1
|
Medeiros JJS, Costa TM, Carmo MP, Nascimento DD, Lauro ENC, Oliveira CA, Duque MD, Prado LD. Efficient drug development of oseltamivir capsules based on process control, bioequivalence and PBPK modeling. Drug Dev Ind Pharm 2022; 48:146-157. [DOI: 10.1080/03639045.2022.2102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Juliana J. S. Medeiros
- Coordenação de Desenvolvimento Tecnológico, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Thiago M. Costa
- Laboratório de Tecnologia Farmacêutica, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Mariana P. Carmo
- Laboratório de Tecnologia Farmacêutica, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Diogo D. Nascimento
- Laboratório de Desenvolvimento e Validação Analítica, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eduardo N. C. Lauro
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Camila A. Oliveira
- Laboratório de Desenvolvimento e Validação Analítica, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo D. Duque
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
| | - Livia D. Prado
- Laboratório de Desenvolvimento e Validação Analítica, Instituto de Tecnologia em Farmacos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Vakili M, Romano E, Darugar V, Brandán SA. Behaviours of antiviral Oseltamivir in different media: DFT and SQMFF calculations. J Mol Model 2021; 27:357. [PMID: 34812947 PMCID: PMC8608578 DOI: 10.1007/s00894-021-04962-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023]
Abstract
The synthetic cyclohexenecarboxylate ester antiviral Oseltamivir (O) have been theoretically studied by B3LYP/6–311 + + G** calculations to estimate its reactivity and behaviour in gas and aqueous media. The most stable structure obtained in above media is consistent with that reported experimental for Oseltamivir phosphate. The solvation energy value of (O) in aqueous media is between the predicted for antiviral Idoxuridine and Ribavirin. Besides, (O) containing a NH2 group and NH group reveals lower solvation energy compared with other antiviral agents with an NH2 group, such as Ribavirin, Cidofovir, and Brincidofovir. Atomic charges on N and O atoms in acceptors and donor groups reveal different behaviours in both media, while the natural bond orbital (NBO) studies show a raised stability of (O) in aqueous solution. This latter resulted is in concordance with the lower reactivity evidenced in water. Frontier orbital studies have revealed that (O) in gas phase has a very similar gap value to antiviral Cidofovir used against the ebola disease, while Chloroquine in the two media are more reactive than (O). This study will allow to identify (O) by using vibrational spectroscopy because the 144 vibration modes expected have been assigned using the harmonic force fields calculated from the scaled mechanical force field methodology (SQMFF). Scaled force constants for (O) in the mentioned media are also reported for first time. Due to hydration of the C = O and NH2 groups by solvent molecules, the calculations in solution produce variations not only in the IR wavenumbers bands, but also in their intensities.
Collapse
Affiliation(s)
- Mohammad Vakili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elida Romano
- Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química Y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, (4000) San Miguel de Tucuman, Tucumán, Argentina
| | - Vahidreza Darugar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Silvia Antonia Brandán
- Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química Y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, (4000) San Miguel de Tucuman, Tucumán, Argentina.
| |
Collapse
|
3
|
Kuz’mina NE, Moiseev SV, Kuz’min VS, Khorol’skiy MD, Luttseva AI. Verification of hypothesis about structural memory of solutions of polymorphic modifications using NMR spectroscopy. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Kumar S, Goicoechea S, Kumar S, Pearce CM, Durvasula R, Kempaiah P, Rathi B, Poonam. Oseltamivir analogs with potent anti-influenza virus activity. Drug Discov Today 2020; 25:1389-1402. [DOI: 10.1016/j.drudis.2020.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 11/27/2022]
|
5
|
Limbani B, Bera S, Mondal D. Synthetic Advancement of Neuraminidase Inhibitor “Tamiflu”. ChemistrySelect 2020. [DOI: 10.1002/slct.202000675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bhagirath Limbani
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| | - Smritilekha Bera
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| | - Dhananjoy Mondal
- School of Chemical Sciences Central University of Gujarat Gandhinagar, Gujarat 382030 India
| |
Collapse
|
6
|
Mahalapbutr P, Sangkhawasi M, Kammarabutr J, Chamni S, Rungrotmongkol T. Rosmarinic Acid as a Potent Influenza Neuraminidase Inhibitor: In Vitro and In Silico Study. Curr Top Med Chem 2020; 20:2046-2055. [PMID: 31738149 DOI: 10.2174/1568026619666191118110155] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neuraminidase (NA), a major glycoprotein found on the surface of the influenza virus, is an important target for the prophylaxis and treatment of influenza virus infections. Recently, several plant-derived polyphenols, especially caffeic acid analogs, have been reported to exert the inhibitory activity against NA. OBJECTIVE Herein, we aimed to investigate the anti-influenza NA activity of caffeic acid and its hydroxycinnamate analogues, rosmarinic acid and salvianolic acid A, in comparison to a known NA inhibitor, oseltamivir. METHODS In vitro MUNANA-based NA inhibitory assay was used to evaluate the inhibitory activity of the three interested hydroxycinnamic compounds towards the influenza NA enzyme. Subsequently, allatom molecular dynamics (MD) simulations and binding free energy calculations were employed to elucidate the structural insights into the protein-ligand complexations. RESULTS Rosmarinic acid showed the highest inhibitory activity against NA with the IC50 of 0.40 μM compared to caffeic acid (IC50 of 0.81 μM) and salvianolic acid A (IC50 of >1 μM). From 100-ns MD simulations, the binding affinity, hot-spot residues, and H-bond formations of rosmarinic acid/NA complex were higher than those of caffeic acid/NA model, in which their molecular complexations was driven mainly by electrostatic attractions and H-bond formations from several charged residues (R118, E119, D151, R152, E227, E277, and R371). Notably, the two hydroxyl groups on both phenyl and phenylacetic rings of rosmarinic acid play a crucial role in stabilizing NA through a strongly formed Hbond( s). CONCLUSION Our findings shed light on the potentiality of rosmarinic acid as a lead compound for further development of a potential influenza NA inhibitor.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Mattanun Sangkhawasi
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jirayu Kammarabutr
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Supakarn Chamni
- Natural Products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Lee Y, Youn HS, Lee JG, An JY, Park KR, Kang JY, Ryu YB, Jin MS, Park KH, Eom SH. Crystal structure of the catalytic domain of Clostridium perfringens neuraminidase in complex with a non-carbohydrate-based inhibitor, 2-(cyclohexylamino)ethanesulfonic acid. Biochem Biophys Res Commun 2017; 486:470-475. [PMID: 28315686 PMCID: PMC7092837 DOI: 10.1016/j.bbrc.2017.03.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/14/2017] [Indexed: 12/18/2022]
Abstract
Anti-bacterial and anti-viral neuraminidase agents inhibit neuraminidase activity catalyzing the hydrolysis of terminal N-acetylneuraminic acid (Neu5Ac) from glycoconjugates and help to prevent the host pathogenesis that lead to fatal infectious diseases including influenza, bacteremia, sepsis, and cholera. Emerging antibiotic and drug resistances to commonly used anti-neuraminidase agents such as oseltamivir (Tamiflu) and zanamivir (Relenza) have highlighted the need to develop new anti-neuraminidase drugs. We obtained a serendipitous complex crystal of the catalytic domain of Clostridium perfringens neuraminidase (CpNanICD) with 2-(cyclohexylamino)ethanesulfonic acid (CHES) as a buffer. Here, we report the crystal structure of CpNanICD in complex with CHES at 1.24 Å resolution. Amphipathic CHES binds to the catalytic site of CpNanICD similar to the substrate (Neu5Ac) binding site. The 2-aminoethanesulfonic acid moiety and cyclohexyl groups of CHES interact with the cluster of three arginine residues and with the hydrophobic pocket of the CpNanICD catalytic site. In addition, a structural comparison with other bacterial and human neuraminidases suggests that CHES could serve as a scaffold for the development of new anti-neuraminidase agents targeting CpNanI. We determined the crystal structure of CpNanI bound to CHES at 1.24 Å resolution. CHES binds to the catalytic site of CpNanI similar to the substrate binding site. We suggest strategies for modification of CHES for the development of anti-CpNanI agents.
Collapse
Affiliation(s)
- Youngjin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyung-Seop Youn
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jung-Gyu Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jun Yop An
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kyoung Ryoung Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jung Youn Kang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Young Bae Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 plus), IALS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Steitz Center for Structural Biology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
8
|
Hoshino M, Adachi SI, Koshihara SY. Crystal structure analysis of molecular dynamics using synchrotron X-rays. CrystEngComm 2015. [DOI: 10.1039/c5ce01128k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
X-ray crystallography using synchrotron X-rays enables observation of molecular dynamics in a crystal.
Collapse
Affiliation(s)
- Manabu Hoshino
- Department of Chemistry and Materials Science
- Tokyo Institute of Technology and CREST-JST
- Tokyo 152-8551, Japan
| | - Shin-ichi Adachi
- Photon Factory
- High Energy Accelerator Research Organization and PRESTO-JST
- Tsukuba, Japan
| | - Shin-ya Koshihara
- Department of Chemistry and Materials Science
- Tokyo Institute of Technology and CREST-JST
- Tokyo 152-8551, Japan
| |
Collapse
|
9
|
Górecki M. A configurational and conformational study of (−)-Oseltamivir using a multi-chiroptical approach. Org Biomol Chem 2015; 13:2999-3010. [DOI: 10.1039/c4ob02369b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four chiroptical methods, i.e. electronic circular dichroism (ECD), optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and Raman optical activity (ROA) were employed to discover a set of the most probable conformations of (−)-Oseltamivir in solution.
Collapse
Affiliation(s)
- Marcin Górecki
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
10
|
Ivachtchenko AV, Ivanenkov YA, Mitkin OD, Yamanushkin PM, Bichko VV, Shevkun NA, Karapetian RN, Leneva IA, Borisova OV, Veselov MS. Novel oral anti-influenza drug candidate AV5080. J Antimicrob Chemother 2014; 69:1892-902. [DOI: 10.1093/jac/dku074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
11
|
Richards MR, Brant MG, Boulanger MJ, Cairo CW, Wulff JE. Conformational analysis of peramivir reveals critical differences between free and enzyme-bound states. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00168k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An analysis of the conformational distribution of peramivir, a potent anti-influenza compound, in solution and the solid state reveals a large conformational change required for enzyme binding.
Collapse
Affiliation(s)
- Michele R. Richards
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton Alberta T6G 2G2, Canada
| | - Michael G. Brant
- Department of Chemistry
- University of Victoria
- Victoria British Columbia V8W 3V6, Canada
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology
- University of Victoria
- Victoria British Columbia V8W 3V6, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton Alberta T6G 2G2, Canada
| | - Jeremy E. Wulff
- Department of Chemistry
- University of Victoria
- Victoria British Columbia V8W 3V6, Canada
| |
Collapse
|
12
|
Stratford SA, Arhangelskis M, Bučar DK, Jones W. Solid-state photoreactivity of 9-substituted acridizinium bromide salts. CrystEngComm 2014. [DOI: 10.1039/c4ce01622j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of substituted acridizinium bromides was studied to determine how substituents affect the regioselectivity of the solid-state [4 + 4] photodimerisation.
Collapse
Affiliation(s)
| | | | - Dejan-Krešimir Bučar
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
- Department of Chemistry
- University College London
| | - William Jones
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| |
Collapse
|