1
|
Dash S, Majood M, Meena R, Mukherjee M, Dinda AK, Kuanr BK, Mohanty S. Biocompatible polymer-coated magneto-fluorescent super nanoparticles for the homing of mesenchymal stem cells. Int J Biol Macromol 2024; 273:132794. [PMID: 38834114 DOI: 10.1016/j.ijbiomac.2024.132794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Stem cell plays an important role in the clinical field. However, the effective delivery of stem cells to the targeted site relies on the efficient homing of the cells to the site of injury. In view of that, fluorescent magnetic nanoparticles stick out due to their wide range of enabling functions including cellular homing and tracking. The present study unravels the synthesis of polymer-coated biocompatible and fluorescent magnetic nanoparticles (FMNPs) by a single-step hydrothermal synthesis method. Importantly, the facile method developed the biological super nanoparticles consisting of the magnetic core, which is surrounded by the fluorescent nanodot-decorated polymeric shell. The synthesized particles showed an amorphous nature, and superparamagnetic properties, with efficient fluorescence properties of emission at the blue range (̴ 410 nm). The FMNP labeling showed the mesenchymal stem cell (MSC) homing to the desired site in the presence of an external magnetic field. The in-house synthesized nanoparticles showed significant cytocompatibility and hemocompatibility in vitro as well as in vivo conditions owing to their surface coating. This unprecedented work advances the efficient internalization of FMNPs in MSCs and their enhanced migration potential provides a breakthrough in stem cell delivery for therapeutic applications. STATEMENT OF SIGNIFICANCE: The bi-modal fluorescent magnetic nanoparticles hold a promising role in the biomedical field for mesenchymal stem cell homing and tracking. Hence, in this study, for the first time, we have synthesized the fluorescent magnetic nanoparticle with polymer coating via an easy single-step method. The nanoparticle with a polymer coat enhanced the biocompatibility and effortless internalization of the nanoparticle into mesenchymal stem cells without hampering the native stem cell properties. Furthermore, the enhanced migration potential of such magnetized stem cells and their homing at the target site by applying an external magnetic field opened up avenues for the smart delivery of mesenchymal stem cells at complex sites such as retina for the tissue regeneration.
Collapse
Affiliation(s)
- Saumya Dash
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Misba Majood
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India; Amity Institute of Click Chemistry Research and Studies, Amity University, Uttar Pradesh, 201303 Noida, India
| | - Ravindra Meena
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University, Uttar Pradesh, 201303 Noida, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bijoy K Kuanr
- Special Centre for Nano Science, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
2
|
Sanchez Garcia Y, Menezes TM, Rodrigues Barros M, Martins da Silva E, Tavares Ventura G, Frases S, Todeschini AR, Luiz Neves J. Interfacing manganese-based carbonaceous nanocomposites with plasma components: insights on protein interaction, structure and opsonization. J Biomol Struct Dyn 2024; 42:687-695. [PMID: 36995305 DOI: 10.1080/07391102.2023.2195943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
Metal encapsulation delivers a straightforward strategy to improve miscellaneous nanoparticle properties and qualifies the resulting nanocomposite for exceptional application, including bioimaging, drug release, and theranostic development. Besides crucial applications, investigations associated with the nanocomposite impact on the biological media are highly relevant from a pharmacological viewpoint. Such studies can be conducted by exploring nanocomposite attributes and all aspects of their interaction with proteins existing in biofluids. Based on these aspects, the present work examines manganese-encapsulated carbonaceous nanocomposite (MnCQD) and their interaction with plasma proteins. On one side, the obtained nanocomposite has almost spherical shapes (≈12 nm in size), an appropriate composition and interesting optical properties for bioimaging applications. On another side, MnCQD quenches the fluorescence of two plasma proteins (BSA and HTF) following a static mechanism, confirming the formation of the MnCQD-BSA and MnCQD-HTF complexes. Although hydrophobic forces guide the stability of both formed complexes, MnCQD binds preferentially to BSA compared to HTF, with affinity constants differing by almost an order of magnitude. Furthermore, HTF and BSA underwent modifications in their secondary structure provoked due to contact with the nanocomposite, which also presented neglectable opsonization levels when exposed to appropriate biological media. These results highlight the MnCQD outstanding potential to be employed in diverse bioapplications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yarima Sanchez Garcia
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Thais Meira Menezes
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Marcela Rodrigues Barros
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Gustavo Tavares Ventura
- Instituto de Biofísica, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Susana Frases
- Instituto de Biofísica, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Jorge Luiz Neves
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
3
|
Khan MZ, Tahir D, Asim M, Israr M, Haider A, Xu DD. Revolutionizing Cancer Care: Advances in Carbon-Based Materials for Diagnosis and Treatment. Cureus 2024; 16:e52511. [PMID: 38371088 PMCID: PMC10874252 DOI: 10.7759/cureus.52511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer involves intricate pathological mechanisms marked by complexities such as cytotoxicity, drug resistance, stem cell proliferation, and inadequate specificity in current chemotherapy approaches. Cancer therapy has embraced diverse nanomaterials renowned for their unique magnetic, electrical, and optical properties to address these challenges. Despite the expanding corpus of knowledge in this area, there has been less advancement in approving nano drugs for use in clinical settings. Nanotechnology, and more especially the development of intelligent nanomaterials, has had a profound impact on cancer research and treatment in recent years. Due to their large surface area, nanoparticles can adeptly encapsulate diverse compounds. Furthermore, the modification of nanoparticles is achievable through a broad spectrum of bio-based substrates, including DNA, aptamers, RNA, and antibodies. This functionalization substantially enhances their theranostic capabilities. Nanomaterials originating from biological sources outperform their conventionally created counterparts, offering advantages such as reduced toxicity, lower manufacturing costs, and enhanced efficiency. This review uses carbon nanomaterials, including graphene-based materials, carbon nanotubes (CNTs) based nanomaterials, and carbon quantum dots (CQDs), to give a complete overview of various methods used in cancer theranostics. We also discussed their advantages and limitations in cancer diagnosis and treatment settings. Carbon nanomaterials might significantly improve cancer theranostics and pave the way for fresh tumor diagnosis and treatment approaches. More study is needed to determine whether using nano-carriers for targeted medicine delivery may increase material utilization. More insight is required to explore the correlation between heightened cytotoxicity and retention resulting from increased permeability.
Collapse
Affiliation(s)
| | - Danial Tahir
- Internal Medicine, Nazareth Hospital, Philadelphia, USA
| | - Muhammad Asim
- Internal Medicine, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, GBR
| | | | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK
| | - Dan Dan Xu
- Integrative Medicine, Shandong University of Traditional Chinese Medicine, Jinan, CHN
| |
Collapse
|
4
|
Naderi N, Lalebeigi F, Sadat Z, Eivazzadeh-Keihan R, Maleki A, Mahdavi M. Recent advances on hyperthermia therapy applications of carbon-based nanocomposites. Colloids Surf B Biointerfaces 2023; 228:113430. [PMID: 37418814 DOI: 10.1016/j.colsurfb.2023.113430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/10/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Generally, hyperthermia is referred to the composites capability to increase local temperature in such a way that the generated heat would lead to cancerous or bacteria cells destruction, with minimum damage to normal tissue cells. Many different materials have been utilized for hyperthermia application via different heat generating methods. Carbon-based nanomaterials consisting of graphene oxide (GO), carbon nanotube (CNT), carbon dot (CD) and carbon quantum dot (CQD), nanodiamond (ND), fullerene and carbon fiber (CF), have been studied significantly for different applications including hyperthermia due to their biocompatibility, biodegradability, chemical and physical stability, thermal and electrical conductivity and in some cases photothermal conversion. Therefore, in this comprehensive review, a structure-based view on carbon nanomaterials application in hyperthermia therapy of cancer and bacteria via various methods such as optical, magnetic, ultrasonic and radiofrequency-induced hyperthermia is presented.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Nazeer SS, Saraswathy A, Nimi N, Sarathkumar E, Resmi AN, Shenoy SJ, Jayasree RS. Fluorescent carbon dots tailored iron oxide nano hybrid system for in vivooptical imaging of liver fibrosis. Methods Appl Fluoresc 2023; 11. [PMID: 36854197 DOI: 10.1088/2050-6120/acc009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Hybrid nanoparticles are innovative invention of last decade designed to overcome limitations of single-component nanoparticles by introducing multiple functionalities through combining two or more different nanoparticles. In this study, we are reporting development of magneto-fluorescent hybrid nanoparticles by combining iron oxide and carbon nanoparticles to enablein vivofluorescence imaging which also has all the required characteristic properties to use as Magnetic Resonance Imaging (MRI) contrast agent. In order to achieve dual-functional imaging, alginate and pullulan coated super paramagnetic iron oxide nanoparticles (ASPION and PSPION) and Carbon dots (Cdts) were synthesised separately. ASPIONs and PSPIONs were further chemically conjugated with Cdts and developed dual-functional nanohybrid particles ASPION-Cdts and PSPION-Cdts. Subsequently, evaluation of the materials for its size, functionalisation efficiency, fluorescence and magnetic properties, biocompatibility and cellular uptake efficiency has been carried out. Fluorescence imaging of liver fibrosis was performedin vivoin rodent model of liver fibrosis using the two nanohybrids, which is further confirmed by high fluorescence signal from the harvested liver.
Collapse
Affiliation(s)
- Shaiju S Nazeer
- Department of Chemistry, Indian Institute of Space Sciences and Technology, Thiruvananthapuram-695547, Kerala, India
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Ariya Saraswathy
- Department of Physics, HHMSPBNSS College, Thiruvananthapuram-695040, Kerala, India
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Nirmala Nimi
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Elangovan Sarathkumar
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - A N Resmi
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Sachin J Shenoy
- Division of In Vivo Models and Testing, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences &Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India
| |
Collapse
|
6
|
Shirejini SF, Dehnavi SM, Jahanfar M. Potential of Superparamagnetic Iron Oxide Nanoparticles Coated with Carbon Dots as a Magnetic Nanoadsorbent for DNA Isolation. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Zhou Y, Zhang W, Leblanc RM. Structure-Property-Activity Relationships in Carbon Dots. J Phys Chem B 2022; 126:10777-10796. [PMID: 36395361 DOI: 10.1021/acs.jpcb.2c06856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Carbon dots (CDs) are one of the most versatile nanomaterials discovered in the 21st century. They possess many properties and thus hold potentials in diverse applications. While an increasing amount of attention has been given to these novel nanoparticles, the broad scientific community is actively engaged in exploring their limits. Recent studies on the fractionalization and assembly of CDs further push the limits beyond just CDs and demonstrate that CDs are both a mixture of heterogeneous fractions and promising building blocks for assembly of large carbon-based materials. With CDs moving forward toward both microscopic and macroscopic levels, a good understanding of the structure-property-activity relationships is essential to forecasting the future of CDs. Hence, in this Perspective, structure-property-activity relationships are highlighted based on the repeatedly verified findings in CDs. In addition, studies on CD fractionalization and assembly are briefly summarized in this Perspective. Eventually, these structure-property-activity relationships and controllability are essential for the development of CDs with desired properties for various applications especially in photochemistry, electrochemistry, nanomedicine, and surface chemistry. In summary, in our opinion, since 2004 until the present, history has witnessed a great development of CDs although there is still some room for more studies. Also, considering many attractive properties, structure-property-activity relationships, and the building block nature of CDs, a variety of carbon-based materials of interest can be constructed from CDs with control. They can help reduce blind trials in the development of carbon-based materials, which is of great significance in materials science, chemistry, and any fields related to the applications.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States.,C-Dots LLC, Miami, Florida 33136, United States.,Department of Biological Sciences, Florida International University, Miami, Florida 33199, United States
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
8
|
Balou S, Shandilya P, Priye A. Carbon dots for photothermal applications. Front Chem 2022; 10:1023602. [PMID: 36311416 PMCID: PMC9597315 DOI: 10.3389/fchem.2022.1023602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Carbon dots are zero-dimensional nanomaterials that have garnered significant research interest due to their distinct optical properties, biocompatibility, low fabrication cost, and eco-friendliness. Recently, their light-to-heat conversion ability has led to several novel photothermal applications. In this minireview, we categorize and describe the photothermal application of carbon dots along with methods incorporated to enhance their photothermal efficiency. We also discuss the possible mechanisms by which the photothermal effect is realized in these carbon-based nanoparticles. Taken together, we hope to provide a comprehensive landscape highlighting several promising research directions for using carbon dots for photothermal applications.
Collapse
Affiliation(s)
- Salar Balou
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Pooja Shandilya
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Breijaert T, Daniel G, Hedlund D, Svedlindh P, Kessler V, Granberg H, Håkansson K, Seisenbaeva G. Self-assembly of ferria – nanocellulose composite fibres. Carbohydr Polym 2022; 291:119560. [DOI: 10.1016/j.carbpol.2022.119560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
|
10
|
Dual-targeting magnetic fluorescent mesoporous organosilicon hollow nanospheres for gambogic acid loading, sustained release and anti-tumor properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Vercellino S, Kokalari I, Liz Cantoral M, Petseva V, Cursi L, Casoli F, Castagnola V, Boselli L, Fenoglio I. Biological interactions of ferromagnetic iron oxide-carbon nanohybrids with alveolar epithelial cells. Biomater Sci 2022; 10:3514-3526. [PMID: 35603779 DOI: 10.1039/d2bm00220e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Iron oxide nanoparticles (IONPs) have been largely investigated in a plethora of biological fields for their interesting physical-chemical properties, which make them suitable for application in cancer therapy, neuroscience, and imaging. Several encouraging results have been reported in these contexts. However, the possible toxic effects of some IONP formulations can limit their applicability. In this work, IONPs were synthesized with a carbon shell (IONP@C), providing enhanced stability both as colloidal dispersion and in the biological environment. We conducted a careful multiparametric evaluation of IONP@C biological interactions in vitro, providing them with an in vivo-like biological identity. Our hybrid nanoformulation showed no cytotoxic effects on a widely employed model of alveolar epithelial cells for a variety of concentrations and exposure times. The IONP@C were efficiently internalized and TEM analysis allowed the protective role of the carbon shell against intracellular degradation to be assessed. Intracellular redistribution of the IONP@C from the lysosomes to the lamellar bodies was also observed after 72 hours.
Collapse
Affiliation(s)
- Silvia Vercellino
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ida Kokalari
- Dept. of Chemistry, Università di Torino, via P. Giuria 7, 10125 Torino, Italy. .,Delft University of Technology, Dept. of Chemical Engineering, Van der Maasweg 9, 2629 HZ DELFT, The Netherlands
| | - Mayra Liz Cantoral
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,Dept. of Chemistry, Università di Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Vanya Petseva
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Lorenzo Cursi
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Francesca Casoli
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, Parma 43124, Italy
| | - Valentina Castagnola
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Luca Boselli
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland. .,Nanobiointeractions and Nanodiagnostics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ivana Fenoglio
- Dept. of Chemistry, Università di Torino, via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
12
|
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2601. [PMID: 35407934 PMCID: PMC9000335 DOI: 10.3390/ma15072601] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023]
Abstract
Magnetite nanoparticles with different surface coverages are of great interest for many applications due to their intrinsic magnetic properties, nanometer size, and definite surface morphology. Magnetite nanoparticles are widely used for different medical-biological applications while their usage in optics is not as widespread. In recent years, nanomagnetite suspensions, so-called magnetic ferrofluids, are applied in optics due to their magneto-optical properties. This review gives an overview of nanomagnetite synthesis and its properties. In addition, the preparation and application of magnetic nanofluids in optics, nanophotonics, and magnetic imaging are described.
Collapse
Affiliation(s)
- Nataliia Dudchenko
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| | - Shweta Pawar
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Ilana Perelshtein
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| | - Dror Fixler
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| |
Collapse
|
13
|
He D, Zhang X, Yao X, Yang Y. In vitro and in vivo highly effective antibacterial activity of carbon dots-modified TiO 2 nanorod arrays on titanium. Colloids Surf B Biointerfaces 2022; 211:112318. [PMID: 35007856 DOI: 10.1016/j.colsurfb.2022.112318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 01/04/2023]
Abstract
Light-triggered antibacterial therapy has been proven to be a secure and effective way to treat bacterial infection. Nevertheless, the long-term security of the common photosensitizer remains to be seen in the body. In this work, carbon dots (CDs) with good biocompatibility are incorporated into TiO2 nanorods to improve the photocatalytic and photothermal ability of titanium implants under the irradiation of visible light (VL) and near-infrared (NIR) light. The C-TiO2 NR exhibit excellent in vitro and in vivo antimicrobial effect under 660 nm VL and 808 nm NIR light co-irradiation owing to the combined effect of hyperthermia, reactive oxygen species (ROS) and nanorod structure. Besides, C-TiO2 NR can improve the adhesion and diffusion of bone marrow mesenchymal stem cells (BMSCs).
Collapse
Affiliation(s)
- Dongmei He
- Laboratory of Biomaterial Surfaces & Interfaces, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiangyu Zhang
- Laboratory of Biomaterial Surfaces & Interfaces, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongqiang Yang
- Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, National Graphene Products Quality Inspection and Testing Center (Jiangsu), Wuxi 214174, China.
| |
Collapse
|
14
|
Stachowska JD, Gamża MB, Mellor C, Gibbons EN, Krysmann MJ, Kelarakis A, Gumieniczek-Chłopek E, Strączek T, Kapusta C, Szwajca A. Carbon Dots/Iron Oxide Nanoparticles with Tuneable Composition and Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:674. [PMID: 35215002 PMCID: PMC8875257 DOI: 10.3390/nano12040674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
We present a simple strategy to generate a family of carbon dots/iron oxide nanoparticles (C/Fe-NPs) that relies on the thermal decomposition of iron (III) acetylacetonate in the presence of a highly fluorescent carbon-rich precursor (derived via thermal treatment of ethanolamine and citric acid at 180 °C), while polyethylene glycol serves as the passivation agent. By varying the molar ratio of the reactants, a series of C/Fe-NPs have been synthesized with tuneable elemental composition in terms of C, H, O, N and Fe. The quantum yield is enhanced from 6 to 9% as the carbon content increases from 27 to 36 wt%, while the room temperature saturation magnetization is improved from 4.1 to 17.7 emu/g as the iron content is enriched from 17 to 31 wt%. In addition, the C/Fe-NPs show excellent antimicrobial properties, minimal cytotoxicity and demonstrate promising bioimaging capabilities, thus showing great potential for the development of advanced diagnostic tools.
Collapse
Affiliation(s)
- Joanna D. Stachowska
- School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK; (J.D.S.); (E.N.G.); (M.J.K.)
| | - Monika B. Gamża
- Jeremiah Horrocks Institute for Mathematics, Physics, and Astrophysics, University of Central Lancashire, Preston PR1 2HE, UK;
- UCLan Research Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Claire Mellor
- School of Phycology and Computer Science, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Ella N. Gibbons
- School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK; (J.D.S.); (E.N.G.); (M.J.K.)
| | - Marta J. Krysmann
- School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK; (J.D.S.); (E.N.G.); (M.J.K.)
| | - Antonios Kelarakis
- UCLan Research Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Elżbieta Gumieniczek-Chłopek
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland; (E.G.-C.); (T.S.); (C.K.)
| | - Tomasz Strączek
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland; (E.G.-C.); (T.S.); (C.K.)
| | - Czesław Kapusta
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza Ave. 30, 30-059 Krakow, Poland; (E.G.-C.); (T.S.); (C.K.)
| | - Anna Szwajca
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland;
| |
Collapse
|
15
|
Xu W, Zhang J, Yang Z, Zhao M, Long H, Wu Q, Nian F. Tannin-Mn coordination polymer coated carbon quantum dots nanocomposite for fluorescence and magnetic resonance bimodal imaging. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:16. [PMID: 35072786 PMCID: PMC8786750 DOI: 10.1007/s10856-021-06629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
The MR/FI bimodal imaging has attracted widely studied due to combining the advantages of MRI and FI can bridge gaps in sensitivity and depth between these two modalities. Herein, a novel MR/FI bimodal imaging probe is facile fabricated by coating the Mn-phenolic coordination polymer on the surface of the carbon quantum dots. The structure of the as-prepared nanocomposite probe is carefully validated via SEM, TEM, and XPS. The content of Mn2+ is calculated through the EDS and TGA. The quantum yield (QY) and emission wavelength of the probe are about 7.24% and 490 nm, respectively. The longitudinal r1 value (2.43 mM-1 s-1) with low r2/r1 (4.45) of the probe is obtained. Subsequently, fluorescence and MR imaging are performed. The metabolic pathways in vivo are inferred by studying the bio-distribution of the probe in major organs. Thus, these results indicate that probe would be an excellent dual-modal imaging probe for enhanced MR imaging and fluorescence imaging. MR/FI bimodal imaging probe is built via in-situ coated Mn-phenolic coordination polymer on the surface of the carbon quantum dots. The in vitro and vivo image property of the probe is evaluated.
Collapse
Affiliation(s)
- Weibing Xu
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China.
| | - Jia Zhang
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Zhijie Yang
- College of Life Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Minzhi Zhao
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Haitao Long
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Fang Nian
- College of Science, Gansu Agricultural University, Lanzhou, 730000, China.
| |
Collapse
|
16
|
Tran HV, Ngo NM, Medhi R, Srinoi P, Liu T, Rittikulsittichai S, Lee TR. Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:503. [PMID: 35057223 PMCID: PMC8779542 DOI: 10.3390/ma15020503] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023]
Abstract
Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.
Collapse
Affiliation(s)
- Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Nhat M. Ngo
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Riddhiman Medhi
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Pannaree Srinoi
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Tingting Liu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Supparesk Rittikulsittichai
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| |
Collapse
|
17
|
Xu Q, Cai H, Li W, Wu M, Wu Y, Gong X. Carbon dot/inorganic nanomaterial composites. JOURNAL OF MATERIALS CHEMISTRY A 2022. [DOI: 10.1039/d2ta02628g] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The preparation methods, formation mechanism, properties and applications of carbon dot/inorganic nanohybrid materials are reported.
Collapse
Affiliation(s)
- Qingqing Xu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Huawei Cai
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Wenjing Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongzhong Wu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
18
|
Das P, Ganguly S, Margel S, Gedanken A. Tailor made magnetic nanolights: fabrication to cancer theranostics applications. NANOSCALE ADVANCES 2021; 3:6762-6796. [PMID: 36132370 PMCID: PMC9419279 DOI: 10.1039/d1na00447f] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/12/2021] [Indexed: 05/14/2023]
Abstract
Nanoparticles having magnetic and fluorescent properties could be considered as a gift to materials scientists due to their unique magneto-optical qualities. Multiple component particles can overcome challenges related with a single component and unveil bifunctional/multifunctional features that can enlarge their applications in diagnostic imaging agents and therapeutic delivery vehicles. Bifunctional nanoparticles that have both luminescent and magnetic features are termed as magnetic nanolights. Herein, we present recent progress of magneto-fluorescent nanoparticles (quantum dots based magnetic nanoparticles, Janus particles, and heterocrystalline fluorescent magnetic materials), comprehensively describing fabrication strategies, types, and biomedical applications. In this review, our aim is not only to encompass the preparation strategies of these special types of magneto-fluorescent nanomaterials but also their extensive applications in bioimaging techniques, cancer therapy (targeted and hyperthermic), and sustained release of active agents (drugs, proteins, antibodies, hormones, enzymes, growth factors).
Collapse
Affiliation(s)
- Poushali Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Sayan Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Shlomo Margel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University Ramat-Gan 5290002 Israel
- Departments of Chemistry, Bar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
19
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
20
|
Ray P, Moitra P, Pan D. Emerging theranostic applications of carbon dots and its variants. VIEW 2021. [DOI: 10.1002/viw.20200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Priyanka Ray
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| | - Parikshit Moitra
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
| | - Dipanjan Pan
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| |
Collapse
|
21
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
22
|
Alphandéry E. Light-Interacting iron-based nanomaterials for localized cancer detection and treatment. Acta Biomater 2021; 124:50-71. [PMID: 33540060 DOI: 10.1016/j.actbio.2021.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
To improve the prognosis of cancer patients, methods of local cancer detection and treatment could be implemented. For that, iron-based nanomaterials (IBN) are particularly well-suited due to their biocompatibility and the various ways in which they can specifically target a tumor, i.e. through passive, active or magnetic targeting. Furthermore, when it is needed, IBN can be associated with well-known fluorescent compounds, such as dyes, clinically approved ICG, fluorescent proteins, or quantum dots. They may also be excited and detected using well-established optical methods, relying on scattering or fluorescent mechanisms, depending on whether IBN are associated with a fluorescent compound or not. Systems combining IBN with optical methods are diverse, thus enabling tumor detection in various ways. In addition, these systems provide a wealth of information, which is inaccessible with more standard diagnostic tools, such as single tumor cell detection, in particular by combining IBN with near-field scanning optical microscopy, dark-field microscopy, confocal microscopy or super-resolution microscopy, or the highlighting of certain dynamic phenomena such as the diffusion of a fluorescent compound in an organism, e.g. using fluorescence lifetime imaging, fluorescence resonance energy transfer, fluorescence anisotropy, or fluorescence tomography. Furthermore, they can in some cases be complemented by a therapeutic approach to destroy tumors, e.g. when the fluorescent compound is a drug, or when a technique such as photo-thermal or photodynamic therapy is employed. This review brings forward the idea that iron-based nanomaterials may be associated with various optical techniques to form a commercially available toolbox, which can serve to locally detect or treat cancer with a better efficacy than more standard medical approaches. STATEMENT OF SIGNIFICANCE: New tools should be developed to improve cancer treatment outcome. For that, two closely-related aspects deserve to be considered, i.e. early tumor detection and local tumor treatment. Here, I present various types of iron-based nanomaterials, which can achieve this double objective when they interact with a beam of light under specific and accurately chosen conditions. Indeed, these materials are biocompatible and can be used/combined with most standard microscopic/optical methods. Thus, these systems enable on the one hand tumor cell detection with a high sensitivity, i.e. down to single tumor cell level, and on the other hand tumor destruction through various mechanisms in a controlled and localized manner by deciding whether or not to apply a beam of light and by having these nanomaterials specifically target tumor cells.
Collapse
|
23
|
Sung B, Kim M, Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioeng Transl Med 2021; 6:e10190. [PMID: 33532590 PMCID: PMC7823133 DOI: 10.1002/btm2.10190] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Soft micro- and nanostructures have been extensively developed for biomedical applications. The main focus has been on multifunctional composite materials that combine the advantages of hydrogels and colloidal particles. Magnetic microgels and nanogels can be realized by hybridizing stimuli-sensitive gels and magnetic nanoparticles. They are of particular interest since they can be controlled in a wide range of biological environments by using magnetic fields. In this review, we elucidate physical principles underlying the design of magnetic microgels and nanogels for biomedical applications. Particularly, this article provides a comprehensive and conceptual overview on the correlative structural design and physical functionality of the magnetic gel systems under the concept of colloidal biodevices. To this end, we begin with an overview of physicochemical mechanisms related to stimuli-responsive hydrogels and transport phenomena and summarize the magnetic properties of inorganic nanoparticles. On the basis of the engineering principles, we categorize and summarize recent advances in magnetic hybrid microgels and nanogels, with emphasis on the biomedical applications of these materials. Potential applications of these hybrid microgels and nanogels in anticancer treatment, protein therapeutics, gene therapy, bioseparation, biocatalysis, and regenerative medicine are highlighted. Finally, current challenges and future opportunities in the design of smart colloidal biodevices are discussed.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- KIST Europe Forschungsgesellschaft mbHSaarbrückenGermany
- Department of Biological SciencesKent State UniversityKentOhioUSA
- Division of Energy and Environment TechnologyUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Min‐Ho Kim
- Department of Biological SciencesKent State UniversityKentOhioUSA
| | - Leon Abelmann
- KIST Europe Forschungsgesellschaft mbHSaarbrückenGermany
- MESA+ Institute for Nanotechnology, University of TwenteEnschedeThe Netherlands
| |
Collapse
|
24
|
|
25
|
Sichamnan A, Yong N, Sillapaprayoon S, Pimtong W, Tang IM, Maneeprakorn W, Pon-On W. Fabrication of biocompatible magneto-fluorescence nanoparticles as a platform for fluorescent sensor and magnetic hyperthermia applications. RSC Adv 2021; 11:35258-35267. [PMID: 35493192 PMCID: PMC9042993 DOI: 10.1039/d1ra07389c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Multifunctional nanoparticles with special magnetic and optical properties have been attracting a great deal of attention due to their important applications in the bioanalytical and biomedical fields. In this study, we report the fabrication of biocompatible magneto-fluorescence nanoparticles consisting of carbon dots (CDots) and silica-coated cobalt–manganese nanoferrites (Co0.5Mn0.5Fe2O4) (CoMnF@Si@CDots) (MagSiCDots) by a facile hydrothermal method. The as-prepared MagSiCDots have a particle size of 100–120 nm and show a negative zeta potential of −35.50 mV at a neutral pH. The fluorescence spectrum of the MagSiCDots nanoparticles consists of sharp excitation at 365 nm and broad blue light emission with a maximum wavelength of 442.5 nm and the MagSiCDots exhibit superparamagnetic behaviour with a saturation magnetization of 11.6 emu g−1. The potential of MagSiCDots as a fluorescent sensor and be used for magnetic hyperthermia applications. It is seen that the fluorescent intensity of a colloidal solution (a hydrogen sulfide (H2S) solution containing MagSiCDots nanoparticles) has a linear relationship with the H2S concentration range of 0.2–2 μM. The limit of detection (LOD) of H2S by our MagSiCDots particles is 0.26 μM and they remain stable for at least 90 min. To test the suitability of the MagSiCDots nanoparticles for use in hyperthermia application, induction heating using an AMF was done. It was observed that these nanoparticles had a specific absorption rate (SAR) of 28.25 W g−1. The in vitro and in vivo cytotoxicity of MagSiCDots were tested on HeLa cells lines. The results show a cell viability of about 85% when exposed to 100 μg mL−1 concentration of the particles. The in vivo cytotoxicity using zebrafish assay also confirmed the non-toxicity and biocompatibility of the nanoparticles to living cells. The reported data demonstrate that by combining CoMnF@Si and fluorescent CDots into a single system, not only nontoxic multifunctional nanomaterials but also multimodal nanoparticles for several applications, such as hazard gas detection and acting as a biocompatible heat source for therapeutic treatment of cancer, are provided. Multifunctional nanoparticles with special magnetic and optical properties have been attracting a great deal of attention due to their important applications in the bioanalytical and biomedical fields.![]()
Collapse
Affiliation(s)
- Arphaphon Sichamnan
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nararat Yong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwapech Sillapaprayoon
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - I.-Ming Tang
- Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Weerakanya Maneeprakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Weeraphat Pon-On
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
26
|
Tejwan N, Saini AK, Sharma A, Singh TA, Kumar N, Das J. Metal-doped and hybrid carbon dots: A comprehensive review on their synthesis and biomedical applications. J Control Release 2020; 330:132-150. [PMID: 33340566 DOI: 10.1016/j.jconrel.2020.12.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 01/15/2023]
Abstract
Carbon dots (CDs) are the most promising candidates of the carbon family with superior properties like ultra-small size, high aqueous solubility, low cytotoxicity, and inherent photoluminescence which makes them suitable for diverse biomedical applications. Methods have been developed to enhance their applications. Doping/surface passivation of CDs improves their physicochemical properties, visible light absorption probability, and quantum yield by controlling their size, morphology, structure, and band-gap energy. Recently, metal-doped CDs have emerged as an important class of nanomaterials with numerous biomedical applications. Additionally, the conjugation of CDs with semiconductor metal-oxide nanoparticles (NPs) enhances their free radical production rates under visible light irradiation. Conjugation of fluorescent CDs with magnetic NPs leads to the development of multimodal imaging platforms. Similarly, ternary conjugates composed of fluorescent CDs, near-infrared (NIR) responsive, and magnetic NPs are useful for multi-modal imaging-guided, and NIR-responsive synergistic chemo-phototherapy. However, no comprehensive review is published yet which covers metal-doped and hybrid CDs. Therefore, herein we provide detailed information about their synthesis and important biomedical applications. Firstly, we have covered various synthesis methods for CD conjugation including the critical analysis of the effects of the reaction conditions and doping/conjugation on the structure and properties of the CDs. Then we have extensively reviewed their biomedical applications as antimicrobial, antioxidant, and bioimaging agents, and in the field of cancer phototherapy with special emphasis on their mechanisms of actions. Finally, the future directions of research and the applications of the metal-doped and hybrid CDs have been discussed. We believe that this review article will enrich the understanding of different synthetic routes of CD-nanocomposites and their biomedical applications.
Collapse
Affiliation(s)
- Neeraj Tejwan
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India; Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, HP 173229, India
| | - Adesh K Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana 133207, India; Maharishi Markandeshwar University, Kumarhatti, Solan, HP 173229, India
| | - Anirudh Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India; Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, HP 173229, India
| | - Th Abhishek Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India; Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, HP 173229, India
| | - Nitin Kumar
- Faculty of Applied Science and Biotechnology, Shoolini University, Solan, HP 73229, India
| | - Joydeep Das
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, HP 173229, India; Himalayan Centre for Excellence in Nanotechnology, Shoolini University, Solan, HP 173229, India.
| |
Collapse
|
27
|
Li B, Gong T, Xu N, Cui F, Yuan B, Yuan Q, Sun H, Wang L, Liu J. Improved Stability and Photothermal Performance of Polydopamine-Modified Fe 3 O 4 Nanocomposites for Highly Efficient Magnetic Resonance Imaging-Guided Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003969. [PMID: 33053265 DOI: 10.1002/smll.202003969] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Indexed: 05/20/2023]
Abstract
Magnetic nanomaterials are a promising class of contrast agents for magnetic resonance imaging (MRI). However, their poor stability and low relaxivity are major challenges hindering their clinical applications. In this study, magnetic theranostic nanoagents based on polydopamine-modified Fe3 O4 (Fe3 O4 @PDA) nanocomposites are fabricated for MRI-guided photothermal therapy (PTT) cancer treatments. Their high transverse relaxivity of 337.8 mM-1 s-1 makes these Fe3 O4 @PDA nanocomposites a promising T2 -weighted MRI contrast agent for cancer diagnosis and image-guided cancer therapy. Due to the good photothermal effect of polydopamine (PDA), the tumors of 4T1 tumor-bearing mice are completely excised by PTT. Most importantly, the PDA shell also improves the stability of the Fe3 O4 @PDA nanocomposites, which contributes to their excellent, long-term performance in MRI and PTT applications. Their good stability, high T2 relaxivity, robust biocompatibility, and satisfactory treatment effect give these Fe3 O4 @PDA nanocomposites great potential for use in cancer theranostics.
Collapse
Affiliation(s)
- Bo Li
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Tingting Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Nannan Xu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Fengzhi Cui
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Biying Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qinghai Yuan
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lei Wang
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
28
|
Yadav A, Rao C, Verma NC, Mishra PM, Nandi CK. Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging. Mol Imaging 2020; 19:1536012120969477. [PMID: 33112721 PMCID: PMC8865915 DOI: 10.1177/1536012120969477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although, superparamagnetic iron oxide nanoparticles (SPIONs) have extensively been used as a contrasting agent for magnetic resonance imaging (MRI), the lack of intrinsic fluorescence restricted their application as a multimodal probe, especially in combination with light microscopy. In Addition, the bigger size of the particle renders them incompetent for bioimaging of small organelles. Herein, we report, not only the synthesis of ultrasmall carbon containing magneto-fluorescent SPIONs with size ∼5 nm, but also demonstrate its capability as a multicolor imaging probe. Using MCF-7 and HeLa cell lines, we show that the SPIONs can provide high contrast mulicolor images of the cytoplasm from blue to red region. Further, single particle level photon count data revealed that the SPIONs could efficaciously be utilized in localization based super resolution microscopy in future.
Collapse
Affiliation(s)
- Aditya Yadav
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India
| | - Chethana Rao
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India
| | - Navneet Chandra Verma
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India
| | - Pushpendra Mani Mishra
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India.,BioX Centre, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Chayan Kanti Nandi
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, India.,BioX Centre, Indian Institute of Technology, Mandi, Himachal Pradesh, India.,Advanced Materials Research Centre, Indian Institute of Technology Mandi, Himachal Pradesh, India
| |
Collapse
|
29
|
Bifunctional Carbon Dots-Magnetic and Fluorescent Hybrid Nanoparticles for Diagnostic Applications. NANOMATERIALS 2020; 10:nano10071384. [PMID: 32708543 PMCID: PMC7408458 DOI: 10.3390/nano10071384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022]
Abstract
There is a huge demand for materials capable of simple detection or separation after conjugation with specific biologic substances when applied as a diagnostic tools. Taking into account the photoluminescence properties of C-dots and the highly magnetic properties of Fe(0), a new hybrid composite of these components was synthesized via ultrasound irradiation. The material was fully characterized by various physicochemical techniques. The main goal of the current study was to obtain a highly magnetic and intense fluorescent hybrid material. The goal was achieved. In addition, magnetic particles tended to agglomerate. The new hybrid can be suspended in ethanol, which is an additional feature of the current research. The dispersion of the hybrid nanoparticles in ethanol was achieved by utilizing the interaction of iron particles with C-dots which were decorated with functional groups on their surface. The newly formed hybrid material has potential applications in diagnostic by conjugating with specific antibodies or with any other biologic compounds. Such application may be useful in detection of various diseases such as: cancer, tuberculosis, etc.
Collapse
|
30
|
Degradation of ibuprofen in the carbon dots/Fe3O4@carbon sphere pomegranate-like composites activated persulfate system. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116820] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Chu X, Wu F, Sun B, Zhang M, Song S, Zhang P, Wang Y, Zhang Q, Zhou N, Shen J. Genipin cross-linked carbon dots for antimicrobial, bioimaging and bacterial discrimination. Colloids Surf B Biointerfaces 2020; 190:110930. [PMID: 32146275 DOI: 10.1016/j.colsurfb.2020.110930] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/09/2023]
Abstract
Multifunctional carbon dots (CDs) present enormous potential in numerous applications and have attracted widespread attention for various applications in the biomedical field. Bacterial infection is a common health issue; the development of antibacterial materials with low toxicity and good biocompatibility is becoming more important. In this work, we synthesized a new type of nitrogen co-doped carbon dots-genipin covalent conjugate (N-CDs-GP) via hydrothermal methods. The microstructure and chemical composition of the N-CDs-GP were characterized. The biocompatibility, stability, antibacterial activity, and fluorescence performance of the N-CDs-GP were assessed. The results revealed that N-CDs-GP possessed high biocompatibility, high light stability, and broad antibacterial activity. Additionally, selective Gram-positive bacterial imaging by N-CDs-GP provided a more rapid method of bacterial detection. The N-CDs-GP have the potential to be applied as bioimaging and antibacterial agents and for bacterial discrimination.
Collapse
Affiliation(s)
- Xiaohong Chu
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Fan Wu
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Baohong Sun
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Saijie Song
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Pan Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Yuli Wang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China; Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China.
| |
Collapse
|
32
|
Ultrasonic-Assisted Magnetic Solid-Phase Dispersive Extraction for Determination of Chlorpyrifos and Triclosan in Wastewater Samples prior to Liquid Chromatography Tandem Mass Spectrometry Detection. Chromatographia 2020. [DOI: 10.1007/s10337-019-03848-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Madrigal-Bujaidar E, Cerón-Montes GI, Reyes-Miranda J, Vergara-Hernández E, Álvarez-González I, Morales-Ramírez ÁDJ, Francisco-Martínez LE, Garrido-Hernández A. Structural, luminescence and geno/cytoxicity study of carbon dots derived from Opuntia ficus-indica (L.) Mill. NEW J CHEM 2020. [DOI: 10.1039/c9nj03771c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carbon dots derived from nopal significantly increase the number of micronuclei in mouse erythrocytes and inhibit mouse bone marrow cell proliferation.
Collapse
Affiliation(s)
| | | | - Joan Reyes-Miranda
- Universidad Autónoma Metropolitana Azcapotzalco
- Departamento de Materiales
- Mexico
| | | | - Isela Álvarez-González
- Laboratorio de Genética
- Escuela Nacional de Ciencias Biológicas
- Instituto Politécnico Nacional
- Mexico
| | | | | | | |
Collapse
|
34
|
Palanisamy S, Wang YM. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans 2019; 48:9490-9515. [PMID: 31211303 DOI: 10.1039/c9dt00459a] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a global epidemic and is considered a leading cause of death. Various cancer treatments such as chemotherapy, surgery, and radiotherapy are available for the cure but those are generally associated with poor long-term survival rates. Consequently, more advanced and selective methods that have better outcomes, fewer side effects, and high efficacies are highly in demand. Among these is the use of superparamagnetic iron oxide nanoparticles (SPIONs) which act as an innovative kit for battling cancer. Low cost, magnetic properties and toxicity properties enable SPIONs to be widely utilized in biomedical applications. For example, magnetite and maghemite (Fe3O4 and γ-Fe2O3) exhibit superparamagnetic properties and are widely used in drug delivery, diagnosis, and therapy. These materials are termed SPIONs when their size is smaller than 20 nm. This review article aims to provide a brief introduction on SPIONs, focusing on their fundamental magnetism and biological applications. The quality and surface chemistry of SPIONs are crucial in biomedical applications; therefore an in-depth survey of synthetic approaches and surface modifications of SPIONs is provided along with their biological applications such as targeting, site-specific drug delivery and therapy.
Collapse
Affiliation(s)
- Sathyadevi Palanisamy
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan.
| | | |
Collapse
|
35
|
Yang YZ, Xiao N, Liu SG, Han L, Li NB, Luo HQ. pH-induced aggregation of hydrophilic carbon dots for fluorescence detection of acidic amino acid and intracellular pH imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110401. [PMID: 31923930 DOI: 10.1016/j.msec.2019.110401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
Intracellular pH level plays an important role in physiological and pathological processes. The development of nanoprobes for detecting in vivo pH levels is especially important for early diagnosis of disease. Therefore, we develop a hydrophilic carbon points (CDs) using quercetin and ethylenediamine as precursors to monitor intracellular pH. Under optimized conditions, the prepared CDs not only have uniform particle size and morphology, but also possess strong green fluorescence, photostability, and photoreversibility in water medium. The CDs exhibit pH-sensitive fluorescence effect under acidic and alkaline conditions, which is used to achieve "off-on-off" detection pH (from 3.5 to 13.5). Meanwhile, the pH-dependent mechanism is further investigated and explained, which is the fluorescence quenching caused by the pH-induced aggregation. Based on the pH-sensitive characteristics of CDs, it has been applied to the detection of aspartic acid and glutamic acid. More importantly, when applied to live cells, the pH-probe exhibits low cytotoxicity and high sensitivity, and is successfully used in intracellular pH fluorescence imaging. Consequently, this nanoprobe is expected to be used for real-time monitoring of intracellular pH level.
Collapse
Affiliation(s)
- Yu Zhu Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China; Department of Basic Teaching, Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| | - Na Xiao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shi Gang Liu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lei Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
36
|
Xu Y, Shan Y, Zhang Y, Yu B, Shen Y, Cong H. Multifunctional Fe 3O 4@C-based nanoparticles coupling optical/MRI imaging and pH/photothermal controllable drug release as efficient anti-cancer drug delivery platforms. NANOTECHNOLOGY 2019; 30:425102. [PMID: 31261137 DOI: 10.1088/1361-6528/ab2e40] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multifunctional nanomedicines featuring high drug loading capacity, controllable drug release and real-time self-monitoring are attracting increasing attention due to their potential to improve cancer therapeutic efficacy. Herein, a new kind of Fe3O4@C-based nanoparticles modified with isoreticular metal organic frameworks (IRMOF-3), folic acid (FA) and detachable polyethylene glycol (PEG) under tumor microenvironment was developed. The core-shell structured Fe3O4@C was synthesized via the one-pot solvothermal reaction and the IRMOF-3 layers were coated on the outer shell of Fe3O4@C through layer-by-layer coating method. The FA and PEG were conjugated on the surface of nanoparticles by reacting with the amine groups provided by IRMOF-3. The as-synthesized nanoparticles showed stable photothermal effect, superparamagnetic properties and blue fluorescence characteristic under 360 nm irradiation. The in vitro experiments showed that the drug loaded nanoparticles exhibit pH-dependent drug release property, and PEGylation was proved effective in suppressing burst drug release (only 8.0% of drugs were released within 95 h). The confocal laser scanning microscopy study revealed that the as-synthesized nanoparticles could serve as a cell imaging agent and the cell internalization can be significantly enhanced after FA modified. The IRMOF-3 modified nanoparticles showed negligible cytotoxicity and the drug loaded nanoparticles showed pH/photothermal-stimuli enhanced cytotoxicity in vitro. It is believed that the present smart drug delivery platforms will hold great potential in imaging guided drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Yanhong Xu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Wu F, Sun B, Chu X, Zhang Q, She Z, Song S, Zhou N, Zhang J, Yi X, Wu D, Wang J. Hyaluronic Acid-Modified Porous Carbon-Coated Fe 3O 4 Nanoparticles for Magnetic Resonance Imaging-Guided Photothermal/Chemotherapy of Tumors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13135-13144. [PMID: 31510746 DOI: 10.1021/acs.langmuir.9b02300] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemotherapy is an effective method for treating cancer, clinically. However, side effects of drug and multidrug resistance restrict its application. In recent years, the combined treatment of chemotherapy and photothermal therapy (PTT) is becoming a promising method for treating cancer. PTT utilizes nanomaterials absorbing near-infrared light and producing heat to acquire advanced hyperthermia strategy for cancer treatment. Carbon nanomaterials with good biocompatibility, high surface area, and excellent photothermal properties are an excellent nanoplatform for drug delivery and PTT. Herein, porous carbon-coated magnetite nanoparticles (PCCMNs) were successfully synthesized by a one-pot solvothermal method. Magnetite, a contrast agent, can be used for magnetic resonance imaging. Hyaluronic acid was used to modify the PCCMNs to achieve targeted therapy. The obtained nanohybrid with a good photothermal effect can realize combined PTT/chemotherapy and will be a promising nanoplatform for high efficacy theranostics.
Collapse
Affiliation(s)
- Fan Wu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Baohong Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Zhangcai She
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Saijie Song
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jun Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Daohong Wu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| |
Collapse
|
38
|
Han C, Zhang A, Kong Y, Yu N, Xie T, Dou B, Li K, Wang Y, Li J, Xu K. Multifunctional iron oxide-carbon hybrid nanoparticles for targeted fluorescent/MR dual-modal imaging and detection of breast cancer cells. Anal Chim Acta 2019; 1067:115-128. [DOI: 10.1016/j.aca.2019.03.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/07/2019] [Accepted: 03/28/2019] [Indexed: 02/08/2023]
|
39
|
Zhang J, Yuan Y, Gao M, Han Z, Chu C, Li Y, van Zijl PCM, Ying M, Bulte JWM, Liu G. Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angew Chem Int Ed Engl 2019; 58:9871-9875. [PMID: 31162873 PMCID: PMC6897491 DOI: 10.1002/anie.201904722] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 12/22/2022]
Abstract
While carbon dots (C-dots) have been extensively investigated pertaining to their fluorescent, phosphorescent, electrochemiluminescent, optoelectronic, and catalytic features, their inherent chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) properties are unknown. By virtue of their hydrophilicity and abundant exchangeable protons of hydroxyl, amine, and amide anchored on the surface, we report here that C-dots can be adapted as effective diamagnetic CEST (diaCEST) MRI contrast agents. As a proof-of-concept demonstration, human glioma cells were labeled with liposomes with or without encapsulated C-dots and implanted in mouse brain. In vivo CEST MRI was able to clearly differentiate labeled cells from non-labeled cells. The present findings may encourage new applications of C-dots for in vivo imaging in deep tissues, which is currently not possible using conventional fluorescent (near-infrared) C-dots.
Collapse
Affiliation(s)
- Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Minling Gao
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Zheng Han
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Chengyan Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Peter C. M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- F.M Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD (USA)
| | - Mingyao Ying
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- F.M Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD (USA)
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD (USA)
- F.M Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD (USA)
| |
Collapse
|
40
|
Zhang J, Yuan Y, Gao M, Han Z, Chu C, Li Y, van Zijl PCM, Ying M, Bulte JWM, Liu G. Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jia Zhang
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Yue Yuan
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Minling Gao
- Department of NeurologyThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Zheng Han
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Chengyan Chu
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Yuguo Li
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Peter C. M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
- F.M Kirby Research Center for Functional Brain ImagingKennedy Krieger Institute Baltimore MD USA
| | - Mingyao Ying
- Department of NeurologyThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
- F.M Kirby Research Center for Functional Brain ImagingKennedy Krieger Institute Baltimore MD USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of Medicine Baltimore MD USA
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological ScienceDivision of MR ResearchThe Johns Hopkins University School of Medicine Baltimore MD USA
- F.M Kirby Research Center for Functional Brain ImagingKennedy Krieger Institute Baltimore MD USA
| |
Collapse
|
41
|
Liu C, Bao L, Yang M, Zhang S, Zhou M, Tang B, Wang B, Liu Y, Zhang ZL, Zhang B, Pang DW. Surface Sensitive Photoluminescence of Carbon Nanodots: Coupling between the Carbonyl Group and π-Electron System. J Phys Chem Lett 2019; 10:3621-3629. [PMID: 31199162 DOI: 10.1021/acs.jpclett.9b01339] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The functional groups and π-electron system of carbon dots (C-dots) were carefully controlled by several innovative chemical methods, without any changes in size, to unravel the relationship between the surface structure and photoluminescence (PL). The results of experiments and theoretical calculations reveal that the PL of C-dots is related to the surface state. The energy gap is determined by the coupling of the π-electron system and carbonyl group, and the quantum yield (QY) is dependent on the carbonyl group. The carbonyl group is the main factor increasing the ratio of nonradiation to radiation recombination, thereby leading to the low QY of C-dots. This work provides a strategy for effectively tuning the structure of C-dots, giving rise to the tunable PL emission wavelength and highly desirable QY, which enables us to further unravel the PL mechanism.
Collapse
Affiliation(s)
- Cui Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering , Chongqing University , Chongqing 400044 , P. R. China
| | - Lei Bao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| | - Mengli Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| | - Song Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Miaomiao Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Bo Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| | - Baoshan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| | - Yufei Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Centre for Intelligent Sensing Technology, College of Optoelectronic Engineering , Chongqing University , Chongqing 400044 , P. R. China
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
42
|
Zhang Y, Yang L, Yan L, Wang G, Liu A. Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Lu S, Liu L, Wang H, Zhao W, Li Z, Qu Z, Li J, Sun T, Wang T, Sui G. Synthesis of dual functional gallic-acid-based carbon dots for bioimaging and antitumor therapy. Biomater Sci 2019; 7:3258-3265. [PMID: 31169282 DOI: 10.1039/c9bm00570f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carbon quantum dots are excellent photoluminescent materials because of their unique fluorescence properties. They are widely used in biomedical imaging due to their good biocompatibility. However, carbon quantum dots with antitumor activity have rarely been reported. Gallic acid (GA) is an anticancer agent and effective against many types of tumor cells. In this study, GA based carbon dots (GACDs) with fluorescence and antitumor activity were synthesized by a simple microwave-assisted method and characterized by transmission electron microscopy (TEM), and Fourier transformed infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Studies of optical properties indicated that the GACDs exhibited significant photoluminescence. In addition, we observed the antitumor activity of the GACDs using both cell-based assays and mouse xenograft tumors. Our results demonstrated that the GACDs can be used as both a bioimaging material and an antitumor agent, suggesting their great potential in future clinical applications.
Collapse
Affiliation(s)
- Shuting Lu
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China.
| | - Liping Liu
- Harbin First Specialist Hospital, 217 Hongwei Road, Harbin 150056, China
| | - Henan Wang
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China.
| | - Wancheng Zhao
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China.
| | - Zeyu Li
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China.
| | - Zheng Qu
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China.
| | - Jialu Li
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China.
| | - Tiedong Sun
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China.
| | - Ting Wang
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China.
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Harbin 150040, P. R. China
| |
Collapse
|
44
|
Das B, Girigoswami A, Dutta A, Pal P, Dutta J, Dadhich P, Srivas PK, Dhara S. Carbon Nanodots Doped Super-paramagnetic Iron Oxide Nanoparticles for Multimodal Bioimaging and Osteochondral Tissue Regeneration via External Magnetic Actuation. ACS Biomater Sci Eng 2019; 5:3549-3560. [PMID: 33405737 DOI: 10.1021/acsbiomaterials.9b00571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Super-paramagnetic iron oxide nanoparticles (SPIONs) have multiple theranostics applications such as T2 contrast agent in magnetic resonance imaging (MRI) and electromagnetic manipulations in biomedical devices, sensors, and regenerative medicines. However, SPIONs suffer from the limitation of free radical generation, and this has a certain limitation in its applicability in tissue imaging and regeneration applications. In the current study, we developed a simple hydrothermal method to prepare carbon quantum dots (CD) doped SPIONs (FeCD) from easily available precursors. The nanoparticles are observed to be cytocompatible, hemocompatible, and capable of scavenging free radicals in vitro. They also have been observed to be useful for bimodal imaging (fluorescence and MRI). Further, 3D printed gelatin-FeCD nanocomposite nanoparticles were prepared and used for tissue engineering using static magnetic actuation. Wharton's jelly derived mesenchymal stem cells (MSCs) were cultured on them with magnetic actuation and implanted at the subcutaneous region. The tissues obtained have shown features of both osteogenic and chondrogenic differentiation of the stem cells in vivo. In vitro, PCR studies show MSCs express gene expression of both bone and cartilage-specific markers, suggesting FeCDs under magnetic actuation can lead MSCs to go through differentiating into an endochondral ossification route.
Collapse
Affiliation(s)
- Bodhisatwa Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research & Education (CARE), Kelambakkam, Chennai, Tamil Nadu 603103, India
| | - Abir Dutta
- Advanced Technology Development Centre Indian Institute of Technology Kharagpur Kharagpur, West Bengal 721302, India
| | - Pallabi Pal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Joy Dutta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Prabhash Dadhich
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Pavan Kumar Srivas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
45
|
Carbon-encapsulated Fe3O4 for catalyzing the aerobic oxidation of benzyl alcohol and benzene. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-018-01529-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Behboudi H, Mehdipour G, Safari N, Pourmadadi M, Saei A, Omidi M, Tayebi L, Rahmandoust M. Carbon Quantum Dots in Nanobiotechnology. ADVANCED STRUCTURED MATERIALS 2019. [DOI: 10.1007/978-3-030-10834-2_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Li D, Fan Y, Shen M, Bányai I, Shi X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B 2019; 7:277-285. [DOI: 10.1039/c8tb02723d] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dual drug-loaded dendrimer/CD nanohybrids can be developed for fluorescence imaging and enhanced chemotherapy of cancer cells.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - István Bányai
- Department of Physical Chemistry
- University of Debrecen
- H-4032 Debrecen
- Hungary
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- International Joint Laboratory for Advanced Fiber and Low-dimension Materials
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| |
Collapse
|
48
|
Vadivelmurugan A, Anbazhagan R, Arunagiri V, Lai JY, Tsai HC. Pluronic F127 self-assembled MoS2 nanocomposites as an effective glutathione responsive anticancer drug delivery system. RSC Adv 2019; 9:25592-25601. [PMID: 35530082 PMCID: PMC9070048 DOI: 10.1039/c9ra04249k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, bio-responsive polymeric MoS2 nanocomposites were prepared for use as a drug carrier for cancer therapy. Herein, we report the synthesis and demonstrate the self-assembly of pluronic F127 (PF127) on a cystamine–glutathione–MoS2 (CYS–GSH–MoS2) system, which can be used for GSH-triggered drug release under biological reducing conditions. The reduction-sensitive disulfide bond containing CYS was incorporated between the amphiphilic copolymer PF127 and GSH–MoS2 to achieve feasible drug release. Percent drug loading capacity and encapsulation efficiency were 51.3% and 56%, respectively. In addition, when the MoS2–GSH–CYS–PF127 nanocomposite was incubated in a GSH environment, the morphology of the nanocomposite tended to change, ultimately leading to drug release. The drug-loaded PF127–CYS–GSH–MoS2 polymeric nanocomposites efficiently released 52% of their drug content after 72 h of incubation in a GSH reduction environment. The HeLa cells treated with DOX loaded MoS2–GSH–CYS–PF127 showed 38% toxicity at drug concentration of 40 μg, which indicated that the successfully released of drug from carrier and caused the cell death. Further, fluorescence microscopy images of HeLa cells revealed the potential behavior of the MoS2–GSH–CYS–PF12 nanocomposite during the 2- and 4 h incubation periods; the nanocomposite was only found in the cytoplasm of HeLa cells. Interestingly, after 6 h of incubation, the drug was slowly released from the nanocomposite and could enter the nucleus as confirmed by fluorescence imaging of HeLa cells. Altogether, our synthesized PF127-coated MoS2 nanocomposite could be effectively adopted in the near future as a GSH-sensitive drug carrier. In this study, bio-responsive polymeric MoS2 nanocomposites were prepared for use as a drug carrier for cancer therapy.![]()
Collapse
Affiliation(s)
- Adhisankar Vadivelmurugan
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
- Advanced Membrane Materials Center
| | - Vinothini Arunagiri
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
- Advanced Membrane Materials Center
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
- Advanced Membrane Materials Center
| |
Collapse
|
49
|
Lu D, Yang X, Zhang Q, Wang R, Zhou S, Yang G, Shan Y. Tracking the Single-Carbon-Dot Transmembrane Transport by Force Tracing Based on Atomic Force Microscopy. ACS Biomater Sci Eng 2018; 5:432-437. [DOI: 10.1021/acsbiomaterials.8b01363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Denghua Lu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Xudong Yang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qingrong Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Ruixia Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Siyuan Zhou
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Guocheng Yang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
50
|
Wang H, Mu Q, Revia R, Wang K, Tian B, Lin G, Lee W, Hong YK, Zhang M. Iron oxide-carbon core-shell nanoparticles for dual-modal imaging-guided photothermal therapy. J Control Release 2018; 289:70-78. [PMID: 30266634 PMCID: PMC6365181 DOI: 10.1016/j.jconrel.2018.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023]
Abstract
Nanostructured materials that have low tissue toxicity, multi-modal imaging capability and high photothermal conversion efficiency have great potential to enable image-guided near infrared (NIR) photothermal therapy (PTT). Here, we report a bifunctional nanoparticle (BFNP, ∼16 nm) comprised of a magnetic Fe3O4 core (∼9.1 nm) covered by a fluorescent carbon shell (∼3.4 nm) and prepared via a one-pot solvothermal synthesis method using ferrocene as the sole source. The BFNP exhibits excitation wavelength-tunable, upconverted and near-infrared (NIR) fluorescence property due to the presence of the carbon shell, and superparamagnetic behavior resulted from the Fe3O4 core. BFNPs demonstrate dual-modal imaging capacity both in vitro and in vivo with fluorescent imaging excited under a varying wavelength from 405 nm to 820 nm and with T2-weighted magnetic resonance imaging (r2 = 264.76 mM-1 s-1). More significantly, BFNPs absorb and convert NIR light to heat enabling photothermal therapy as demonstrated mice bearing C6 glioblastoma. These BFNPs show promise as an advanced nanoplatform to provide imaging guided photothermal therapy.
Collapse
Affiliation(s)
- Hui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, China
| | - Qingxin Mu
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bowei Tian
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Woncheol Lee
- Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yang-Ki Hong
- Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|