularly challenging. This review summarised the recent progress made to address the aforementioned problems. By providing a perspective on state-of-the-art surface treatment strategies for medical implants, we hope to support the timely adoption of modern materials and techniques into clinical practice.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Su FY, Chen J, Son HN, Kelly AM, Convertine AJ, Ratner DM, Stayton PS. Polymer-augmented liposomes enhancing antibiotic delivery against intracellular infections. Biomater Sci 2018; 6:1976-1985. [PMID: 29850694 PMCID: PMC6195317 DOI: 10.1039/c8bm00282g] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pulmonary intracellular infections, such as tuberculosis, anthrax, and tularemia, have remained a significant challenge to conventional antibiotic therapy. Ineffective antibiotic treatment of these infections can lead not only to undesired side effects, but also to the emergence of antibiotic resistance. Aminoglycosides (e.g., streptomycin) have long been part of the therapeutic regiment for many pulmonary intracellular infections. Their bioavailability for intracellular bacterial pools, however, is limited by poor membrane permeability and rapid elimination. To address this challenge, polymer-augmented liposomes (PALs) were developed to provide improved cytosolic delivery of streptomycin to alveolar macrophages, an important host cell for intracellular pathogens. A multifunctional diblock copolymer was engineered to functionalize PALs with carbohydrate-mediated targeting, pH-responsive drug release, and endosomal release activity with a single functional polymer that replaces the pegylated lipid component to simplify the liposome formulation. The pH-sensing functionality enabled PALs to provide enhanced release of streptomycin under endosomal pH conditions (70% release in 6 hours) with limited release at physiological pH 7.4 (16%). The membrane-destabilizing activity connected to endosomal release was characterized in a hemolysis assay and PALs displayed a sharp pH profile across the endosomal pH development target range. The direct connection of this membrane-destabilizing pH profile to model drug release was demonstrated in an established pyranine/p-xylene bispyridinium dibromide (DPX) fluorescence dequenching assay. PALs displayed similar sharp pH-responsive release, whereas PEGylated control liposomes did not, and similar profiles were then shown for streptomycin release. The mannose-targeting capability of the PALs was also demonstrated with 2.5 times higher internalization compared to non-targeted PEGylated liposomes. Finally, the streptomycin-loaded PALs were shown to have a significantly improved intracellular antibacterial activity in a Francisella-macrophage co-culture model, compared with free streptomycin or streptomycin delivered by control PEGylated liposomes (13× and 16×, respectively). This study suggests the potential of PALs as a useful platform to deliver antibiotics for the treatment of intracellular macrophage infections.
Collapse
Affiliation(s)
- Fang-Yi Su
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jasmin Chen
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hye-Nam Son
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Abby M. Kelly
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Daniel M. Ratner
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Alsaiari SK, Hammami MA, Croissant JG, Omar HW, Neelakanda P, Yapici T, Peinemann KV, Khashab NM. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections. Adv Healthc Mater 2017; 6. [PMID: 28121071 DOI: 10.1002/adhm.201601135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Indexed: 11/05/2022]
Abstract
Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.
Collapse
Affiliation(s)
- Shahad K. Alsaiari
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Mohammed A. Hammami
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Jonas G. Croissant
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Haneen W. Omar
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Pradeep Neelakanda
- Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Tahir Yapici
- Analytical Core Lab; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Klaus-Viktor Peinemann
- Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials Laboratory (SHMs); Advanced Membranes and Porous Materials Center; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
13
|
Boda SK, Basu B. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2016; 105:2174-2190. [PMID: 27404048 DOI: 10.1002/jbm.b.33740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
A plethora of antimicrobial strategies are being developed to address prosthetic infection. The currently available methods for implant infection treatment include the use of antibiotics and revision surgery. Among the bacterial strains, Staphylococcus species pose significant challenges particularly, with regard to hospital acquired infections. In order to combat such life threatening infectious diseases, researchers have developed implantable biomaterials incorporating nanoparticles, antimicrobial reinforcements, surface coatings, slippery/non-adhesive and contact killing surfaces. This review discusses a few of the biomaterial and biophysical antimicrobial strategies, which are in the developmental stage and actively being pursued by several research groups. The clinical efficacy of biophysical stimulation methods such as ultrasound, electric and magnetic field treatments against prosthetic infection depends critically on the stimulation protocol and parameters of the treatment modality. A common thread among the three biophysical stimulation methods is the mechanism of bactericidal action, which is centered on biophysical rupture of bacterial membranes, the generation of reactive oxygen species (ROS) and bacterial membrane depolarization evoked by the interference of essential ion-transport. Although the extent of antimicrobial effect, normally achieved through biophysical stimulation protocol is insufficient to warrant therapeutic application, a combination of antibiotic/ROS inducing agents and biophysical stimulation methods can elicit a clinically relevant reduction in viable bacterial numbers. In this review, we present a detailed account of both the biomaterial and biophysical approaches for achieving maximum bacterial inactivation. Summarizing, the biophysical stimulation methods in a combinatorial manner with material based strategies can be a more potent solution to control bacterial infections. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2174-2190, 2017.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
14
|
Kennedy S, Hu J, Kearney C, Skaat H, Gu L, Gentili M, Vandenburgh H, Mooney D. Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Biomaterials 2015; 75:91-101. [PMID: 26496382 DOI: 10.1016/j.biomaterials.2015.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022]
Abstract
In many biomedical contexts ranging from chemotherapy to tissue engineering, it is beneficial to sequentially present bioactive payloads. Explicit control over the timing and dose of these presentations is highly desirable. Here, we present a capsule-based delivery system capable of rapidly releasing multiple payloads in response to ultrasonic signals. In vitro, these alginate capsules exhibited excellent payload retention for up to 1 week when unstimulated and delivered their entire payloads when ultrasonically stimulated for 10-100 s. Shorter exposures (10 s) were required to trigger delivery from capsules embedded in hydrogels placed in a tissue model and did not result in tissue heating or death of encapsulated cells. Different types of capsules were tuned to rupture in response to different ultrasonic stimuli, thus permitting the sequential, on-demand delivery of nanoparticle payloads. As a proof of concept, gold nanoparticles were decorated with bone morphogenetic protein-2 to demonstrate the potential bioactivity of nanoparticle payloads. These nanoparticles were not cytotoxic and induced an osteogenic response in mouse mesenchymal stem cells. This system may enable researchers and physicians to remotely regulate the timing, dose, and sequence of drug delivery on-demand, with a wide range of clinical applications ranging from tissue engineering to cancer treatment.
Collapse
Affiliation(s)
- Stephen Kennedy
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA; Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| | - Jennifer Hu
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Cathal Kearney
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Anatomy, Tissue Engineering Research Group and Advanced Materials and Bioengineering Research Center, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hadas Skaat
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Luo Gu
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Marco Gentili
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Herman Vandenburgh
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - David Mooney
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
15
|
Cloutier M, Mantovani D, Rosei F. Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends Biotechnol 2015; 33:637-652. [PMID: 26463723 DOI: 10.1016/j.tibtech.2015.09.002] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/24/2015] [Accepted: 09/08/2015] [Indexed: 01/03/2023]
Abstract
Antibacterial coatings are rapidly emerging as a primary component of the global mitigation strategy of bacterial pathogens. Thanks to recent concurrent advances in materials science and biotechnology methodologies, and a growing understanding of environmental microbiology, an extensive variety of options are now available to design surfaces with antibacterial properties. However, progress towards a more widespread use in clinical settings crucially depends on addressing the key outstanding issues. We review release-based antibacterial coatings and focus on the challenges and opportunities presented by the latest generation of these materials. In particular, we highlight recent approaches aimed at controlling the release of antibacterial agents, imparting multi-functionality, and enhancing long-term stability.
Collapse
Affiliation(s)
- M Cloutier
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering, and Centre Hospitalier Universitaire de Québec Research Center, Laval University, Pavillon Pouliot, Local 1745-E, Québec, QC, G1V 0A6, Canada
| | - D Mantovani
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering, and Centre Hospitalier Universitaire de Québec Research Center, Laval University, Pavillon Pouliot, Local 1745-E, Québec, QC, G1V 0A6, Canada.
| | - F Rosei
- Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel Boulet, Varennes, QC, J3X 1S2 Canada; Institute for Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
16
|
Dalecki D, Hocking DC. Ultrasound technologies for biomaterials fabrication and imaging. Ann Biomed Eng 2014; 43:747-61. [PMID: 25326439 DOI: 10.1007/s10439-014-1158-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023]
Abstract
Ultrasound is emerging as a powerful tool for developing biomaterials for regenerative medicine. Ultrasound technologies are finding wide-ranging, innovative applications for controlling the fabrication of bioengineered scaffolds, as well as for imaging and quantitatively monitoring the properties of engineered constructs both during fabrication processes and post-implantation. This review provides an overview of the biomedical applications of ultrasound for imaging and therapy, a tutorial of the physical mechanisms through which ultrasound can interact with biomaterials, and examples of how ultrasound technologies are being developed and applied for biomaterials fabrication processes, non-invasive imaging, and quantitative characterization of bioengineered scaffolds in vitro and in vivo.
Collapse
Affiliation(s)
- Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, 310 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA,
| | | |
Collapse
|