1
|
Mondal BD, Gorai S, Nath R, Paul A, Guin J. Enantioselective Amination of 3-Substituted-2-benzofuranones via Non-covalent N-Heterocyclic Carbene Catalysis. Chemistry 2024; 30:e202303115. [PMID: 37997460 DOI: 10.1002/chem.202303115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Herein, an efficient method for asymmetric α-amination of 2-benzofuranones with N-heterocyclic carbene (NHC) catalysis is reported. The process is based on non-covalent interaction of NHC with substrate, facilitating the formation of a chiral ion-pair that encompasses enolate and azolium salt. The activated enolate adds to an electrophilic amine source with sufficient facial control to furnish an enantioenriched product having an amine substituted quaternary stereocenter. The process displays a broad substrate scope. A preparative scale synthesis has been achieved. Preliminary mechanistic investigations based on experimental and DFT studies suggest a reaction pathway that involves non-covalent substrate/NHC interactions and essentially implicate the role of π-π interaction in diastereomeric transition states for stereo-chemical discrimination.
Collapse
Affiliation(s)
- Bhaskar Deb Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sadhan Gorai
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Rounak Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Joyram Guin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2 A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
2
|
Qi SS, Sun XP, Sun YB, Zhai JJ, Wang YF, Chu MM, Xu DQ. Synthesis of Chiral Diarylmethylamides via Catalytic Asymmetric Aza-Michael Addition of Amides to ortho-Quinomethanes. J Org Chem 2024. [PMID: 38181049 DOI: 10.1021/acs.joc.3c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Chiral diarylmethylamides are a privileged skeleton in many bioactive molecules. However, the enantioselective synthesis of such molecules remains a long-standing challenge in organic synthesis. Herein, we report a chiral bifunctional squaramide catalyzed asymmetric aza-Michael addition of amides to in situ generated ortho-quinomethanes, affording enantioenriched diarylmethylamides in good yields with excellent enantioselectivities. This work not only provides a new strategy for the construction of the diarylmethylamides but also represents the practicability of amides as nitrogen-nucleophiles in asymmetric organocatalysis.
Collapse
Affiliation(s)
- Suo-Suo Qi
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiao-Ping Sun
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yan-Biao Sun
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jing-Jing Zhai
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi-Feng Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ming-Ming Chu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
3
|
Li S, Zhou L. gem-Difluoro-Masked o-Quinone Methides Generated by Photocatalytic Radical (3+3) Annulation and Their (4+1) Cycloaddition with Sulfur Ylides. Org Lett 2023. [PMID: 37996080 DOI: 10.1021/acs.orglett.3c03612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A visible light-promoted radical (3+3) annulation of vinyldiazo compounds and bromodifluoromethyl alkynyl ketones for the construction of gem-difluoro-masked o-quinone methides (o-QMs) is described. The reactivity of this new type of o-QM precursor is demonstrated by its (4+1) cycloaddition with sulfur ylides, affording monofluorinated aromatic benzofurans by the elimination of HBr without external oxidants.
Collapse
Affiliation(s)
- Sen Li
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Chen Y, Fan Y, Li Y, Yao C. Iodonium Ion-Induced Cyclization and Aryl Migration of ortho-Hydroxystilbenes for the Synthesis of 3-Aryl-2,3-dihydrobenzofuran. J Org Chem 2023; 88:11460-11472. [PMID: 37526470 DOI: 10.1021/acs.joc.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A facile and versatile protocol for the efficient synthesis of 3-aryl-2,3-dihydrobenzofuran (ADB) has been reported first. This reaction features the cyclization and aryl migration reaction of ortho-hydroxystilbene in ethanol, which is mediated by an iodonium ion, under ambient conditions. A class of ADB was prepared efficiently in good to excellent yields. Mechanism investigation revealed that acids and alcohols facilitated aryl migration, but alkaline and non-alcohol solvents promoted β elimination. The practicality of this strategy was further substantiated by two scale-up reactions and demonstrated in efficient synthetic elaboration.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yiyao Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yanqiu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Chunsuo Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
5
|
Zhang X, Xing Q, Gou Z, Gan S, Wang W, Li Z, Shao H, Wang C. Synthesis of Functionalized Tetrahydroquinoline Containing Indole Scaffold via Chemoselective Annulation of Aza- ortho-quinone Methide Precursor. ACS OMEGA 2023; 8:22352-22360. [PMID: 37396238 PMCID: PMC10308564 DOI: 10.1021/acsomega.2c07036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 07/04/2023]
Abstract
The chemoselective annulation of aza-ortho-quinone methide generated by in situ o-chloromethyl sulfonamide has been achieved with bifunctional acyclic olefin. This efficient approach provides access to the diastereoselective synthesis of functionalized tetrahydroquinoline derivatives containing indole scaffolds through the inverse-electron-demand aza-Diels-Alder reaction under mild reaction conditions with excellent results (up to 93% yield, > 20:1 dr). Moreover, this article realized the cyclization of α-halogeno hydrazone with electron-deficient alkene affording the tetrahydropyridazine derivatives, which had never been reported.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Qianlu Xing
- Department
of Pediatrics, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhengxing Gou
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| | - Song Gan
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Wenjuan Wang
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Ziwei Li
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| | - Huawu Shao
- Natural
Products Research Centre, Chengdu Institute
of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chaoyong Wang
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| |
Collapse
|
6
|
Sahoo SR, Singh VK. Brønsted Acid Catalyzed Friedel-Crafts Alkylation of Naphthols with In Situ Generated Naphthol-Derived ortho-Quinone Methides: Synthesis of Chiral and Achiral Xanthene Derivatives. J Org Chem 2023. [PMID: 36866580 DOI: 10.1021/acs.joc.2c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
We disclose herein an enantioselective protocol for the Brønsted acid catalyzed addition of naphthols to in situ generated naphthol-derived ortho-quinone methides (o-QMs) followed by intramolecular cyclization, which delivers substituted chiral xanthene derivatives, in a one-pot reaction sequence under mild conditions. This process serves to convert naphthol-derived ortho-hydroxyl benzylic alcohols into reactive naphthol-derived o-QMs using a chiral phosphoric acid (CPA) catalyst. Moreover, it is helpful in controlling the enantioselectivity of the carbon-carbon bond-forming event via hydrogen-bonding followed by intramolecular cyclization. Additionally, for the first time, we observe a Brønsted acid catalyzed C(sp2)-C(sp3) bond cleavage of naphthol-derived ortho-hydroxyl benzylic alcohols for the synthesis of achiral xanthene (sigma plane containing) derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Sushree Ranjan Sahoo
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
7
|
A Novel Method to Construct 2-Aminobenzofurans via [4 + 1] Cycloaddition Reaction of In Situ Generated Ortho-Quinone Methides with Isocyanides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238538. [PMID: 36500630 PMCID: PMC9737762 DOI: 10.3390/molecules27238538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/09/2022]
Abstract
A new approach for the synthesis of 2-aminobenzofurans has been described via Sc(OTf)3 mediated formal cycloaddition of isocyanides with the in situ generated ortho-quinone methides (o-QMs) from o-hydroxybenzhydryl alcohol. Notably, as a class of readily available and highly active intermediates, o-QMs were first used in the construction of benzofurans. This [4 + 1] cycloaddition reaction provides a straightforward and efficient methodology for the construction of 2-aminobenzofurans scaffold in good yield (up to 93% yield) under mild conditions.
Collapse
|
8
|
Ma YH, He XY, Wang L, Yang QQ. PPh 3-Triggered Tandem Synthesis of 2,3-Disubstituted Benzofuran Derivatives from o-Quinone Methides with Acyl Chlorides. J Org Chem 2022; 87:11852-11856. [PMID: 35960255 DOI: 10.1021/acs.joc.2c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A PPh3-triggered tandem strategy for the efficient synthesis of valuable 2,3-disubstituted benzofuran derivatives in generally good to high yields from aryl or alkyl acyl chlorides and o-quinone methides has been developed. This method features mild reaction conditions, simple operation, and a broad substrate scope.
Collapse
Affiliation(s)
- Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, People's Republic of China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, People's Republic of China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, People's Republic of China.,Hubei Three Gorges Labratory, Yichang, Hubei 443007, People's Republic of China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, People's Republic of China.,Hubei Three Gorges Labratory, Yichang, Hubei 443007, People's Republic of China
| |
Collapse
|
9
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
10
|
Diastereodivergent formal [4 + 1] cycloaddition of azoalkenes as one-carbon synthons. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
11
|
Kumar G, Nagpure M, Rao VK, Guchhait SK. Synthesis of heterocyclic‐fused furans and dihydrofurans via a (4+1)‐annulation with ylide: Exploration of unique reactivity behavior of α‐carbonyl sulfoxonium ylide. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gulshan Kumar
- National Institute of Pharmaceutical Education and Research Department of Medicinal Chemistry Sector 67SAS Nagar 160062 Mohali INDIA
| | - Mithilesh Nagpure
- National Institute of Pharmaceutical Education and Research Department of Medicinal Chemistry Sector 67SAS Nagar 160062 Mohali INDIA
| | - Vajja Krishna Rao
- National Institute of Pharmaceutical Education and Research Department of Medicinal Chemistry Sector 67SAS Nagar 160062 Mohali INDIA
| | - Sankar Kumar Guchhait
- National Institute of Pharmaceutical Education and Research Department of Medicinal Chemistry Phase X, Sector 67 160062 S. A. S. Nagar Mohali INDIA
| |
Collapse
|
12
|
Hua TB, Ma YH, He XY, Wang L, Yan JY, Yang QQ. A formal [4 + 1] cycloaddition reaction of Baylis–Hillman bromides with sulfur ylides: facile access to α-alkenyl lactones. Org Chem Front 2022. [DOI: 10.1039/d2qo00451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A formal [4 + 1] cycloaddition reaction of Baylis–Hillman adducts with sulfur ylides has been developed for the first time.
Collapse
Affiliation(s)
- Ting-Bi Hua
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
| | - Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Jia-Ying Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, 8 Daxue Road, Yichang, Hubei 443002, China
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| |
Collapse
|
13
|
Ushakov P, Ioffe S, Sukhorukov AY. Recent advances in the application of ylide-like species in [4+1]-annulation reactions: an update review. Org Chem Front 2022. [DOI: 10.1039/d2qo00698g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, advances in [4+1]‐annulation reactions involving sulfonium, sulfoxonium and ammonium ylides, as well as diazo compounds and carbenes are summarized over the last 6 years. Newly emerged methods...
Collapse
|
14
|
Gharui C, Parida C, Pan SC. Organocatalytic Asymmetric Addition of Aromatic α-Cyanoketones to o-Quinone Methides: Synthesis of 3,4-Dihydrocoumarins and Tetrasubstituted Chromans. J Org Chem 2021; 86:13071-13081. [PMID: 34464133 DOI: 10.1021/acs.joc.1c00435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The first organocatalytic asymmetric addition of aromatic α-cyanoketones to in situ-generated o-quinone methides has been developed. The products 3,4-dihydrocoumarin and tetrasubstituted chroman were obtained via addition of aromatic α-cyanoketones to in situ-generated o-quinone methides followed by treatment with 0.7 N HCl. With 10 mol % catalyst, the desired products were obtained in high enantio- and diastereoselectivities.
Collapse
Affiliation(s)
- Chandan Gharui
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Chandrakanta Parida
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
15
|
Tian X, Zhang X, Hou X, Ren W, Li X, Zhao F, Tao H, Wang Y. Formal [4+1] Cyclization of
ortho
‐ or
para
‐Quinone Methides with 3‐Chlorooxindoles: Synthesis of 3,2′‐Tetrahydrofuryl Spirooxindoles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaochen Tian
- Molecular Synthesis Center & Key Laboratory of Marine Drugs Chinese Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Xiaoli Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs Chinese Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Xiaohan Hou
- Molecular Synthesis Center & Key Laboratory of Marine Drugs Chinese Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs Chinese Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Qingdao National Laboratory for Marine Science and Technology (QNLM) Qingdao 266237 P. R. China
| | - Xiaoyang Li
- Molecular Synthesis Center & Key Laboratory of Marine Drugs Chinese Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
| | - Fei Zhao
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Rd, Pudong New District Shanghai 201210 P. R. China
| | - Houchao Tao
- iHuman Institute ShanghaiTech University Ren Building 393 Middle Huaxia Rd, Pudong New District Shanghai 201210 P. R. China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs Chinese Ministry of Education School of Medicine and Pharmacy Ocean University of China 5 Yushan Road Qingdao 266003 P. R. China
- Laboratory for Marine Drugs and Bioproducts Qingdao National Laboratory for Marine Science and Technology (QNLM) Qingdao 266237 P. R. China
| |
Collapse
|
16
|
Gulotty EM, Rodriguez KX, Parker EE, Ashfeld BL. Oxyphosphonium Enolate Equilibria in a (4+1)-Cycloaddition Approach toward Quaternary C3-Spirooxindole Assembly. Chemistry 2021; 27:10349-10355. [PMID: 33861491 DOI: 10.1002/chem.202100355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 01/11/2023]
Abstract
An efficient and convergent (4+1)-cycloaddition strategy toward the construction of spirooxindole benzofurans that involves the intermediacy of an isatin-derived oxyphosphonium enolate is presented. Mechanistic investigations employing in situ NMR analysis of the reaction mixture revealed a correlation between phosphonium enolate structure and product distribution that was heavily influenced by the solvent and reaction temperature.
Collapse
Affiliation(s)
- Eva M Gulotty
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kevin X Rodriguez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Erin E Parker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brandon L Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
17
|
Lu Z, Zhang Q, Ke M, Hu S, Xiao X, Chen F. TfOH-Catalyzed [4 + 1] Annulation of p-Quinone Methides with α-Aryl Diazoacetates: Straightforward Access to Highly Functionalized 2,3-Dihydrobenzofurans. J Org Chem 2021; 86:7625-7635. [PMID: 33993694 DOI: 10.1021/acs.joc.1c00672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a methodology for the greatly efficient construction of significant 2,3-dihydrobenzofuran scaffolds bearing a quaternary carbon center at the C2 position by means of [4 + 1] annulation reactions between p-quinone methides and α-aryl diazoacetates as C1 synthons through organocatalysis by readily accessible TfOH catalyst under mild and transition metal-free conditions. This metal-free protocol furnishes an operationally simple and swift process for the free assembly of diverse highly functionalized 2,3-dihydrobenzofurans and also features broad substrate scope, excellent functional group compatibility, and environmental friendliness. Mechanistic investigation suggested that the reaction undergoes a rapid cascade protonation/intermolecular Michael addition/intramolecular substitution process.
Collapse
Affiliation(s)
- Zuolin Lu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qingchun Zhang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
18
|
Zhang K, Provot O, Tran C, Alami M, Hamze A. Copper-catalyzed sulfonylation of N-tosylhydrazones followed by a one-pot C-N bond formation. Org Biomol Chem 2021; 19:5358-5367. [PMID: 34047324 DOI: 10.1039/d1ob00676b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new methodology to synthesize sulfonyl-N-phenylaniline derivatives via the trapping of bromo-sulfone derivatives generated from N-tosylhydrazones (NTHs) with amines is described. The reaction proved successful for a wide range of NTHs and amines and tolerated various functional groups on either coupling partner (35 examples). The mechanism was studied, and we showed that the sulfone formation does not follow a radical pathway.
Collapse
Affiliation(s)
- Kena Zhang
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290 Châtenay-Malabry, France.
| | - Olivier Provot
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290 Châtenay-Malabry, France.
| | - Christine Tran
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290 Châtenay-Malabry, France.
| | - Mouad Alami
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290 Châtenay-Malabry, France.
| | - Abdallah Hamze
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290 Châtenay-Malabry, France.
| |
Collapse
|
19
|
Chakrabarty S, Romero EO, Pyser JB, Yazarians JA, Narayan ARH. Chemoenzymatic Total Synthesis of Natural Products. Acc Chem Res 2021; 54:1374-1384. [PMID: 33600149 PMCID: PMC8210581 DOI: 10.1021/acs.accounts.0c00810] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The total synthesis of structurally complex natural products has challenged and inspired generations of chemists and remains an exciting area of active research. Despite their history as privileged bioactivity-rich scaffolds, the use of natural products in drug discovery has waned. This shift is driven by their relatively low abundance hindering isolation from natural sources and the challenges presented by their synthesis. Recent developments in biocatalysis have resulted in the application of enzymes for the construction of complex molecules. From the inception of the Narayan lab in 2015, we have focused on harnessing the exquisite selectivity of enzymes alongside contemporary small molecule-based approaches to enable concise chemoenzymatic routes to natural products.We have focused on enzymes from various families that perform selective oxidation reactions. For example, we have targeted xyloketal natural products through a strategy that relies on a chemo- and site-selective biocatalytic hydroxylation. Members of the xyloketal family are characterized by polycyclic ketal cores and demonstrate potent neurological activity. We envisioned assembling a representative xyloketal natural product (xyloketal D) involving a biocatalytically generated ortho-quinone methide intermediate. The non-heme iron (NHI) dependent monooxygenase ClaD was used to perform the benzylic hydroxylation of a resorcinol precursor, the product of which can undergo spontaneous loss of water to form an ortho-quinone methide under mild conditions. This intermediate was trapped using a chiral dienophile to complete the total synthesis of xyloketal D.A second class of biocatalytic oxidation that we have employed in synthesis is the hydroxylative dearomatization of resorcinol compounds using flavin-dependent monooxygenases (FDMOs). We anticipated that the catalyst-controlled site- and stereoselectivity of FDMOs would enable the total synthesis of azaphilone natural products. Azaphilones are bioactive compounds characterized by a pyranoquinone bicyclic core and a fully substituted chiral carbon atom. We leveraged the stereodivergent reactivity of FDMOs AzaH and AfoD to achieve the enantioselective synthesis of trichoflectin enantiomers, deflectin 1a, and lunatoic acid. We also leveraged FDMOs to construct tropolone and sorbicillinoid natural products. Tropolones are a structurally diverse class of bioactive molecules characterized by an aromatic cycloheptatriene core bearing an α-hydroxyketone moiety. We developed a two-step biocatalytic cascade to the tropolone natural product stipitatic aldehyde using the FDMO TropB and a NHI monooxygenase TropC. The FDMO SorbC obtained from the sorbicillin biosynthetic pathway was used in the concise total synthesis of a urea sorbicillinoid natural product.Our long-standing interest in using enzymes to carry out C-H hydroxylation reactions has also been channeled for the late-stage diversification of complex scaffolds. For example, we have used Rieske oxygenases to hydroxylate the tricyclic core common to paralytic shellfish toxins. The systemic toxicity of these compounds can be reduced by adding hydroxyl and sulfate groups, which improves their properties and potential as therapeutic agents. The enzymes SxtT, GxtA, SxtN, and SxtSUL were used to carry out selective C-H hydroxylation and O-sulfation in saxitoxin and related structures. We conclude this Account with a discussion of existing challenges in biocatalysis and ways we can currently address them.
Collapse
Affiliation(s)
- Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Evan O. Romero
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua B. Pyser
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica A. Yazarians
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R. H. Narayan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Liu X, Wang K, Liu Y, Li C. Divergent Asymmetric Reactions of ortho-Quinone Methides with α-Thiocyanato Indanones for the Synthesis of Spiro- and Fused-Indanones. Chemistry 2021; 27:735-739. [PMID: 32909264 DOI: 10.1002/chem.202003647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Indexed: 11/10/2022]
Abstract
Reported in this work is a water triggered chemo-divergent enantioselective spiro-annulation and cascade reaction of ortho-quinone methides (o-QMs) with α-thiocyanato indanones catalyzed by a chiral organic base. In the case of spiro-annulation, the use of trace amount of water as additive is critical to achieve high enantioselectivity (up to 96 % ee). We found that a cascade reaction was enabled by just tuning the ratio of water in solvent. Accordingly, two new highly efficient asymmetric reactions for the divergent synthesis of spiro- and fused-indanone scaffolds with excellent enantioselectivities (up to 99 % ee) were developed. Mechanistic investigations suggest that interfacial hydrogen bonding may play an important role in achieving the switchable reaction pathways.
Collapse
Affiliation(s)
- Xianghui Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
21
|
Jha BK, Prudhviraj J, Mainkar PS, Punna N, Chandrasekhar S. Diastereoselective synthesis of CF 3-dihydrobenzofurans by [4+1] annulation of in situ-generated CF 3- o-quinone methides and sulfur ylides. RSC Adv 2020; 10:38588-38591. [PMID: 35517513 PMCID: PMC9057278 DOI: 10.1039/d0ra08289a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
An efficient and highly diastereoselective synthesis of CF3-dihydrobenzofurans by the reaction of in situ-generated CF3-oQMs in the presence of a base with sulphur ylides is put forward. The generality of the present developed method was well studied with diverse substrates to access the corresponding products in excellent yields. The highly reactive CF3-oQM has been utilized first time for the annulation reaction. The first [4 + 1] annulation reaction of in situ-generated highly electrophilic CF3-ortho-quinone methides with sulphur ylides has been put forth under mild reaction conditions to access CF3-dihydrobenzofurans.![]()
Collapse
Affiliation(s)
- Babli K Jha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Jaggaraju Prudhviraj
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nagender Punna
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
22
|
Tang Q, He X, Zhang J, Zhou T, Xie M, Li R, Zuo Y, Shang Y. Selective synthesis of 2‐(5‐oxo‐1‐arylhex‐1‐yn‐3‐yl)phenyl benzoates via FeCl
3
‐mediated cascade reactions of propargylamines with
β
‐enamino ketones. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Jinxue Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 People's Republic of China
| |
Collapse
|
23
|
La-ongthong K, Naweephattana P, Khaikate O, Surawatanawong P, Soorukram D, Pohmakotr M, Reutrakul V, Leowanawat P, Kuhakarn C. Alkanethiol-Mediated Cyclization of o-Alkynylisocyanobenzenes: Synthesis of Bis-Thiolated Indole Derivatives. J Org Chem 2020; 85:6338-6351. [DOI: 10.1021/acs.joc.0c00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kannika La-ongthong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Phiphop Naweephattana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Onnicha Khaikate
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Manat Pohmakotr
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|
24
|
Yu X, Lan W, Li J, Bai H, Qin Z, Fu B. Enantioselective one-pot synthesis of 4 H-chromene derivatives catalyzed by a chiral Ni( ii) complex. RSC Adv 2020; 10:44437-44441. [PMID: 35517147 PMCID: PMC9058437 DOI: 10.1039/d0ra08906k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
A Ni(ii)–bis(oxazoline) complex and p-TSOH are used to form enantioenriched 4H-chromenes from ortho-quinone methides (o-QMs) and dicarbonyls, providing the desired products in up to 95% ee. The method is compatible with various β-ketoester substrates, and the products obtained could be converted into biologically active 4H-chromene derivatives. A Ni(ii)–bis(oxazoline) complex and p-TSOH are used to form enantioenriched 4H-chromenes from ortho-quinone methides (o-QMs) and dicarbonyls, providing the desired products in up to 95% ee.![]()
Collapse
Affiliation(s)
- Xuan Yu
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- People's Repubic of China
| | - Wenjie Lan
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- People's Repubic of China
| | - Jiaqi Li
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- People's Repubic of China
| | - Hui Bai
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- People's Repubic of China
| | - Zhaohai Qin
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- People's Repubic of China
| | - Bin Fu
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- People's Repubic of China
| |
Collapse
|
25
|
Feng J, Wang S, Feng J, Li Q, Yue J, Yue G, Zou P, Wang G. Mild and efficient synthesis of trans-3-aryl-2-nitro-2,3-dihydrobenzofurans on water. NEW J CHEM 2020. [DOI: 10.1039/d0nj00548g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A protocol to prepare trans-3-aryl-2-nitro-2,3-dihydrobenzofurans has been developed on water. The protocol avoids the use of toxic solvents, tedious work-up procedures, and chromatographic separation.
Collapse
Affiliation(s)
- Juhua Feng
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Siyuan Wang
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Jinxiang Feng
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Qiuju Li
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Junping Yue
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Guizhou Yue
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Ping Zou
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| | - Guangtu Wang
- College of Science
- Sichuan Agricultural University
- Ya’an
- P. R. China
| |
Collapse
|
26
|
Singh G, Kumar S, Chowdhury A, Vijaya Anand R. Base-Mediated One-pot Synthesis of Oxygen-Based Heterocycles from 2-Hydroxyphenyl-Substituted para-Quinone Methides. J Org Chem 2019; 84:15978-15989. [DOI: 10.1021/acs.joc.9b02455] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| | - Suresh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| | - Arjun Chowdhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli (PO), Punjab 140306, India
| |
Collapse
|
27
|
Zhang X, Pan Y, Liang P, Ma X, Jiao W, Shao H. An Effective Method for the Synthesis of 1,3‐Dihydro‐2
H
‐indazoles via N‐N Bond Formation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoke Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
- Zunyi Medical University, 563006 Zunyi, Guizhou People's Republic of China
- University of Chinese Academy of Sciences People's Republic of China
| | - Yang Pan
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
- Zunyi Medical University, 563006 Zunyi, Guizhou People's Republic of China
| | - Peng Liang
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
- Zunyi Medical University, 563006 Zunyi, Guizhou People's Republic of China
| | - Xiaofeng Ma
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
- Zunyi Medical University, 563006 Zunyi, Guizhou People's Republic of China
| | - Wei Jiao
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, ChineseAcademy of Sciences, Chengdu, People's Republic of China
| |
Collapse
|
28
|
Gui H, Wu X, Wei Y, Shi M. A Formal Condensation and [4+1] Annulation Reaction of 3‐Isothiocyanato Oxindoles with Aza‐
o
‐Quinone Methides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hou‐Ze Gui
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Xiao‐Yun Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular EngineeringEast China University of Science and Technology 130 Mei Long Road Shanghai 200237 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 354 Fenglin Lu Shanghai 200032 People's Republic of China
- Shenzhen Grubbs InstituteSouthern University of Science and Technology, Shenzhen Guangdong 518000 People's Republic of China
| |
Collapse
|
29
|
Tan JP, Yu P, Wu JH, Chen Y, Pan J, Jiang C, Ren X, Zhang HS, Wang T. Bifunctional Phosphonium Salt Directed Enantioselective Formal [4 + 1] Annulation of Hydroxyl-Substituted para-Quinone Methides with α-Halogenated Ketones. Org Lett 2019; 21:7298-7302. [DOI: 10.1021/acs.orglett.9b02560] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian-Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, China
| | - Jia-Hong Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chunhui Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, 2 Mengxi Road, Zhenjiang 212003, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hong-Su Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
30
|
Deng B, Rao CB, Zhang R, Li J, Liang Y, Zhao Y, Gao M, Dong D. A Formal [3+2] Annulation of
β
‐Oxoamides and 3‐Alkyl‐ or 3‐Aryl‐Substituted Prop‐2‐Ynyl Sulfonium Salts: Substrate‐Controlled Chemoselective Synthesis of Substituted
γ
‐Lactams and Furans. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bicheng Deng
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Chitturi Bhujanga Rao
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Rui Zhang
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Jiacheng Li
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Yongjiu Liang
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Yanning Zhao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
| | - Ming Gao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Dewen Dong
- Key Laboratory of Preparation and Application of Environmental Friendly Materials of the Ministry of EducationJilin Normal University Changchun 130103 People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composites, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 People's Republic of China
| |
Collapse
|
31
|
He X, Xie M, Tang Q, Zuo Y, Li R, Shang Y. Catalyst-Free Synthesis of 2,3-Dihydrobenzofurans via a Formal [4+1] Annulation of Propargylamines with Sulfur Ylides. J Org Chem 2019; 84:11623-11638. [DOI: 10.1021/acs.joc.9b01557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Qiang Tang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People’s Republic of China
| |
Collapse
|
32
|
Zielke K, Kováč O, Winter M, Pospíšil J, Waser M. Enantioselective Catalytic [4+1]-Cyclization of ortho-Hydroxy-para-Quinone Methides with Allenoates. Chemistry 2019; 25:8163-8168. [PMID: 31020717 PMCID: PMC6618147 DOI: 10.1002/chem.201901784] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 12/25/2022]
Abstract
The first highly asymmetric catalytic synthesis of densely functionalized dihydrobenzofurans is reported, which starts from ortho-hydroxy-containing para-quinone methides. The reaction relies on an unprecedented formal [4+1]-annulation of these quinone methides with allenoates in the presence of a commercially available chiral phosphine catalyst. The chiral dihydrobenzofurans were obtained as single diastereomers in yields up to 90 % and with enantiomeric ratios up to 95:5.
Collapse
Affiliation(s)
- Katharina Zielke
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Ondřej Kováč
- Department of Organic ChemistryFaculty of SciencePalacky Universitytř. 17. listopadu 1192/12771 46OlomoucCzech Republic
| | - Michael Winter
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| | - Jiří Pospíšil
- Department of Organic ChemistryFaculty of SciencePalacky Universitytř. 17. listopadu 1192/12771 46OlomoucCzech Republic
- Laboratory of Growth RegulatorsThe Czech Academy of Sciences, Institute of Experimental Botany & Palacký UniversityŠlechtitelů 2778371OlomoucCzech Republic
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstraße 694040LinzAustria
| |
Collapse
|
33
|
|
34
|
Shen YB, Li SS, Liu X, Yu L, Sun YM, Liu Q, Xiao J. Formal [4 + 2] Annulation of Oxindole-Embedded ortho-Quinone Methides with 1,3-Dicarbonyls: Synthesis of Spiro[Chromen-4,3′-Oxindole] Scaffolds. J Org Chem 2019; 84:3990-3999. [DOI: 10.1021/acs.joc.8b03260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yao-Bin Shen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xicheng Liu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Liping Yu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yun-Ming Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing Liu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
35
|
Zhou F, Cheng Y, Liu XP, Chen JR, Xiao WJ. A visible light photoredox catalyzed carbon radical-mediated generation of ortho-quinone methides for 2,3-dihydrobenzofuran synthesis. Chem Commun (Camb) 2019; 55:3117-3120. [DOI: 10.1039/c9cc00727j] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A visible light photoredox-catalyzed carbon radical-mediated strategy for in situ formation of ortho-quinone methides from 2-vinyl phenols towards 2,3-dihydrobenzofuran synthesis is described.
Collapse
Affiliation(s)
- Fan Zhou
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
- Central China Normal University
| | - Ying Cheng
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
- Central China Normal University
| | - Xiao-Peng Liu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
- Central China Normal University
| | - Jia-Rong Chen
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
- Central China Normal University
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- International Joint Research Center for Intelligent Biosensing Technology and Health
- College of Chemistry
- Central China Normal University
| |
Collapse
|
36
|
Zhang S, Yu X, Pan J, Jiang C, Zhang H, Wang T. Asymmetric synthesis of spiro-structural 2,3-dihydrobenzofuransviathe bifunctional phosphonium salt-promoted [4 + 1] cyclization ofortho-quinone methides with α-bromoketones. Org Chem Front 2019. [DOI: 10.1039/c9qo01096c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical and scalable method for highly stereoselective construction of spiro-2,3-dihydrobenzofuransviacyclization ofortho-quinone methides and α-bromoketones by bifunctional phosphonium salt catalysis was developed.
Collapse
Affiliation(s)
- Song Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaojun Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Chunhui Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Hongsu Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
37
|
Xu G, Tang S, Shao Y, Sun J. B(C6F5)3-Catalyzed formal (4+1)-annulation of ortho-quinone methides with diazoacetates: access to 2,3-dihydrobenzofurans. Chem Commun (Camb) 2019; 55:9096-9099. [DOI: 10.1039/c9cc04863d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel B(C6F5)3-catalyzed formal (4+1)-cycloaddition reaction of alkyne-tethered ortho-quinone methides with diazoacetates has been well established.
Collapse
Affiliation(s)
- Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- China
| |
Collapse
|
38
|
Meng FX, Wang RN, Huang HL, Gong SW, Li QL, Zhang SL, Ma CL, Li CZ, Du JY. Lewis acid-catalyzed tandem cyclization of in situ generated o-quinone methides and arylsulfonyl hydrazides for a one-pot entry to 3-sulfonylbenzofurans. Org Chem Front 2019. [DOI: 10.1039/c9qo01196j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-mediated one-pot tandem cyclization of o-QMs with arylsulfonyl hydrazides was described for the first time and the corresponding 3-sulfonylbenzofuran products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Fan-Xiao Meng
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Ruo-Nan Wang
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Hong-Li Huang
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shu-Wen Gong
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Qian-Li Li
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shao-Liang Zhang
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Chun-Lin Ma
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory
- Department of Biomedical Engineering
- Florida International University
- Miami
- USA
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| |
Collapse
|
39
|
Zhang P, Guo X, Liu C, Li W, Li P. Enantioselective Construction of Pyridine N-Oxides Featuring 2,3-Dihydrofuran Motifs via Phosphine-Catalyzed [4 + 1]-Annulation of 2-Enoylpyridine N-Oxides with Morita–Baylis–Hillman Carbonates. Org Lett 2018; 21:152-155. [DOI: 10.1021/acs.orglett.8b03612] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pengfei Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xing Guo
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Chang Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Wenjun Li
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, P. R. China
| | - Pengfei Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
40
|
Suneja A, Schneider C. Phosphoric Acid Catalyzed [4 + 1]-Cycloannulation Reaction of ortho-Quinone Methides and Diazoketones: Catalytic, Enantioselective Access toward cis-2,3-Dihydrobenzofurans. Org Lett 2018; 20:7576-7580. [PMID: 30407018 DOI: 10.1021/acs.orglett.8b03311] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly straightforward route to enantiomerically highly enriched cis-2,3-dihydrobenzofurans has been achieved via addition of α-diazocarbonyl compounds to in situ generated o-QMs catalyzed by a chiral Brønsted acid. This catalytic strategy provides a direct access to 2,3-dihydrobenzofurans in high yields and with up to 91:9 dr and 99:1 er at ambient temperature. Moreover, a unique phenonium-type rearrangement accounts for product formation with an inverted 2,3-substitution pattern.
Collapse
Affiliation(s)
- Arun Suneja
- Institut für Organische Chemie, Universität Leipzig , Johannisallee 29 , 04103 Leipzig , Germany
| | - Christoph Schneider
- Institut für Organische Chemie, Universität Leipzig , Johannisallee 29 , 04103 Leipzig , Germany
| |
Collapse
|
41
|
Zhou T, Xia T, Liu Z, Liu L, Zhang J. Asymmetric Phosphine-Catalyzed [4+1] Annulations of o
-Quinone Methides with MBH Carbonates. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801152] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Zhou
- School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Tong Xia
- School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Zhenli Liu
- School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Lu Liu
- School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 People's Republic of China
| | - Junliang Zhang
- School of Chemistry and Molecular Engineering; East China Normal University; 500 Dongchuan Road Shanghai 200241 People's Republic of China
| |
Collapse
|
42
|
Jiang F, Luo GZ, Zhu ZQ, Wang CS, Mei GJ, Shi F. Application of Naphthylindole-Derived Phosphines as Organocatalysts in [4 + 1] Cyclizations of o-Quinone Methides with Morita–Baylis–Hillman Carbonates. J Org Chem 2018; 83:10060-10069. [DOI: 10.1021/acs.joc.8b01390] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fei Jiang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Gui-Zhen Luo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zi-Qi Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Cong-Shuai Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Guang-Jian Mei
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
43
|
Miao M, Yin W, Wang L, Chen Z, Xu J, Ren H. Transition-Metal-Free Arylation and Alkylation of Diarylmethyl p-Tolyl Sulfones with Zinc Reagents. J Org Chem 2018; 83:10602-10612. [DOI: 10.1021/acs.joc.8b01428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maozhong Miao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Wenguang Yin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Lei Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Zhengkai Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jianfeng Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hongjun Ren
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
44
|
Zhang J, Liu X, Guo S, He C, Xiao W, Lin L, Feng X. Enantioselective Formal [4 + 2] Annulation of ortho-Quinone Methides with ortho-Hydroxyphenyl α,β-Unsaturated Compounds. J Org Chem 2018; 83:10175-10185. [DOI: 10.1021/acs.joc.8b01425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianlin Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Songsong Guo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Changqiang He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Wanlong Xiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
45
|
Jia P, Huang Y. A Formal [5+1] Annulation Reaction of Sulfur Ylides and 2-(1H-indol-2-yl)phenols: Access to Indole-Fused 4H-benzo[e][1,3]oxazines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800573] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Penghao Jia
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin People's Republic of China
| |
Collapse
|
46
|
Yadagiri D, Chaitanya M, Reddy ACS, Anbarasan P. Rhodium Catalyzed Synthesis of Benzopyrans via Transannulation of N-Sulfonyl-1,2,3-triazoles with 2-Hydroxybenzyl Alcohols. Org Lett 2018; 20:3762-3765. [DOI: 10.1021/acs.orglett.8b01338] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dongari Yadagiri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manthena Chaitanya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
47
|
Chen Z, Shi Q, Wang G, Chen S, Hu J. Straightforward Synthesis of Bifunctional Phosphorus Phenols via Phosphination of In Situ Generated o-Quinone Methides. Molecules 2018; 23:molecules23061240. [PMID: 29882878 PMCID: PMC6100389 DOI: 10.3390/molecules23061240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
An efficient and practical approach towards bifunctional phosphorus phenols has been developed through a reaction of diphenylphosphine oxide and the o-quinone methides in situ generated from 2-tosylalkyl phenols under basic conditions. This protocol features simple experimental procedures under mild conditions and is easily scaled up. With this method, a variety of diarylmethyl phosphine oxides can be produced with up to 92% yield.
Collapse
Affiliation(s)
- Zhangpei Chen
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Qinglong Shi
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Gongshu Wang
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Siwen Chen
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
48
|
Guo Z, Jia H, Liu H, Wang Q, Huang J, Guo H. A [4 + 3] Annulation Reaction of aza-o-Quinone Methides with Arylcarbohydrazonoyl Chlorides for Synthesis of 2,3-Dihydro-1H-benzo[e][1,2,4]triazepines. Org Lett 2018; 20:2939-2943. [DOI: 10.1021/acs.orglett.8b00990] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Zhenyan Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hao Jia
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Honglei Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Qijun Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Jiaxing Huang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
49
|
Liang W, Yin W, Wang T, Qiu FG, Zhao J. Organocatalytic stereoselective conjugate addition of 3-substituted oxindoles with in situ generated ortho-quinone methides. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Abstract
The use of readily accessible ammonium ylides for (asymmetric) transformations, especially cyclization reactions, has received considerable attention over the past two decades. A variety of highly enantioselective protocols to facilitate annulation reactions have recently been introduced as an alternative to other common methods including S-ylide-mediated strategies. It is the intention of this short review to provide an introduction to this field by highlighting the potential of ammonium ylides for (asymmetric) cyclization reactions as well as to present the limitations and challenges of these methods.
Collapse
Affiliation(s)
- Lukas Roiser
- Institute of Organic Chemistry, Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz (Austria)
| | - Katharina Zielke
- Institute of Organic Chemistry, Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz (Austria)
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz (Austria)
| |
Collapse
|