1
|
Lakela AL, Berntsson E, Vosough F, Jarvet J, Paul S, Barth A, Gräslund A, Roos PM, Wärmländer SKTS. Molecular interactions, structural effects, and binding affinities between silver ions (Ag +) and amyloid beta (Aβ) peptides. Sci Rep 2025; 15:5439. [PMID: 39948350 PMCID: PMC11825922 DOI: 10.1038/s41598-024-59826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 02/16/2025] Open
Abstract
Because silver is toxic to microbes, but not considered toxic to humans, the metal has been used as an antimicrobial agent since ancient times. Today, silver nanoparticles and colloidal silver are used for antibacterial purposes, and silver-peptide and similar complexes are being developed as therapeutic agents. Yet, the health effects of silver exposure are not fully understood, nor are the molecular details of silver-protein interactions. In Alzheimer's disease, the most common form of dementia worldwide, amyloid-β (Aβ) peptides aggregate to form soluble oligomers that are neurotoxic. Here, we report that monovalent silver ions (Ag+) bind wildtype Aβ40 peptides with a binding affinity of 25 ± 12 µM in MES buffer at 20 °C. Similar binding affinities are observed for wt Aβ40 peptides bound to SDS micelles, for an Aβ40(H6A) mutant, and for a truncated Aβ(4-40) variant containing an ATCUN (Amino Terminal Cu and Ni) motif. Weaker Ag+ binding is observed for the wt Aβ40 peptide at acidic pH, and for an Aβ40 mutant without histidines. These results are compatible with Ag+ ions binding to the N-terminal segment of Aβ peptides with linear bis-his coordination. Because the Ag+ ions do not induce any changes in the size or structure of Aβ42 oligomers, we suggest that Ag+ ions have a minor influence on Aβ toxicity.
Collapse
Affiliation(s)
- Amanda L Lakela
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086, Tallinn, Estonia
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden.
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden.
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
- University Healthcare Unit of Capio St. Göran Hospital, 11281, Stockholm, Sweden
| | - Sebastian K T S Wärmländer
- CellPept Sweden AB, Kvarngatan 10B, 11847, Stockholm, Sweden.
- Chemistry Section, Arrhenius Laboratories, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
2
|
Pan J, Zhong J, Geng J, Oberhauser J, Shi S, Wan J. Microglial Lyzl4 Facilitates β-Amyloid Clearance in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412184. [PMID: 39555667 PMCID: PMC11727385 DOI: 10.1002/advs.202412184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative condition characterized by the accumulation and deposition of amyloid-β (Aβ) aggregates in the brain. Despite a wealth of research on the toxicity of Aβ and its role in synaptic damage, the mechanisms facilitating Aβ clearance are not yet fully understood. However, microglia, the primary immune cells of the central nervous system, are known to maintain homeostasis through the phagocytic clearance of protein aggregates and cellular debris. In this study, RNA sequencing analysis and live cell functional screens are employed to uncover microglial genetic modifiers related to AD. Lyzl4 is identified, which encodes a c-type lysozyme-like enzyme primarily localized to microglial lysosomes, as a gene significantly upregulated in AD microglia with aging and propose that Lyzl4 upregulation acts as a positive regulator of Aβ clearance. Furthermore, it is found that Lyzl4 overexpression boosts Aβ clearance both in vitro and in vivo, underscoring its potential for mitigating Aβ burden. These novel insights position Lyzl4 as a promising therapeutic target for Alzheimer's disease, paving the way for further exploration into potential AD treatments.
Collapse
Affiliation(s)
- Jie Pan
- Department of PathologyStanford University School of MedicinePalo AltoCA94305USA
| | - Jie Zhong
- Shenzhen Key Laboratory for Neuronal Structural BiologyBiomedical Research InstituteShenzhen Peking University – The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdong Province518036China
- Department of Systems BiologySchool of Life SciencesSouthern University of Science and TechnologyShenzhenGuangdong Province518055China
| | - Ji Geng
- Department of PathologyStanford University School of MedicinePalo AltoCA94305USA
| | - Jane Oberhauser
- Department of PathologyStanford University School of MedicinePalo AltoCA94305USA
- Neuroscience Graduate ProgramUniversity of CaliforniaSan FranciscoSan FranciscoCA94143USA
| | - Shihua Shi
- Friedrich Miescher Institute for Biomedical Research (FMI)Basel4056Switzerland
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural BiologyBiomedical Research InstituteShenzhen Peking University – The Hong Kong University of Science and Technology Medical CenterShenzhenGuangdong Province518036China
- Department of NeuroscienceSchool of Life SciencesSouthern University of Science and TechnologyShenzhenGuangdong Province518055China
| |
Collapse
|
3
|
Singh K, Kaur A, Goyal B, Goyal D. Harnessing the Therapeutic Potential of Peptides for Synergistic Treatment of Alzheimer's Disease by Targeting Aβ Aggregation, Metal-Mediated Aβ Aggregation, Cholinesterase, Tau Degradation, and Oxidative Stress. ACS Chem Neurosci 2024; 15:2545-2564. [PMID: 38979773 DOI: 10.1021/acschemneuro.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.
Collapse
Affiliation(s)
- Kamaljot Singh
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004 Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
4
|
Myers C, Cornwall GA. Host defense amyloids: Biosensors of the immune system? Andrology 2024; 12:973-980. [PMID: 37963844 DOI: 10.1111/andr.13555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
There is considerable evidence showing that highly ordered aggregate structures known as amyloids carry out essential biological roles in species ranging from bacteria to humans. Indeed, many antimicrobial peptides/proteins form amyloids to carry out their host defense functions and many amyloids are antimicrobial. The similarity of host defense amyloids from bacterial biofilms to the mammalian epididymal amyloid matrix implies highly conserved host defense structures/functions. With an emphasis on the epididymal amyloid matrix, here we review the common properties of host defense amyloids including unique traits that would allow them to function as powerful biosensors of the immune system.
Collapse
Affiliation(s)
- Caitlyn Myers
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gail A Cornwall
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
5
|
Nam Y, Prajapati R, Kim S, Shin SJ, Cheong DY, Park YH, Park HH, Lim D, Yoon Y, Lee G, Jung HA, Park I, Kim DH, Choi JS, Moon M. Dual regulatory effects of neferine on amyloid-β and tau aggregation studied by in silico, in vitro, and lab-on-a-chip technology. Biomed Pharmacother 2024; 172:116226. [PMID: 38301421 DOI: 10.1016/j.biopha.2024.116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of two critical pathogenic factors: amyloid-β (Aβ) and tau. Aβ and tau become neurotoxic aggregates via self-assembly, and these aggregates contribute to the pathogenesis of AD. Therefore, there has been growing interest in therapeutic strategies that simultaneously target Aβ and tau aggregates. Although neferine has attracted attention as a suitable candidate agent for alleviating AD pathology, there has been no study investigating whether neferine affects the modulation of Aβ or tau aggregation/dissociation. Herein, we investigated the dual regulatory effects of neferine on Aβ and tau aggregation/dissociation. We predicted the binding characteristics of neferine to Aβ and tau using molecular docking simulations. Next, thioflavin T and atomic force microscope analyses were used to evaluate the effects of neferine on the aggregation or dissociation of Aβ42 and tau K18. We verified the effect of neferine on Aβ fibril degradation using a microfluidic device. In addition, molecular dynamics simulation was used to predict a conformational change in the Aβ42-neferine complex. Moreover, we examined the neuroprotective effect of neferine against neurotoxicity induced by Aβ and tau and their fibrils in HT22 cells. Finally, we foresaw the pharmacokinetic properties of neferine. These results demonstrated that neferine, which has attracted attention as a potential treatment for AD, can directly affect Aβ and tau pathology.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Ritu Prajapati
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Danyou Lim
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea
| | - Yoojeong Yoon
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Insu Park
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Republic of Korea.
| | - Dong-Hyun Kim
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
6
|
Moderer T, Puşcalău-Gîrţu I, Haupt C, Baur J, Rodríguez-Alfonso A, Wiese S, Schmidt CQ, Malešević M, Forssmann WG, Ständker L, Fändrich M. Human lysozyme inhibits the fibrillation of serum amyloid a protein from systemic AA amyloidosis. Amyloid 2023; 30:424-433. [PMID: 37431668 DOI: 10.1080/13506129.2023.2232518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Systemic AA amyloidosis is a world-wide occurring protein misfolding disease in humans and animals that arises from the formation of amyloid fibrils from serum amyloid A (SAA) protein and their deposition in multiple organs. OBJECTIVE To identify new agents that prevent fibril formation from SAA protein and to determine their mode of action. MATERIALS AND METHODS We used a cell model for the formation of amyloid deposits from SAA protein to screen a library of peptides and small proteins, which were purified from human hemofiltrate. To clarify the inhibitory mechanism the obtained inhibitors were characterised in cell-free fibril formation assays and other biochemical methods. RESULTS We identified lysozyme as an inhibitor of SAA fibril formation. Lysozyme antagonised fibril formation both in the cell model as well as in cell-free fibril formation assays. The protein binds SAA with a dissociation constant of 16.5 ± 0.6 µM, while the binding site on SAA is formed by segments of positively charged amino acids. CONCLUSION Our data imply that lysozyme acts in a chaperone-like fashion and prevents the aggregation of SAA protein through direct, physical interactions.
Collapse
Affiliation(s)
- Tim Moderer
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Armando Rodríguez-Alfonso
- Core Facility for Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University Medical Center, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Miroslav Malešević
- Max Planck Research Unit for Enzymology of Protein Folding, Halle, Germany
| | | | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Xu L, Guo M, Hung CT, Shi XL, Yuan Y, Zhang X, Jin RH, Li W, Dong Q, Zhao D. Chiral Skeletons of Mesoporous Silica Nanospheres to Mitigate Alzheimer’s β-Amyloid Aggregation. J Am Chem Soc 2023; 145:7810-7819. [PMID: 37002870 DOI: 10.1021/jacs.2c12214] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Chiral mesoporous silica (mSiO2) nanomaterials have gained significant attention during the past two decades. Most of them show a topologically characteristic helix; however, little attention has been paid to the molecular-scale chirality of mSiO2 frameworks. Herein, we report a chiral amide-gel-directed synthesis strategy for the fabrication of chiral mSiO2 nanospheres with molecular-scale-like chirality in the silicate skeletons. The functionalization of micelles with the chiral amide gels via electrostatic interactions realizes the growth of molecular configuration chiral silica sols. Subsequent modular self-assembly results in the formation of dendritic large mesoporous silica nanospheres with molecular chirality of the silica frameworks. As a result, the resultant chiral mSiO2 nanospheres show abundant large mesopores (∼10.1 nm), high pore volumes (∼1.8 cm3·g-1), high surface areas (∼525 m2·g-1), and evident CD activity. The successful transfer of the chirality from the chiral amide gels to composited micelles and further to asymmetric silica polymeric frameworks based on modular self-assembly leads to the presence of molecular chirality in the final products. The chiral mSiO2 frameworks display a good chiral stability after a high-temperature calcination (even up to 1000 °C). The chiral mSiO2 can impart a notable decline in β-amyloid protein (Aβ42) aggregation formation up to 79%, leading to significant mitigation of Aβ42-induced cytotoxicity on the human neuroblastoma line SH-ST5Y cells in vitro. This finding opens a new avenue to construct the molecular chirality configuration in nanomaterials for optical and biomedical applications.
Collapse
Affiliation(s)
- Li Xu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Chin-Te Hung
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Xiao-Lei Shi
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Xingmiao Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Ren-Hua Jin
- Department of Materials and Life Chemistry, Kanagawa University, Yokohama 221-8686, Japan
| | - Wei Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, National Center for Neurological Disorders, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
8
|
Berntsson E, Vosough F, Svantesson T, Pansieri J, Iashchishyn IA, Ostojić L, Dong X, Paul S, Jarvet J, Roos PM, Barth A, Morozova-Roche LA, Gräslund A, Wärmländer SKTS. Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides. Sci Rep 2023; 13:3341. [PMID: 36849796 PMCID: PMC9971182 DOI: 10.1038/s41598-023-29901-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides, and Aβ oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aβ peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aβ/Ni(II) interactions in vitro, for different Aβ variants: Aβ(1-40), Aβ(1-40)(H6A, H13A, H14A), Aβ(4-40), and Aβ(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aβ monomers. Equimolar amounts of Ni(II) ions retard Aβ aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aβ binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aβ dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aβ monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aβ oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aβ aggregation processes that are involved in AD brain pathology.
Collapse
Affiliation(s)
- Elina Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Faraz Vosough
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jonathan Pansieri
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Lucija Ostojić
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Xiaolin Dong
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Suman Paul
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Nobels Väg 13, 171 77, Stockholm, Sweden
- Department of Clinical Physiology, Capio St. Göran Hospital, St. Göransplan 1, 112 19, Stockholm, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, 106 91, Stockholm, Sweden
| | | |
Collapse
|
9
|
Porosk L, Härk HH, Bicev RN, Gaidutšik I, Nebogatova J, Armolik EJ, Arukuusk P, da Silva ER, Langel Ü. Aggregation Limiting Cell-Penetrating Peptides Derived from Protein Signal Sequences. Int J Mol Sci 2023; 24:ijms24054277. [PMID: 36901707 PMCID: PMC10002422 DOI: 10.3390/ijms24054277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease (ND) and the leading cause of dementia. It is characterized by non-linear, genetic-driven pathophysiological dynamics with high heterogeneity in the biological alterations and the causes of the disease. One of the hallmarks of the AD is the progression of plaques of aggregated amyloid-β (Aβ) or neurofibrillary tangles of Tau. Currently there is no efficient treatment for the AD. Nevertheless, several breakthroughs in revealing the mechanisms behind progression of the AD have led to the discovery of possible therapeutic targets. Some of these include the reduction in inflammation in the brain, and, although highly debated, limiting of the aggregation of the Aβ. In this work we show that similarly to the Neural cell adhesion molecule 1 (NCAM1) signal sequence, other Aβ interacting protein sequences, especially derived from Transthyretin, can be used successfully to reduce or target the amyloid aggregation/aggregates in vitro. The modified signal peptides with cell-penetrating properties reduce the Aβ aggregation and are predicted to have anti-inflammatory properties. Furthermore, we show that by expressing the Aβ-EGFP fusion protein, we can efficiently assess the potential for reduction in aggregation, and the CPP properties of peptides in mammalian cells.
Collapse
Affiliation(s)
- Ly Porosk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Correspondence:
| | - Heleri Heike Härk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Renata Naporano Bicev
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ilja Gaidutšik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | - Eger-Jasper Armolik
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | | | - Ülo Langel
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Department Biochemistry and Biophysics, Stockholm University, S.Arrheniusv. 16B, Room C472, 106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Ge WY, Deng X, Shi WP, Lin WJ, Chen LL, Liang H, Wang XT, Zhang TD, Zhao FZ, Guo WH, Yin DC. Amyloid Protein Cross-Seeding Provides a New Perspective on Multiple Diseases In Vivo. Biomacromolecules 2023; 24:1-18. [PMID: 36507729 DOI: 10.1021/acs.biomac.2c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid protein cross-seeding is a peculiar phenomenon of cross-spreading among different diseases. Unlike traditional infectious ones, diseases caused by amyloid protein cross-seeding are spread by misfolded proteins instead of pathogens. As a consequence of the interactions among misfolded heterologous proteins or polypeptides, amyloid protein cross-seeding is considered to be the crucial cause of overlapping pathological transmission between various protein misfolding disorders (PMDs) in multiple tissues and cells. Here, we briefly review the phenomenon of cross-seeding among amyloid proteins. As an interesting example worth mentioning, the potential links between the novel coronavirus pneumonia (COVID-19) and some neurodegenerative diseases might be related to the amyloid protein cross-seeding, thus may cause an undesirable trend in the incidence of PMDs around the world. We then summarize the theoretical models as well as the experimental techniques for studying amyloid protein cross-seeding. Finally, we conclude with an outlook on the challenges and opportunities for basic research in this field. Cross-seeding of amyloid opens up a new perspective in our understanding of the process of amyloidogenesis, which is crucial for the development of new treatments for diseases. It is therefore valuable but still challenging to explore the cross-seeding system of amyloid protein as well as to reveal the structural basis and the intricate processes.
Collapse
Affiliation(s)
- Wan-Yi Ge
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Juan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huan Liang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Feng-Zhu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Non-commissioned Officer School, Army Medical University, Shijiazhuang 050081, China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
11
|
Nirwal S, Saravanan P, Bajpai A, Meshram VD, Raju G, Deeksha W, Prabusankar G, Patel BK. In Vitro Interaction of a C-Terminal Fragment of TDP-43 Protein with Human Serum Albumin Modulates Its Aggregation. J Phys Chem B 2022; 126:9137-9151. [PMID: 36326054 DOI: 10.1021/acs.jpcb.2c04469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An increased level of naturally occurring anti-TDP-43 antibodies was observed in the serum and cerebrospinal fluid (CSF) of amyotrophic lateral sclerosis patients. Human serum albumin (HSA), the most abundant protein in blood plasma and CSF, is found to interact with pathological proteins like Aβ and α-synuclein. Therefore, we examined the effect on the in vitro aggregation of a C-terminal fragment of TDP-43 in the presence of HSA. We found that the lag phase in TDP-432C aggregation is abrogated in the presence of HSA, but there is an overall decreased aggregation as examined by thioflavin-T fluorescence spectroscopy and microscopy. An early onset of TDP-432C oligomer formation in the presence of HSA was observed using atomic force microscopy and transmission electron microscopy. Also, a known chemical inhibitor of TDP-432Caggregation, AIM4, abolishes the HSA-induced early formation of TDP-432C oligomers. Notably, the aggregates of TDP-432C formed in the presence of HSA are more stable against sarkosyl detergent. Using affinity copurification, we observed that HSA can bind to TDP-432C, and biolayer interferometry further supported their physical interaction and suggested the binding affinity to be in sub-micromolar range. Taken together, the data support that HSA can interact with TDP-432C in vitro and affect its aggregation.
Collapse
Affiliation(s)
- Sadhana Nirwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Preethi Saravanan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Akarsh Bajpai
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Vini D Meshram
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Gembali Raju
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi Sangareddy, Telangana 502284, India
| | - Waghela Deeksha
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi Sangareddy, Telangana 502284, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| |
Collapse
|
12
|
Koski L, Ronnevi C, Berntsson E, Wärmländer SKTS, Roos PM. Metals in ALS TDP-43 Pathology. Int J Mol Sci 2021; 22:12193. [PMID: 34830074 PMCID: PMC8622279 DOI: 10.3390/ijms222212193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease and similar neurodegenerative disorders take their toll on patients, caregivers and society. A common denominator for these disorders is the accumulation of aggregated proteins in nerve cells, yet the triggers for these aggregation processes are currently unknown. In ALS, protein aggregation has been described for the SOD1, C9orf72, FUS and TDP-43 proteins. The latter is a nuclear protein normally binding to both DNA and RNA, contributing to gene expression and mRNA life cycle regulation. TDP-43 seems to have a specific role in ALS pathogenesis, and ubiquitinated and hyperphosphorylated cytoplasmic inclusions of aggregated TDP-43 are present in nerve cells in almost all sporadic ALS cases. ALS pathology appears to include metal imbalances, and environmental metal exposure is a known risk factor in ALS. However, studies on metal-to-TDP-43 interactions are scarce, even though this protein seems to have the capacity to bind to metals. This review discusses the possible role of metals in TDP-43 aggregation, with respect to ALS pathology.
Collapse
Affiliation(s)
- Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | | | - Elina Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12616 Tallinn, Estonia
| | | | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Capio St. Göran Hospital, 112 19 Stockholm, Sweden;
| |
Collapse
|
13
|
Mice Treated Subcutaneously with Mouse LPS-Converted PrP res or LPS Alone Showed Brain Gene Expression Profiles Characteristic of Prion Disease. Vet Sci 2021; 8:vetsci8090200. [PMID: 34564594 PMCID: PMC8473295 DOI: 10.3390/vetsci8090200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Previously, we showed that bacterial lipopolysaccharide (LPS) converts mouse PrPC protein to a beta-rich isoform (moPrPres) resistant to proteinase K. In this study, we aimed to test if the LPS-converted PrPres is infectious and alters the expression of genes related to prion pathology in brains of terminally sick mice. Ninety female FVB/N mice at 5 weeks of age were randomly assigned to 6 groups treated subcutaneously (sc) for 6 weeks either with: (1) Saline (CTR); (2) LPS from Escherichia coli 0111:B4 (LPS), (3) one-time sc administration of de novo generated mouse recombinant prion protein (moPrP; 29-232) rich in beta-sheet by incubation with LPS (moPrPres), (4) LPS plus one-time sc injection of moPrPres, (5) one-time sc injection of brain homogenate from Rocky Mountain Lab (RLM) scrapie strain, and (6) LPS plus one-time sc injection of RML. Results showed that all treatments altered the expression of various genes related to prion disease and neuroinflammation starting at 11 weeks post-infection and more profoundly at the terminal stage. In conclusion, sc administration of de novo generated moPrPres, LPS, and a combination of moPrPres with LPS were able to alter the expression of multiple genes typical of prion pathology and inflammation.
Collapse
|
14
|
Huang Y, Chang Y, Liu L, Wang J. Nanomaterials for Modulating the Aggregation of β-Amyloid Peptides. Molecules 2021; 26:4301. [PMID: 34299575 PMCID: PMC8305396 DOI: 10.3390/molecules26144301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
The aberrant aggregation of amyloid-β (Aβ) peptides in the brain has been recognized as the major hallmark of Alzheimer's disease (AD). Thus, the inhibition and dissociation of Aβ aggregation are believed to be effective therapeutic strategiesforthe prevention and treatment of AD. When integrated with traditional agents and biomolecules, nanomaterials can overcome their intrinsic shortcomings and boost their efficiency via synergistic effects. This article provides an overview of recent efforts to utilize nanomaterials with superior properties to propose effective platforms for AD treatment. The underlying mechanismsthat are involved in modulating Aβ aggregation are discussed. The summary of nanomaterials-based modulation of Aβ aggregation may help researchers to understand the critical roles in therapeutic agents and provide new insight into the exploration of more promising anti-amyloid agents and tactics in AD theranostics.
Collapse
Affiliation(s)
- Yaliang Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Yong Chang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China;
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;
| |
Collapse
|
15
|
Ma C, Hunt JB, Selenica MLB, Sanneh A, Sandusky-Beltran LA, Watler M, Daas R, Kovalenko A, Liang H, Placides D, Cao C, Lin X, Orr MB, Zhang B, Gensel JC, Feola DJ, Gordon MN, Morgan D, Bickford PC, Lee DC. Arginase 1 Insufficiency Precipitates Amyloid- β Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis. Front Immunol 2021; 11:582998. [PMID: 33519806 PMCID: PMC7840571 DOI: 10.3389/fimmu.2020.582998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) includes several hallmarks comprised of amyloid-β (Aβ) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1fl/fl and LysMcreTg/+ mice crossed with APP Tg2576 mice. Our data indicated that Arg1 haploinsufficiency promoted Aβ deposition, exacerbated some behavioral impairment, and decreased components of Ragulator-Rag complex involved in mechanistic target of rapamycin complex 1 (mTORC1) signaling and autophagy. Additionally, Arg1 repression and arginine supplementation both impaired microglial phagocytosis in vitro. These data suggest that proper function of Arg1 and arginine metabolism in myeloid cells remains essential to restrict amyloidosis.
Collapse
Affiliation(s)
- Chao Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Jerry B Hunt
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Maj-Linda B Selenica
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Awa Sanneh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Leslie A Sandusky-Beltran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Mallory Watler
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Rana Daas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Andrii Kovalenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Huimin Liang
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Devon Placides
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Michael B Orr
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States.,Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - David J Feola
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Marcia N Gordon
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Dave Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Paula C Bickford
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Research Service, James A. Haley Veterans Affairs Hospital, Tampa, FL, United States
| | - Daniel C Lee
- Sanders-Brown Center on Aging, Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| |
Collapse
|
16
|
Gao W, Wang W, Dong X, Sun Y. Nitrogen-Doped Carbonized Polymer Dots: A Potent Scavenger and Detector Targeting Alzheimer's β-Amyloid Plaques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002804. [PMID: 33006250 DOI: 10.1002/smll.202002804] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/05/2020] [Indexed: 05/16/2023]
Abstract
The fibrillization and deposition of β-amyloid protein (Aβ) are recognized to be the pathological hallmarks of Alzheimer's disease (AD), which signify the need for the effective detection and inhibition of Aβ accumulation. Development of multifunctional agents that can inhibit Aβ aggregation, rapidly disaggregate fibrils, and image aggregates is one of the effective strategies to treat and diagnose AD. Herein, the multifunctionality of nitrogen-doped carbonized polymer dots (CPDs) targeting Aβ aggregation is reported. CPDs inhibit the fibrillization of Aβ monomers and rapidly disintegrate Aβ fibrils by electrostatic interactions, hydrogen-bonding and hydrophobic interactions with Aβ in a time scale of seconds to minutes. Moreover, the interactions make CPDs label Aβ fibrils and emit enhanced red fluorescence by the binding, so CPDs can be used for in vivo imaging of the amyloids in transgenic Caenorhabditis elegans CL2006 as an AD model. Importantly, CPDs are demonstrated to scavenge the in vivo amyloid plaques and to promote the lifespan extension of CL2006 strain by alleviating the Aβ-triggered toxicity. Taken together, the multifunctional CPDs show an exciting prospect for further investigations in Aβ-targeted AD treatment and diagnosis, and this study provides new insight into the development of carbon materials in AD theranostics.
Collapse
Affiliation(s)
- Weiqun Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenjuan Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
17
|
Li X, Wang W, Dong X, Sun Y. Conjugation of RTHLVFFARK to human lysozyme creates a potent multifunctional modulator for Cu2+-mediated amyloid β-protein aggregation and cytotoxicity. J Mater Chem B 2020; 8:2256-2268. [DOI: 10.1039/c9tb02397f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugation of alkaline decapeptide (RTHLVFFARK) to lysozyme creates a potent multifunctional modulator (R-hLys) for Cu2+-mediated amyloid β-protein aggregation and cytotoxicity.
Collapse
Affiliation(s)
- Xi Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Wenjuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300354
- China
| |
Collapse
|
18
|
Wallin C, Friedemann M, Sholts SB, Noormägi A, Svantesson T, Jarvet J, Roos PM, Palumaa P, Gräslund A, Wärmländer SKTS. Mercury and Alzheimer's Disease: Hg(II) Ions Display Specific Binding to the Amyloid-β Peptide and Hinder Its Fibrillization. Biomolecules 2019; 10:E44. [PMID: 31892131 PMCID: PMC7022868 DOI: 10.3390/biom10010044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brains and blood of Alzheimer's disease (AD) patients have shown elevated mercury concentrations, but potential involvement of mercury exposure in AD pathogenesis has not been studied at the molecular level. The pathological hallmark of AD brains is deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils. Aβ peptide fibrillization is known to be modulated by metal ions such as Cu(II) and Zn(II). Here, we study in vitro the interactions between Aβ peptides and Hg(II) ions by multiple biophysical techniques. Fluorescence spectroscopy and atomic force microscopy (AFM) show that Hg(II) ions have a concentration-dependent inhibiting effect on Aβ fibrillization: at a 1:1 Aβ·Hg(II) ratio only non-fibrillar Aβ aggregates are formed. NMR spectroscopy shows that Hg(II) ions interact with the N-terminal region of Aβ(1-40) with a micromolar affinity, likely via a binding mode similar to that for Cu(II) and Zn(II) ions, i.e., mainly via the histidine residues His6, His13, and His14. Thus, together with Cu(II), Fe(II), Mn(II), Pb(IV), and Zn(II) ions, Hg(II) belongs to a family of metal ions that display residue-specific binding interactions with Aβ peptides and modulate their aggregation processes.
Collapse
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Merlin Friedemann
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Sabrina B. Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA;
| | - Andra Noormägi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Teodor Svantesson
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Per M. Roos
- Institute of Environmental Medicine, Karolinska Institutet, 16765 Stockholm, Sweden;
- Department of Clinical Physiology, Capio St. Göran Hospital, 11219 Stockholm, Sweden
| | - Peep Palumaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (M.F.); (A.N.); (P.P.)
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden; (C.W.); (T.S.); (J.J.); (A.G.)
| |
Collapse
|
19
|
Wang W, Dong X, Sun Y. Modification of Serum Albumin by High Conversion of Carboxyl to Amino Groups Creates a Potent Inhibitor of Amyloid β-Protein Fibrillogenesis. Bioconjug Chem 2019; 30:1477-1488. [PMID: 30964649 DOI: 10.1021/acs.bioconjchem.9b00209] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fibrillogenesis of amyloid β-protein (Aβ) has been thought to be implicated in the progression of Alzheimer's disease (AD). Therefore, development of high-efficiency inhibitors is one of the strategies for the prevention and treatment of AD. Serum albumin has been found to capture Aβ monomers through its hydrophobic groove and suppress amyloid formation, but the inhibition efficiency is limited. Inspired by the strong inhibition potency of a basic protein, human lysozyme, we have herein proposed to develop a basified serum albumin by converting carboxyl groups into amino groups with ethylenediamine conjugated on the protein surface. The idea was verified with both bovine and human serum albumins (BSA/HSA). Four basified BSA (BSA-B) preparations with amino modification degrees (MDs) from 8.0 to 41.5 were first synthesized. Extensive biophysical and biological analyses revealed that the inhibition potency significantly increased with increasing amino MD. BSA-B of the highest MD (41.5), BSA-B4, which had an isoelectric point of 9.7, presented strong inhibition on Aβ42 fibrillation at a concentration as low as 0.5 μM, at which it functioned similarly with 25 μM native BSA to impede 25 μM Aβ fibrillation. Cell viability assays also confirmed that the detoxification of 5 μM BSA-B4 was superior over 25 μM native BSA by increasing cell viability from 60.6% to 96.0%. Fluorescence quenching study unveiled the decrease of the binding affinity between Aβ42 and the hydrophobic pocket region of BSA-B4, while quartz crystal microbalance experiments demonstrated that the binding constant of BSA-B4 to Aβ42 increased nearly 5 times. Therefore, the increase of electrostatic interactions between BSA-B4 and Aβ42 was the main reason for its high potency. Hence, aminated BSA achieved a conversion of binding way to Aβ from a mainly single-site hydrophobic binding to multiregional electrostatic interactions. Similar results were obtained with basified HSA preparations on inhibiting the amyloid formation and cytotoxicity. This work has thus provided new insights into the development of more efficient protein-based inhibitors against Aβ fibrillogenesis.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
20
|
Li X, Xie B, Sun Y. Basified Human Lysozyme: A Potent Inhibitor against Amyloid β-Protein Fibrillogenesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15569-15577. [PMID: 30407837 DOI: 10.1021/acs.langmuir.8b03278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aggregation of amyloid β-proteins (Aβ) has been recognized as a key process in the pathogenesis of Alzheimer's disease (AD), so inhibiting Aβ aggregation is an important strategy to prevent the onset and treatment of AD. Our recent work indicated that decreasing the positive charges (or introducing negative charges) on human lysozyme (hLys) was unfavorable in keeping the inhibiting capability of hLys on Aβ aggregation. Therefore, we have herein proposed to basify hLys by conversion of the carboxyl groups into amino groups by modification with ethylene diamine. Basified hLys (Lys-B) preparations of three modification degrees (MDs), denoted as hLys-B1 (MD, 1.5), hLys-B2 (MD, 3.3), and hLys-B3 (MD, 4.4), were synthesized for modulating Aβ fibrillogenesis. The hLys-B preparations kept the stability and biocompatibility as native hLys did, whereas the inhibitory potency of hLys-B on Aβ fibrillogenesis increased with increasing MD. Cytotoxicity analysis showed that cell viability with 2.5 μM hLys-B3 increased from 62.5% (with 25 μM Aβ only) to 76.1%, similar to the case with 12.5 μM hLys (75.5%); cell viability with 6.25 μM hLys-B3 increased to 82.0%, similar to the case with 25 μM hLys (80.9%). The results indicate about four- to fivefold increase in the inhibition efficiency of hLys by the amino modification. Mechanistic analysis suggests that such a superior inhibitory capability of hLys-B was attributed to its more widely distributed positive charges, which promoted broad electrostatic interactions between Aβ and hLys-B. Thus, hLys-B suppressed the conformational transition of Aβ to β-sheet structures at low concentrations (e.g., 2.5 μM hLys-B3), leading to changes in the aggregation pathway and the formation of Aβ species with less cytotoxicity. The findings provided new insights into the development of more potent protein-based inhibitors against Aβ fibrillogenesis.
Collapse
Affiliation(s)
- Xi Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Baolong Xie
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
- Institute of Tianjin Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA) , Tianjin 300192 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| |
Collapse
|
21
|
Li X, Xie B, Dong X, Sun Y. Bifunctionality of Iminodiacetic Acid-Modified Lysozyme on Inhibiting Zn 2+-Mediated Amyloid β-Protein Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5106-5115. [PMID: 29631401 DOI: 10.1021/acs.langmuir.8b00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aggregation of amyloid β-proteins (Aβ) mediated by metal ions such as Zn2+ has been suggested to be implicated in the progression of Alzheimer's disease (AD). Hence, development of bifunctional agents capable of inhibiting Aβ aggregation and modulating metal-Aβ species is an effective strategy for the treatment of AD. In this work, we modified iminodiacetic acid (IDA) onto human lysozyme (hLys) surface to create an inhibitor of Zn2+-mediated Aβ aggregation and cytotoxicity. The IDA-modified hLys (IDA-hLys) retained the stability and biocompatibility of native hLys. Extensive biophysical and biological analyses indicated that IDA-hLys significantly attenuated Zn2+-mediated Aβ aggregation and cytotoxicity due to its strong binding affinity for Zn2+, whereas native hLys showed little effect. Stopped-flow fluorescence spectroscopy showed that IDA-hLys could protect Aβ from Zn2+-induced aggregation and rapidly depolymerize Zn2+-Aβ aggregates. The research indicates that IDA-hLys is a bifunctional agent capable of inhibiting Aβ fibrillization and modulating Zn2+-mediated Aβ aggregation and cytotoxicity as a strong Zn2+ chelator.
Collapse
Affiliation(s)
- Xi Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Baolong Xie
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
- Institute of Tianjin Seawater Desalination and Multipurpose Utilization , State Oceanic Administration (SOA) , Tianjin 300192 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| |
Collapse
|
22
|
Seraj Z, Seyedarabi A, Saboury AA, Habibi-Rezaei M, Ahmadian S, Ghasemi A. Unraveling the novel effects of aroma from small molecules in preventing hen egg white lysozyme amyloid fibril formation. PLoS One 2018; 13:e0189754. [PMID: 29357364 PMCID: PMC5777642 DOI: 10.1371/journal.pone.0189754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/03/2017] [Indexed: 11/19/2022] Open
Abstract
This study investigated for the first time the molecular effectiveness of 'aroma' from three small molecules including a phenol (phenyl ethyl alcohol; PEA) and an aldehyde (cinnamaldehyde; Cin) both containing an aromatic ring, and a diamine (N,N,N,N'- Tetramethylethylenediamine; TEMED) at two different amounts (small; S and large; L) in preventing hen egg white lysozyme (HEWL) amyloid fibril formation using Thioflavin T and Nile red fluorescence assays, circular dichroism spectroscopy, SDS-polyacrylamide gel electrophoresis, atomic force microscopy, dynamic light scattering and HEWL activity test. Interestingly, the results revealed that (1) the aroma of PEA, identified as an active constituent of Rosa damascena, prevented fibril formation since PEA-L was able to trap the oligomeric form of HEWL in contrast to PEA-S where protofibrils but not mature fibrils were formed; (2) Cin, previously shown to prevent fibril formation in the liquid form, was also shown to do so in the aroma form by producing protofibrils and not mature fibrils in both Cin- L and Cin-S aroma forms and (3) the aroma of TEMED-L was able to retain HEWL's native structure completely and prevented both aggregation and fibril formation, while TEMED-S prevented HEWL fibril formation and instead directed the pathway towards amorphous aggregate formation. Furthermore, the ability to trap oligomeric species (by PEA-L aroma) is of great importance for further research as it provides routes for preventing the formation of toxic oligomeric intermediates along the fibrillation pathway. Last but not least, the novelty of this in vitro study on the effect of aroma at the molecular level with a unique experimental set-up using HEWL as a model protein in assessing amyloid fibril formation paves the way for more and detailed studies on the importance of aroma producing molecules and their effects.
Collapse
Affiliation(s)
- Zahra Seraj
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehran Habibi-Rezaei
- School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Atiyeh Ghasemi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
23
|
Sandin L, Bergkvist L, Nath S, Kielkopf C, Janefjord C, Helmfors L, Zetterberg H, Blennow K, Li H, Nilsberth C, Garner B, Brorsson AC, Kågedal K. Beneficial effects of increased lysozyme levels in Alzheimer's disease modelled in Drosophila melanogaster. FEBS J 2017; 283:3508-3522. [PMID: 27562772 PMCID: PMC5132093 DOI: 10.1111/febs.13830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/18/2016] [Accepted: 08/03/2016] [Indexed: 01/23/2023]
Abstract
Genetic polymorphisms of immune genes that associate with higher risk to develop Alzheimer's disease (AD) have led to an increased research interest on the involvement of the immune system in AD pathogenesis. A link between amyloid pathology and immune gene expression was suggested in a genome‐wide gene expression study of transgenic amyloid mouse models. In this study, the gene expression of lysozyme, a major player in the innate immune system, was found to be increased in a comparable pattern as the amyloid pathology developed in transgenic mouse models of AD. A similar pattern was seen at protein levels of lysozyme in human AD brain and CSF, but this lysozyme pattern was not seen in a tau transgenic mouse model. Lysozyme was demonstrated to be beneficial for different Drosophila melanogaster models of AD. In flies that expressed Aβ1‐42 or AβPP together with BACE1 in the eyes, the rough eye phenotype indicative of toxicity was completely rescued by coexpression of lysozyme. In Drosophila flies bearing the Aβ1‐42 variant with the Arctic gene mutation, lysozyme increased the fly survival and decreased locomotor dysfunction dose dependently. An interaction between lysozyme and Aβ1‐42 in the Drosophila eye was discovered. We propose that the increased levels of lysozyme, seen in mouse models of AD and in human AD cases, were triggered by Aβ1‐42 and caused a beneficial effect by binding of lysozyme to toxic species of Aβ1‐42, which prevented these from exerting their toxic effects. These results emphasize the possibility of lysozyme as biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Linnea Sandin
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Sweden
| | - Liza Bergkvist
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Sangeeta Nath
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Sweden
| | - Claudia Kielkopf
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Sweden
| | - Camilla Janefjord
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Sweden
| | - Linda Helmfors
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden.,UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Hongyun Li
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Camilla Nilsberth
- Department of Acute Internal Medicine and Geriatrics and Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia.,School of Biological Sciences, University of Wollongong, Australia
| | - Ann-Christin Brorsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Sweden.
| | - Katarina Kågedal
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Sweden.
| |
Collapse
|
24
|
Das P, Chacko AR, Belfort G. Alzheimer's Protective Cross-Interaction between Wild-Type and A2T Variants Alters Aβ 42 Dimer Structure. ACS Chem Neurosci 2017; 8:606-618. [PMID: 28292185 DOI: 10.1021/acschemneuro.6b00357] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Whole genome sequencing has recently revealed the protective effect of a single A2T mutation in heterozygous carriers against Alzheimer's disease (AD) and age-related cognitive decline. The impact of the protective cross-interaction between the wild-type (WT) and A2T variants on the dimer structure is therefore of high interest, as the Aβ dimers are the smallest known neurotoxic species. Toward this goal, extensive atomistic replica exchange molecular dynamics simulations of the solvated WT homo- and A2T hetero- Aβ1-42 dimers have been performed, resulting into a total of 51 μs of sampling for each system. Weakening of a set of transient, intrachain contacts formed between the central and C-terminal hydrophobic residues is observed in the heterodimeric system. The majority of the heterodimers with reduced interaction between central and C-terminal regions lack any significant secondary structure and display a weak interchain interface. Interestingly, the A2T N-terminus, particularly residue F4, is frequently engaged in tertiary and quaternary interactions with central and C-terminal hydrophobic residues in those distinct structures, leading to hydrophobic burial. This atypical involvement of the N-terminus within A2T heterodimer revealed in our simulations implies possible interference on Aβ42 aggregation and toxic oligomer formation, which is consistent with experiments. In conclusion, the present study provides detailed structural insights onto A2T Aβ42 heterodimer, which might provide molecular insights onto the AD protective effect of the A2T mutation in the heterozygous state.
Collapse
Affiliation(s)
- Payel Das
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Anita R. Chacko
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Georges Belfort
- Howard
P. Isermann Department of Chemical and Biological Engineering, and
Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, United States
| |
Collapse
|
25
|
Li W, Su X, Zhong Q, Liu Z, Cai Y, Yao J. Influence of reaction conditions on the self-assembly of the natural silk sericin protein. Microsc Res Tech 2017; 80:298-304. [PMID: 27062529 DOI: 10.1002/jemt.22666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/30/2015] [Accepted: 03/16/2016] [Indexed: 11/09/2022]
Abstract
In the past years, the self-assembly of specific proteins has been paid more and more attention due to their significant role in human health and fabrication of new materials. In this article, we explore the effect of reaction conditions on the self-assembly of natural silk sericin protein, including the molecular weight and the concentration of sericin, pH, and metal ions in the reaction system. The results indicate that all these factors, especially species and concentration of metal ions, could influence the self-assembly process of the silk sericin protein. A series of assemblies with various morphologies can be fabricated by modulating the reaction condition. The article may provide some clue for the understanding of the protein self-assembly in the body and a method to fabricate new organic materials with different morphology. Microsc. Res. Tech. 80:298-304, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenhua Li
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiuping Su
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiwei Zhong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhaogang Liu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Juming Yao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
26
|
Luo J, Wärmländer SKTS, Gräslund A, Abrahams JP. Cross-interactions between the Alzheimer Disease Amyloid-β Peptide and Other Amyloid Proteins: A Further Aspect of the Amyloid Cascade Hypothesis. J Biol Chem 2016; 291:16485-93. [PMID: 27325705 DOI: 10.1074/jbc.r116.714576] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-β (Aβ) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aβ and other amyloid proteins.
Collapse
Affiliation(s)
- Jinghui Luo
- From the Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom,
| | | | - Astrid Gräslund
- the Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan Pieter Abrahams
- the Biozentrum, University of Basel, CH-4056 Basel, Switzerland, and the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| |
Collapse
|
27
|
Kar RK, Gazova Z, Bednarikova Z, Mroue KH, Ghosh A, Zhang R, Ulicna K, Siebert HC, Nifantiev NE, Bhunia A. Evidence for Inhibition of Lysozyme Amyloid Fibrillization by Peptide Fragments from Human Lysozyme: A Combined Spectroscopy, Microscopy, and Docking Study. Biomacromolecules 2016; 17:1998-2009. [DOI: 10.1021/acs.biomac.6b00165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajiv K. Kar
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Zuzana Gazova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Medical and Clinical Biochemistry Faculty of Medicine, Safarik University, Trieda SNP 1, 040 11 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, Safarik University, Srobarova 2, 041 54 Kosice, Slovakia
| | - Kamal H. Mroue
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anirban Ghosh
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Ruiyan Zhang
- RI-B-NT Research
Institute
of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Katarina Ulicna
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Institute
of Biology and Ecology, Faculty of Science, Safarik University, Srobarova 2, 041 54 Kosice, Slovakia
| | - Hans-Christian Siebert
- RI-B-NT Research
Institute
of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Nikolay E. Nifantiev
- N.
D. Zellinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Anirban Bhunia
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| |
Collapse
|
28
|
Luo J, Wärmländer SKTS, Gräslund A, Abrahams JP. Reciprocal Molecular Interactions between the Aβ Peptide Linked to Alzheimer's Disease and Insulin Linked to Diabetes Mellitus Type II. ACS Chem Neurosci 2016; 7:269-74. [PMID: 26785771 DOI: 10.1021/acschemneuro.5b00325] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clinical studies indicate diabetes mellitus type II (DM) doubles the risk that a patient will also develop Alzheimer's disease (AD). DM is caused by insulin resistance and a relative lack of active insulin. AD is characterized by the deposition of amyloid β (Aβ) peptide fibrils. Prior to fibrillating, Aβ forms intermediate, prefibrillar oligomers, which are more cytotoxic than the mature Aβ fibrils. Insulin can also form amyloid fibrils. In vivo studies have revealed that insulin promotes the production of Aβ, and that soluble Aβ competes with insulin for the insulin receptor. Here, we report that monomeric insulin interacted with soluble Aβ and that both molecules reciprocally slowed down the aggregation kinetics of the other. Prefibrillar oligomers of Aβ that eventually formed in the presence of insulin were less cytotoxic than Aβ oligomers formed in the absence of insulin. Mature Aβ fibrils induced fibrillation of soluble insulin, but insulin aggregates did not promote Aβ fibrillation. Our study indicates that direct molecular interactions between insulin and Aβ may contribute to the strong link between DM and AD.
Collapse
Affiliation(s)
- Jinghui Luo
- Gorlaeus Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan Pieter Abrahams
- Gorlaeus Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands
| |
Collapse
|
29
|
Synthesis, structure, characterization and luminescent properties of copper(I) complexes based on bis-diimine bridging ligands. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.07.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Abstract
Amyloid-reactive IgGs isolated from pooled blood of normal individuals (pAbs) have demonstrated clinical utility for amyloid diseases by in vivo targeting and clearing amyloidogenic proteins and peptides. We now report the following three novel findings on pAb conformer's binding to amyloidogenic aggregates: 1) pAb aggregates have greater activity than monomers (HMW species > dimers > monomers), 2) pAbs interactions with amyloidogenic aggregates at least partially involves unconventional (non-CDR) interactions of F(ab) regions, and 3) pAb's activity can be easily modulated by trace aggregates generated during sample processing. Specifically, we show that HMW aggregates and dimeric pAbs present in commercial preparations of pAbs, intravenous immunoglobulin (IVIg), had up to ~200- and ~7-fold stronger binding to aggregates of Aβ and transthyretin (TTR) than the monomeric antibody. Notably, HMW aggregates were primarily responsible for the enhanced anti-amyloid activities of Aβ- and Cibacron blue-isolated IVIg IgGs. Human pAb conformer's binding to amyloidogenic aggregates was retained in normal human sera, and mimicked by murine pAbs isolated from normal pooled plasmas. An unconventional (non-CDR) component to pAb's activity was indicated from control human mAbs, generated against non-amyloid targets, binding to aggregated Aβ and TTR. Similar to pAbs, HMW and dimeric mAb conformers bound stronger than their monomeric forms to amyloidogenic aggregates. However, mAbs had lower maximum binding signals, indicating that pAbs were required to saturate a diverse collection of binding sites. Taken together, our findings strongly support further investigations on the physiological function and clinical utility of the inherent anti-amyloid activities of monomeric but not aggregated IgGs.
Collapse
|
31
|
Landreh M, Rising A, Presto J, Jörnvall H, Johansson J. Specific chaperones and regulatory domains in control of amyloid formation. J Biol Chem 2015; 290:26430-6. [PMID: 26354437 DOI: 10.1074/jbc.r115.653097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many proteins can form amyloid-like fibrils in vitro, but only about 30 amyloids are linked to disease, whereas some proteins form physiological amyloid-like assemblies. This raises questions of how the formation of toxic protein species during amyloidogenesis is prevented or contained in vivo. Intrinsic chaperoning or regulatory factors can control the aggregation in different protein systems, thereby preventing unwanted aggregation and enabling the biological use of amyloidogenic proteins. The molecular actions of these chaperones and regulators provide clues to the prevention of amyloid disease, as well as to the harnessing of amyloidogenic proteins in medicine and biotechnology.
Collapse
Affiliation(s)
- Michael Landreh
- From the Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 5QY, United Kingdom
| | - Anna Rising
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden, the Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, 751 23 Uppsala, Sweden
| | - Jenny Presto
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden
| | - Hans Jörnvall
- the Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden, and
| | - Jan Johansson
- the Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Karolinska Institutet - Novum, 141 57 Huddinge, Sweden, the Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, The Biomedical Centre, Box 575, 751 23 Uppsala, Sweden, the Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt 25, 101 20 Tallinn, Estonia
| |
Collapse
|
32
|
Helmfors L, Boman A, Civitelli L, Nath S, Sandin L, Janefjord C, McCann H, Zetterberg H, Blennow K, Halliday G, Brorsson AC, Kågedal K. Protective properties of lysozyme on β-amyloid pathology: implications for Alzheimer disease. Neurobiol Dis 2015; 83:122-33. [PMID: 26334479 DOI: 10.1016/j.nbd.2015.08.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/03/2015] [Accepted: 08/21/2015] [Indexed: 01/24/2023] Open
Abstract
The hallmarks of Alzheimer disease are amyloid-β plaques and neurofibrillary tangles accompanied by signs of neuroinflammation. Lysozyme is a major player in the innate immune system and has recently been shown to prevent the aggregation of amyloid-β1-40 in vitro. In this study we found that patients with Alzheimer disease have increased lysozyme levels in the cerebrospinal fluid and lysozyme co-localized with amyloid-β in plaques. In Drosophila neuronal co-expression of lysozyme and amyloid-β1-42 reduced the formation of soluble and insoluble amyloid-β species, prolonged survival and improved the activity of amyloid-β1-42 transgenic flies. This suggests that lysozyme levels rise in Alzheimer disease as a compensatory response to amyloid-β increases and aggregation. In support of this, in vitro aggregation assays revealed that lysozyme associates with amyloid-β1-42 and alters its aggregation pathway to counteract the formation of toxic amyloid-β species. Overall, these studies establish a protective role for lysozyme against amyloid-β associated toxicities and identify increased lysozyme in patients with Alzheimer disease. Therefore, lysozyme has potential as a new biomarker as well as a therapeutic target for Alzheimer disease.
Collapse
Affiliation(s)
- Linda Helmfors
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Andrea Boman
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Livia Civitelli
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Sangeeta Nath
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Linnea Sandin
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Camilla Janefjord
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Heather McCann
- Neuroscience Research Australia and University of New South Wales, Randwick New South Wales 2031, Australia
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University Hospital, 431 30 Mölndal, Sweden
| | - Glenda Halliday
- Neuroscience Research Australia and University of New South Wales, Randwick New South Wales 2031, Australia
| | - Ann-Christin Brorsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden.
| | - Katarina Kågedal
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden.
| |
Collapse
|
33
|
Baweja L, Balamurugan K, Subramanian V, Dhawan A. Effect of graphene oxide on the conformational transitions of amyloid beta peptide: A molecular dynamics simulation study. J Mol Graph Model 2015; 61:175-85. [PMID: 26275931 DOI: 10.1016/j.jmgm.2015.07.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 01/04/2023]
Abstract
The interactions between nanomaterials (NMs) and amyloid proteins are central to the nanotechnology-based diagnostics and therapy in neurodegenerative disorders such as Alzheimer's and Parkinson's. Graphene oxide (GO) and its derivatives have shown to modulate the aggregation pattern of disease causing amyloid beta (Aβ) peptide. However, the mechanism is still not well understood. Using molecular dynamics simulations, the effect of graphene oxide (GO) and reduced graphene oxide (rGO) having carbon:oxygen ratio of 4:1 and 10:1, respectively, on the conformational transitions (alpha-helix to beta-sheet) and the dynamics of the peptide was investigated. GO and rGO decreased the beta-strand propensity of amino acid residues in Aβ. The peptide displayed different modes of adsorption on GO and rGO. The adsorption on GO was dominated by electrostatic interactions, whereas on rGO, both van der Waals and electrostatic interactions contributed in the adsorption of the peptide. Our study revealed that the slight increase in the hydrophobic patches on rGO made it more effective inhibitor of conformational transitions in the peptide. Alpha helix-beta sheet transition in Aβ peptide could be one of the plausible mechanism by which graphene oxide may inhibit amyloid fibrillation.
Collapse
Affiliation(s)
- Lokesh Baweja
- Institute of Life Sciences, School of Science and Technology, Ahmedabad University, University Road, Ahmedabad 380009, Gujarat, India; Academy of Scientific and Innovative Research, Anusandhan Bhavan, 2 Rafi Marg, New Delhi 110001, India; CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Road, P.O. Box. 80, Lucknow 226001, Uttar Pradesh, India
| | - Kanagasabai Balamurugan
- CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600020, Tamil Nadu, India
| | - Venkatesan Subramanian
- Academy of Scientific and Innovative Research, Anusandhan Bhavan, 2 Rafi Marg, New Delhi 110001, India; CSIR-Central Leather Research Institute, Sardar Patel Road, Adyar, Chennai 600020, Tamil Nadu, India
| | - Alok Dhawan
- Academy of Scientific and Innovative Research, Anusandhan Bhavan, 2 Rafi Marg, New Delhi 110001, India; CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Road, P.O. Box. 80, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
34
|
Interaction of amyloid inhibitor proteins with amyloid beta peptides: insight from molecular dynamics simulations. PLoS One 2014; 9:e113041. [PMID: 25422897 PMCID: PMC4244084 DOI: 10.1371/journal.pone.0113041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/18/2014] [Indexed: 11/22/2022] Open
Abstract
Knowledge of the detailed mechanism by which proteins such as human αB- crystallin and human lysozyme inhibit amyloid beta (Aβ) peptide aggregation is crucial for designing treatment for Alzheimer's disease. Thus, unconstrained, atomistic molecular dynamics simulations in explicit solvent have been performed to characterize the Aβ17–42 assembly in presence of the αB-crystallin core domain and of lysozyme. Simulations reveal that both inhibitor proteins compete with inter-peptide interaction by binding to the peptides during the early stage of aggregation, which is consistent with their inhibitory action reported in experiments. However, the Aβ binding dynamics appear different for each inhibitor. The binding between crystallin and the peptide monomer, dominated by electrostatics, is relatively weak and transient due to the heterogeneous amino acid distribution of the inhibitor surface. The crystallin-bound Aβ oligomers are relatively long-lived, as they form more extensive contact surface with the inhibitor protein. In contrast, a high local density of arginines from lysozyme allows strong binding with Aβ peptide monomers, resulting in stable complexes. Our findings not only illustrate, in atomic detail, how the amyloid inhibitory mechanism of human αB-crystallin, a natural chaperone, is different from that of human lysozyme, but also may aid de novo design of amyloid inhibitors.
Collapse
|
35
|
Luo J, Wärmländer SKTS, Gräslund A, Abrahams JP. Alzheimer Peptides Aggregate into Transient Nanoglobules That Nucleate Fibrils. Biochemistry 2014; 53:6302-8. [DOI: 10.1021/bi5003579] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jinghui Luo
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sebastian K. T. S. Wärmländer
- Department
of Biophysics and Biochemistry, Stockholm University, Svante Arrhenius
väg 16C, SE-106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department
of Biophysics and Biochemistry, Stockholm University, Svante Arrhenius
väg 16C, SE-106 91 Stockholm, Sweden
| | - Jan Pieter Abrahams
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
36
|
Luo J, Wärmländer SKTS, Gräslund A, Abrahams JP. Non-chaperone proteins can inhibit aggregation and cytotoxicity of Alzheimer amyloid β peptide. J Biol Chem 2014; 289:27766-75. [PMID: 25100721 DOI: 10.1074/jbc.m114.574947] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many factors are known to influence the oligomerization, fibrillation, and amyloid formation of the Aβ peptide that is associated with Alzheimer disease. Other proteins that are present when Aβ peptides deposit in vivo are likely to have an effect on these aggregation processes. To separate specific versus broad spectrum effects of proteins on Aβ aggregation, we tested a series of proteins not reported to have chaperone activity: catalase, pyruvate kinase, albumin, lysozyme, α-lactalbumin, and β-lactoglobulin. All tested proteins suppressed the fibrillation of Alzheimer Aβ(1-40) peptide at substoichiometric ratios, albeit some more effectively than others. All proteins bound non-specifically to Aβ, stabilized its random coils, and reduced its cytotoxicity. Surprisingly, pyruvate kinase and catalase were at least as effective as known chaperones in inhibiting Aβ aggregation. We propose general mechanisms for the broad-spectrum inhibition Aβ fibrillation by proteins. The mechanisms we discuss are significant for prognostics and perhaps even for prevention and treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Jinghui Luo
- From the Gorlaeus Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands and
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University SE-10691 Stockholm, Sweden
| | - Jan Pieter Abrahams
- From the Gorlaeus Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands and
| |
Collapse
|
37
|
Luo J, Wärmländer SKTS, Yu CH, Muhammad K, Gräslund A, Pieter Abrahams J. The Aβ peptide forms non-amyloid fibrils in the presence of carbon nanotubes. NANOSCALE 2014; 6:6720-6726. [PMID: 24820873 DOI: 10.1039/c4nr00291a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Carbon nanotubes have specific properties that make them potentially useful in biomedicine and biotechnology. However, carbon nanotubes may themselves be toxic, making it imperative to understand how carbon nanotubes interact with biomolecules such as proteins. Here, we used NMR, CD, and ThT/fluorescence spectroscopy together with AFM imaging to study pH-dependent molecular interactions between single walled carbon nanotubes (SWNTs) and the amyloid-beta (Aβ) peptide. The aggregation of the Aβ peptide, first into oligomers and later into amyloid fibrils, is considered to be the toxic mechanism behind Alzheimer's disease. We found that SWNTs direct the Aβ peptides to form a new class of β-sheet-rich yet non-amyloid fibrils.
Collapse
Affiliation(s)
- Jinghui Luo
- Gorlaeus Laboratory, Leiden Institute of Chemistry, Leiden University, 2300RA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Assarsson A, Hellstrand E, Cabaleiro-Lago C, Linse S. Charge dependent retardation of amyloid β aggregation by hydrophilic proteins. ACS Chem Neurosci 2014; 5:266-74. [PMID: 24475785 DOI: 10.1021/cn400124r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aggregation of amyloid β peptides (Aβ) into amyloid fibrils is implicated in the pathology of Alzheimer's disease. In light of the increasing number of proteins reported to retard Aβ fibril formation, we investigated the influence of small hydrophilic model proteins of different charge on Aβ aggregation kinetics and their interaction with Aβ. We followed the amyloid fibril formation of Aβ40 and Aβ42 using thioflavin T fluorescence in the presence of six charge variants of calbindin D9k and single-chain monellin. The formation of fibrils was verified with transmission electron microscopy. We observe retardation of the aggregation process from proteins with net charge +8, +2, -2, and -4, whereas no effect is observed for proteins with net charge of -6 and -8. The single-chain monellin mutant with the highest net charge, scMN+8, has the largest retarding effect on the amyloid fibril formation process, which is noticeably delayed at as low as a 0.01:1 scMN+8 to Aβ40 molar ratio. scMN+8 is also the mutant with the fastest association to Aβ40 as detected by surface plasmon resonance, although all retarding variants of calbindin D9k and single-chain monellin bind to Aβ40.
Collapse
Affiliation(s)
- Anna Assarsson
- Divisions
of †Biochemistry and
Structural Biology and ‡Biophysical Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Erik Hellstrand
- Divisions
of †Biochemistry and
Structural Biology and ‡Biophysical Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Celia Cabaleiro-Lago
- Divisions
of †Biochemistry and
Structural Biology and ‡Biophysical Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| | - Sara Linse
- Divisions
of †Biochemistry and
Structural Biology and ‡Biophysical Chemistry, Lund University, P.O. Box 124, SE 221 00 Lund, Sweden
| |
Collapse
|
39
|
Luo J, Abrahams JP. Cyclic Peptides as Inhibitors of Amyloid Fibrillation. Chemistry 2014; 20:2410-9. [DOI: 10.1002/chem.201304253] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Indexed: 11/06/2022]
|
40
|
Luo J, Otero JM, Yu C, Wärmländer SKTS, Gräslund A, Overhand M, Abrahams JP. Inhibiting and Reversing Amyloid‐β Peptide (1–40) Fibril Formation with Gramicidin S and Engineered Analogues. Chemistry 2013; 19:17338-48. [DOI: 10.1002/chem.201301535] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/12/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Jinghui Luo
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The Netherlands)
| | - José M. Otero
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The Netherlands)
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia y Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela (Spain)
| | - Chien‐Hung Yu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The Netherlands)
| | - Sebastian K. T. S. Wärmländer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm (Sweden)
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691 Stockholm (Sweden)
| | - Mark Overhand
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The Netherlands)
| | - Jan Pieter Abrahams
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The Netherlands)
| |
Collapse
|
41
|
Wärmländer S, Tiiman A, Abelein A, Luo J, Jarvet J, Söderberg KL, Danielsson J, Gräslund A. Biophysical studies of the amyloid β-peptide: interactions with metal ions and small molecules. Chembiochem 2013; 14:1692-704. [PMID: 23983094 DOI: 10.1002/cbic.201300262] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease is the most common of the protein misfolding ("amyloid") diseases. The deposits in the brains of afflicted patients contain as a major fraction an aggregated insoluble form of the so-called amyloid β-peptides (Aβ peptides): fragments of the amyloid precursor protein of 39-43 residues in length. This review focuses on biophysical studies of the Aβ peptides: that is, of the aggregation pathways and intermediates observed during aggregation, of the molecular structures observed along these pathways, and of the interactions of Aβ with Cu and Zn ions and with small molecules that modify the aggregation pathways. Particular emphasis is placed on studies based on high-resolution and solid-state NMR methods. Theoretical studies relating to the interactions are also included. An emerging picture is that of Aβ peptides in aqueous solution undergoing hydrophobic collapse together with identical partners. There then follows a relatively slow process leading to more ordered secondary and tertiary (quaternary) structures in the growing aggregates. These aggregates eventually assemble into elongated fibrils visible by electron microscopy. Small molecules or metal ions that interfere with the aggregation processes give rise to a variety of aggregation products that may be studied in vitro and considered in relation to observations in cell cultures or in vivo. Although the heterogeneous nature of the processes makes detailed structural studies difficult, knowledge and understanding of the underlying physical chemistry might provide a basis for future therapeutic strategies against the disease. A final part of the review deals with the interactions that may occur between the Aβ peptides and the prion protein, where the latter is involved in other protein misfolding diseases.
Collapse
Affiliation(s)
- Sebastian Wärmländer
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories, Stockholm University, 106 91 Stockholm (Sweden)
| | | | | | | | | | | | | | | |
Collapse
|