1
|
Gorman J, Hart SM, John T, Castellanos MA, Harris D, Parsons MF, Banal JL, Willard AP, Schlau-Cohen GS, Bathe M. Sculpting photoproducts with DNA origami. Chem 2024; 10:1553-1575. [PMID: 38827435 PMCID: PMC11138899 DOI: 10.1016/j.chempr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.
Collapse
Affiliation(s)
- Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria A. Castellanos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Molly F. Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James L. Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
2
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Xu J, Hu J, Gao Y, Wang H, Li L, Zheng S. Crosslinking of poly(ethylene-co-vinyl alcohol) with diphenylboronic acid of tetraphenylethene enables reprocessing, shape recovery and photoluminescence. REACT FUNCT POLYM 2023. [DOI: 10.1016/j.reactfunctpolym.2023.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Huber A, Dubbert J, Scherz TD, Voskuhl J. Design Concepts for Solution and Solid-State Emitters - A Modern Viewpoint on Classical and Non-Classical Approaches. Chemistry 2023; 29:e202202481. [PMID: 36193996 PMCID: PMC10099667 DOI: 10.1002/chem.202202481] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/07/2022]
Abstract
For a long time, luminescence phenomena were strictly distinguished between the emission of isolated molecules in dilute solutions or close-packed structures such as in powders or aggregates. This changed with the breakthrough observation of dual-state efficient materials, which led to a rapid boost of publications examining the influence of structural features to achieve balanced emission with disregarded molecular surroundings. Some first general structural design concepts have already been proposed based on reoccurring patterns and pivotal motifs. However, we have found another way to classify these solution and solid-state emitters (SSSEs). Hence, this minireview aims to present an overview of published structural features of SSSEs while shining light on design concepts from a more generalized perspective. Since SSSEs are believed to bridge the gap of hitherto known aggregation-sensitive compound classes, we hope to give future scientists a versatile tool in hand to efficiently design novel luminescent materials.
Collapse
Affiliation(s)
- Alexander Huber
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Justin Dubbert
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Tim D Scherz
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry, CENIDE and ZMB, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| |
Collapse
|
5
|
Mass OA, Basu S, Patten LK, Terpetschnig EA, Krivoshey AI, Tatarets AL, Pensack RD, Yurke B, Knowlton WB, Lee J. Exciton Chirality Inversion in Dye Dimers Templated by DNA Holliday Junction. J Phys Chem Lett 2022; 13:10688-10696. [PMID: 36355575 PMCID: PMC9706552 DOI: 10.1021/acs.jpclett.2c02721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
While only one enantiomer of chiral biomolecules performs a biological function, access to both enantiomers (or enantiomorphs) proved to be advantageous for technology. Using dye covalent attachment to a DNA Holliday junction (HJ), we created two pairs of dimers of bis(chloroindolenine)squaraine dye that enabled strongly coupled molecular excitons of opposite chirality in solution. The exciton chirality inversion was achieved by interchanging single covalent linkers of unequal length tethering the dyes of each dimer to the HJ core. Dimers in each pair exhibited profound exciton-coupled circular dichroism (CD) couplets of opposite signs. Dimer geometries, modeled by simultaneous fitting absorption and CD spectra, were related in each pair as nonsuperimposable and nearly exact mirror images. The origin of observed exciton chirality inversion was explained in the view of isomerization of the stacked Holliday junction. This study will open new opportunities for creating excitonic DNA-based materials that rely on programmable system chirality.
Collapse
Affiliation(s)
- Olga A. Mass
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Shibani Basu
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Lance K. Patten
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Ewald A. Terpetschnig
- SETA
BioMedicals, LLC, 2014
Silver Court East, Urbana, Illinois 61801, United
States
| | - Alexander I. Krivoshey
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
| | - Anatoliy L. Tatarets
- SSI
“Institute for Single Crystals” of the National Academy
of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
| | - Ryan D. Pensack
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Department of Electrical
& Computer Engineering, and Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
6
|
Nakamura M, Yoshioka H, Takada T. Conformational Switching of Pyrenes Associated on Hairpin Loop Region by DNA B‐Z Transition. ChemistrySelect 2022. [DOI: 10.1002/slct.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied Chemistry University of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Hibiki Yoshioka
- Department of Applied Chemistry University of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Tadao Takada
- Department of Applied Chemistry University of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| |
Collapse
|
7
|
Basu S, Cervantes-Salguero K, Yurke B, Knowlton WB, Lee J, Mass OA. Photocrosslinking Probes Proximity of Thymine Modifiers Tethering Excitonically Coupled Dye Aggregates to DNA Holliday Junction. Molecules 2022; 27:4006. [PMID: 35807250 PMCID: PMC9268628 DOI: 10.3390/molecules27134006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022] Open
Abstract
A DNA Holliday junction (HJ) has been used as a versatile scaffold to create a variety of covalently templated molecular dye aggregates exhibiting strong excitonic coupling. In these dye-DNA constructs, one way to attach dyes to DNA is to tether them via single long linkers to thymine modifiers incorporated in the core of the HJ. Here, using photoinduced [2 + 2] cycloaddition (photocrosslinking) between thymines, we investigated the relative positions of squaraine-labeled thymine modifiers in the core of the HJ, and whether the proximity of thymine modifiers correlated with the excitonic coupling strength in squaraine dimers. Photocrosslinking between squaraine-labeled thymine modifiers was carried out in two distinct types of configurations: adjacent dimer and transverse dimer. The outcomes of the reactions in terms of relative photocrosslinking yields were evaluated by denaturing polyacrylamide electrophoresis. We found that for photocrosslinking to occur at a high yield, a synergetic combination of three parameters was necessary: adjacent dimer configuration, strong attractive dye-dye interactions that led to excitonic coupling, and an A-T neighboring base pair. The insight into the proximity of dye-labeled thymines in adjacent and transverse configurations correlated with the strength of excitonic coupling in the corresponding dimers. To demonstrate a utility of photocrosslinking, we created a squaraine tetramer templated by a doubly crosslinked HJ with increased thermal stability. These findings provide guidance for the design of HJ-templated dye aggregates exhibiting strong excitonic coupling for exciton-based applications such as organic optoelectronics and quantum computing.
Collapse
Affiliation(s)
- Shibani Basu
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| | - Keitel Cervantes-Salguero
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Electrical & Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - William B. Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Electrical & Computer Engineering, Boise State University, Boise, ID 83725, USA
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA
| | - Olga A. Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA; (S.B.); (K.C.-S.); (B.Y.); (W.B.K.)
| |
Collapse
|
8
|
Rothenbühler S, Gonzalez A, Iacovache I, Langenegger SM, Zuber B, Häner R. Tetraphenylethylene-DNA conjugates: influence of sticky ends and DNA sequence length on the supramolecular assembly of AIE-active vesicles. Org Biomol Chem 2022; 20:3703-3707. [PMID: 35262542 PMCID: PMC9092531 DOI: 10.1039/d2ob00357k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The supramolecular assembly of DNA conjugates, functionalized with tetraphenylethylene (TPE) sticky ends, into vesicular structures is described. The aggregation-induced emission (AIE) active TPE units allow monitoring the assembly process by fluorescence spectroscopy. The number of TPE modifications in the overhangs of the conjugates influences the supramolecular assembly behavior. A minimum of two TPE residues on each end are required to ensure a well-defined assembly process. The design of the presented DNA-based nanostructures offers tailored functionalization with applications in DNA nanotechnology. The supramolecular assembly of tetraphenylethylene (TPE)–DNA conjugates is presented. The length of the TPE sticky ends exerts a pronounced effect on the formation of aggregation-induced emission (AIE)-active vesicles.![]()
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Adrian Gonzalez
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M Langenegger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
9
|
Choi H, Kim H, Kim KT. Fluorescent nucleobase analogs constructed by
aldol‐type
condensation: Design, properties, and synthetic optimization for fluorogenic labeling of
5‐formyluracil. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hayeon Choi
- Department of Chemistry Chungbuk National University Cheongju Republic of Korea
| | - Hokyung Kim
- Department of Chemistry Chungbuk National University Cheongju Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry Chungbuk National University Cheongju Republic of Korea
| |
Collapse
|
10
|
Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Complex DNA Architectonics─Self-Assembly of Amphiphilic Oligonucleotides into Ribbons, Vesicles, and Asterosomes. Bioconjug Chem 2022; 34:70-77. [PMID: 35357155 PMCID: PMC9854621 DOI: 10.1021/acs.bioconjchem.2c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The precise arrangement of structural subunits is a key factor for the proper shape and function of natural and artificial supramolecular assemblies. In DNA nanotechnology, the geometrically well-defined double-stranded DNA scaffold serves as an element of spatial control for the precise arrangement of functional groups. Here, we describe the supramolecular assembly of chemically modified DNA hybrids into diverse types of architectures. An amphiphilic DNA duplex serves as the sole structural building element of the nanosized supramolecular structures. The morphology of the assemblies is governed by a single subunit of the building block. The chemical nature of this subunit, i.e., polyethylene glycols of different chain length or a carbohydrate moiety, exerts a dramatic influence on the architecture of the assemblies. Cryo-electron microscopy revealed the arrangement of the individual DNA duplexes within the different constructs. Thus, the morphology changes from vesicles to ribbons with increasing length of a linear polyethylene glycol. Astoundingly, attachment of a N-acetylgalactosamine carbohydrate to the DNA duplex moiety produces an unprecedented type of star-shaped architecture. The novel DNA architectures presented herein imply an extension of the current concept of DNA materials and shed new light on the fast-growing field of DNA nanotechnology.
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Ioan Iacovache
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M. Langenegger
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Benoît Zuber
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland,
| |
Collapse
|
11
|
Mass OA, Wilson CK, Barcenas G, Terpetschnig EA, Obukhova OM, Kolosova OS, Tatarets AL, Li L, Yurke B, Knowlton WB, Pensack RD, Lee J. Influence of Hydrophobicity on Excitonic Coupling in DNA-Templated Indolenine Squaraine Dye Aggregates. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:3475-3488. [PMID: 35242270 PMCID: PMC8883467 DOI: 10.1021/acs.jpcc.1c08981] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/15/2022] [Indexed: 06/01/2023]
Abstract
Control over the strength of excitonic coupling in molecular dye aggregates is a substantial factor for the development of technologies such as light harvesting, optoelectronics, and quantum computing. According to the molecular exciton model, the strength of excitonic coupling is inversely proportional to the distance between dyes. Covalent DNA templating was proved to be a versatile tool to control dye spacing on a subnanometer scale. To further expand our ability to control photophysical properties of excitons, here, we investigated the influence of dye hydrophobicity on the strength of excitonic coupling in squaraine aggregates covalently templated by DNA Holliday Junction (DNA HJ). Indolenine squaraines were chosen for their excellent spectral properties, stability, and diversity of chemical modifications. Six squaraines of varying hydrophobicity from highly hydrophobic to highly hydrophilic were assembled in two dimer configurations and a tetramer. In general, the examined squaraines demonstrated a propensity toward face-to-face aggregation behavior observed via steady-state absorption, fluorescence, and circular dichroism spectroscopies. Modeling based on the Kühn-Renger-May approach quantified the strength of excitonic coupling in the squaraine aggregates. The strength of excitonic coupling strongly correlated with squaraine hydrophobic region. Dimer aggregates of dichloroindolenine squaraine were found to exhibit the strongest coupling strength of 132 meV (1065 cm-1). In addition, we identified the sites for dye attachment in the DNA HJ that promote the closest spacing between the dyes in their dimers. The extracted aggregate geometries, and the role of electrostatic and steric effects in squaraine aggregation are also discussed. Taken together, these findings provide a deeper insight into how dye structures influence excitonic coupling in dye aggregates covalently templated via DNA, and guidance in design rules for exciton-based materials and devices.
Collapse
Affiliation(s)
- Olga A. Mass
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K. Wilson
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - German Barcenas
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | | | - Olena M. Obukhova
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Olga S. Kolosova
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Anatoliy L. Tatarets
- State
Scientific Institution “Institute for Single Crystals”
of National Academy of Sciences of Ukraine, Kharkiv 61072, Ukraine
| | - Lan Li
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Center
for Advanced Energy Studies, Idaho
Falls, Idaho 83401, United States
| | - Bernard Yurke
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Ryan. D. Pensack
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron
School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Chemistry and Biochemistry, Boise State
University, Boise, Idaho 83725, United
States
| |
Collapse
|
12
|
Dietzsch J, Bialas D, Bandorf J, Würthner F, Höbartner C. Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations. Angew Chem Int Ed Engl 2022; 61:e202116783. [PMID: 34937127 PMCID: PMC9302137 DOI: 10.1002/anie.202116783] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 12/02/2022]
Abstract
Exciton coupling between two or more chromophores in a specific environment is a key mechanism associated with color tuning and modulation of absorption energies. This concept is well exemplified by natural photosynthetic proteins, and can also be achieved in synthetic nucleic acid nanostructures. Here we report the coupling of barbituric acid merocyanine (BAM) nucleoside analogues and show that exciton coupling can be tuned by the double helix conformation. BAM is a nucleobase mimic that was incorporated in the phosphodiester backbone of RNA, DNA and GNA oligonucleotides. Duplexes with different backbone constitutions and geometries afforded different mutual dye arrangements, leading to distinct optical signatures due to competing modes of chromophore organization via electrostatic, dipolar, π-π-stacking and hydrogen-bonding interactions. The realized supramolecular motifs include hydrogen-bonded BAM-adenine base pairs and antiparallel as well as rotationally stacked BAM dimer aggregates with distinct absorption, CD and fluorescence properties.
Collapse
Affiliation(s)
- Julia Dietzsch
- Institute of Organic ChemistryUniversity of WürzburgGermany
| | - David Bialas
- Institute of Organic ChemistryUniversity of WürzburgGermany
- Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | | | - Frank Würthner
- Institute of Organic ChemistryUniversity of WürzburgGermany
- Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of WürzburgGermany
- Center for Nanosystems ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
13
|
Dietzsch J, Bialas D, Bandorf J, Würthner F, Höbartner C. Tuning Exciton Coupling of Merocyanine Nucleoside Dimers by RNA, DNA and GNA Double Helix Conformations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Dietzsch
- Institute of Organic Chemistry University of Würzburg Germany
| | - David Bialas
- Institute of Organic Chemistry University of Würzburg Germany
- Center for Nanosystems Chemistry University of Würzburg Am Hubland 97074 Würzburg Germany
| | | | - Frank Würthner
- Institute of Organic Chemistry University of Würzburg Germany
- Center for Nanosystems Chemistry University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry University of Würzburg Germany
- Center for Nanosystems Chemistry University of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
14
|
Zhou Y, Fan H, Mu Y, Wang R, Ren Q, Pu S. AIEE compounds based on 9, 10-dithienylanthracene-substituted triphenylamine: design, synthesis, and applications in cell imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj01126c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new 9, 10-dithienylanthracene-based triphenylamine derivatives (TPA-DTAs) were designed and synthesized by adjusting the linkage model of phenylacetonitrile group with different substituents. They all displayed aggregation-induced emission enhancement (AIEE) features...
Collapse
|
15
|
Roy S, Mass OA, Kellis DL, Wilson CK, Hall JA, Yurke B, Knowlton WB. Exciton Delocalization and Scaffold Stability in Bridged Nucleotide-Substituted, DNA Duplex-Templated Cyanine Aggregates. J Phys Chem B 2021; 125:13670-13684. [PMID: 34894675 PMCID: PMC8713290 DOI: 10.1021/acs.jpcb.1c07602] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/04/2021] [Indexed: 11/28/2022]
Abstract
Molecular excitons play a foundational role in chromophore aggregates found in light-harvesting systems and offer potential applications in engineered excitonic systems. Controlled aggregation of chromophores to promote exciton delocalization has been achieved by covalently tethering chromophores to deoxyribonucleic acid (DNA) scaffolds. Although many studies have documented changes in the optical properties of chromophores upon aggregation using DNA scaffolds, more limited work has investigated how structural modifications of DNA via bridged nucleotides and chromophore covalent attachment impact scaffold stability as well as the configuration and optical behavior of attached aggregates. Here we investigated the impact of two types of bridged nucleotides, LNA and BNA, as a structural modification of duplex DNA-templated cyanine (Cy5) aggregates. The bridged nucleotides were incorporated in the domain of one to four Cy5 chromophores attached between adjacent bases of a DNA duplex. We found that bridged nucleotides increase the stability of DNA scaffolds carrying Cy5 aggregates in comparison with natural nucleotides in analogous constructs. Exciton coupling strength and delocalization in Cy5 aggregates were evaluated via steady-state absorption, circular dichroism, and theoretical modeling. Replacing natural nucleotides with bridged nucleotides resulted in a noticeable increase in the coupling strength (≥10 meV) between chromophores and increased H-like stacking behavior (i.e., more face-to-face stacking). Our results suggest that bridged nucleotides may be useful for increasing scaffold stability and coupling between DNA templated chromophores.
Collapse
Affiliation(s)
- Simon
K. Roy
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Olga A. Mass
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Donald L. Kellis
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K. Wilson
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - John A. Hall
- Division
of Research and Economic Development, Boise
State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
16
|
Ucar H, Wagenknecht HA. DNA-templated control of chirality and efficient energy transport in supramolecular DNA architectures with aggregation-induced emission. Chem Sci 2021; 12:10048-10053. [PMID: 34377398 PMCID: PMC8317660 DOI: 10.1039/d1sc02351a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/19/2021] [Indexed: 01/15/2023] Open
Abstract
Two conjugates of tetraphenylethylene with d-2′-deoxyuridine (1d) and l-2′-deoxyuridine (1l) were synthesized to construct new supramolecular DNA-architectures by self-assembly. The non-templated assemblies of 1d and 1l show strong aggregation-induced emission and their chirality is exclusively controlled by the configuration of their sugar part. In contrast, the chirality of the DNA-templated assemblies is governed by the configuration of the DNA, and there is no configuration-selective binding of 1d to d-A20 and 1l to l-A20. The quantum yield of the assembly of 1d along the single-stranded DNA A20 is 0.40; approximately every second available binding site on the DNA template is occupied by 1d. The strong aggregation-induced emission of these DNA architectures can be efficiently quenched and the excitation energy can be transported to Atto dyes at the 5′-terminus. A multistep energy transport “hopping” precedes the final energy transfer to the terminal acceptor. The building block 1d promotes this energy transport as stepping stones. This was elucidated by reference DNA double strands in which 1d was covalently incorporated at two distinct sites in the sequences, one near the Atto dye, and one farther away. This new type of completely self-assembled supramolecular DNA architecture is hierarchically ordered and the DNA template controls not only the binding but also the energy transport properties. The high intensity of the aggregation-induced emission and the excellent energy transport properties make these DNA-based materials promising candidates for optoelectronic applications. DNA architectures with tetraphenylethylene are assembled in a non-covalent way. The strong aggregation-induced emission of the chromophores is quenched and the energy is transported to Atto dyes by a multistep energy “hopping”.![]()
Collapse
Affiliation(s)
- Hülya Ucar
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe German
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe German
| |
Collapse
|
17
|
Liu Z, Meng T, Tang X, Tian R, Guan W. The Promise of Aggregation-Induced Emission Luminogens for Detecting COVID-19. Front Immunol 2021; 12:635558. [PMID: 33679789 PMCID: PMC7928409 DOI: 10.3389/fimmu.2021.635558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The long-term pandemic of coronavirus disease 2019 (COVID-19) requires sensitive and accurate diagnostic assays to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and SARS-CoV-2 antibodies in infected individuals. Currently, RNA of SARS-CoV-2 virus is mainly detected by reverse transcription-polymerase chain reaction (RT-PCR)-based nucleic acid assays, while SARS-CoV-2 antigen and antibody are identified by immunological assays. Both nucleic acid assays and immunological assays rely on the luminescence signals of specific luminescence probes for qualitative and quantitative detection. The exploration of novel luminescence probes will play a crucial role in improving the detection sensitivity of the assays. As innate probes, aggregation-induced emission (AIE) luminogens (AIEgens) exhibit negligible luminescence in the free state but enhanced luminescence in the aggregated or restricted states. Moreover, AIEgen-based nanoparticles (AIE dots) offer efficient luminescence, good biocompatibility and water solubility, and superior photostability. Both AIEgens and AIE dots have been widely used for high-performance detection of biomolecules and small molecules, chemical/biological imaging, and medical therapeutics. In this review, the availability of AIEgens and AIE dots in nucleic acid assays and immunological assays are enumerated and discussed. By building a bridge between AIE materials and COVID-19, we hope to inspire researchers to use AIE materials as a powerful weapon against COVID-19.
Collapse
Affiliation(s)
- Zongwei Liu
- Department of Respiratory Medicine, Lianyungang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Ting Meng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaofang Tang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
18
|
Kim T, Park JY, Hwang J, Seo G, Kim Y. Supramolecular Two-Dimensional Systems and Their Biological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002405. [PMID: 32989841 DOI: 10.1002/adma.202002405] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Various biological systems rely on the supramolecular assembly of biomolecules through noncovalent bonds for performing sophisticated functions. In particular, cell membranes, which are 2D structures in biological systems, have various characteristics such as a large surface, flexibility, and molecule-recognition ability. Supramolecular 2D materials based on biological systems provide a novel perspective for the development of functional 2D materials. The physical and chemical properties of 2D structures, attributed to their large surface area, can enhance the sensitivity of the detection of target molecules, molecular loading, and bioconjugation efficiency, suggesting the potential utility of functional 2D materials as candidates for biological systems. Although several types of studies on supramolecular 2D materials have been reported, supramolecular biofunctional 2D materials have not been reviewed previously. In this regard, the current advances in 2D material development using molecular assembly are discussed with respect to the rational design of self-assembling aromatic amphiphiles, the formation of 2D structures, and the biological applications of functional 2D materials.
Collapse
Affiliation(s)
- Taeyeon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jiwon Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gunhee Seo
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
19
|
Saha U, Chatterjee S, Dolai M, Suresh Kumar G. Biophysical and Thermodynamic Investigations on the Differentiation of Fluorescence Response towards Interaction of DNA: A Pyrene-Based Receptor versus Its Fe(III) Complex. ACS APPLIED BIO MATERIALS 2020; 3:7810-7820. [DOI: 10.1021/acsabm.0c00983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Urmila Saha
- Organic and Medicinal Chemistry Division, CSIR—Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| | - Sabyasachi Chatterjee
- Organic and Medicinal Chemistry Division, CSIR—Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur 721404, W.B., India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR—Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| |
Collapse
|
20
|
Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Supramolecular assembly of DNA-constructed vesicles. NANOSCALE 2020; 12:21118-21123. [PMID: 32614024 DOI: 10.1039/d0nr04103c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly of DNA hybrids possessing tetraphenylethylene sticky ends at both sides into vesicular architectures in aqueous medium is demonstrated. Cryo-electron microscopy reveals the formation of different types of morphologies from the amphiphilic DNA-hybrids. Depending on the conditions, either an extended (sheet-like) or a compact (columnar) alignment of the DNA hybrids is observed. The different modes of DNA arrangement lead to the formation of vesicles appearing either as prolate ellipsoids (type I) or as spheres (type II). The type of packing has a significant effect on the accessibility of the DNA, as evidenced by intercalation and light-harvesting experiments. Only the vesicles exhibiting the sheet-like DNA alignment are accessible for intercalation by ethidium bromide or for the integration of chromophore-labelled DNA via a strand exchange process. The dynamic nature of type I vesicles enables their elaboration into artificial light-harvesting complexes by DNA-guided introduction of Cy3-acceptor chromophores. DNA-constructed vesicles of the kind shown here represent versatile intermediates that are amenable to further modification for tailored nanotechnology applications.
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH - 3012 Bern, Switzerland.
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH - 3012 Bern, Switzerland.
| | - Simon M Langenegger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH - 3012 Bern, Switzerland.
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH - 3012 Bern, Switzerland.
| | - Robert Häner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH - 3012 Bern, Switzerland.
| |
Collapse
|
21
|
Mass OA, Wilson CK, Roy SK, Barclay MS, Patten LK, Terpetschnig EA, Lee J, Pensack RD, Yurke B, Knowlton WB. Exciton Delocalization in Indolenine Squaraine Aggregates Templated by DNA Holliday Junction Scaffolds. J Phys Chem B 2020; 124:9636-9647. [PMID: 33052691 DOI: 10.1021/acs.jpcb.0c06480] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exciton delocalization plays a prominent role in the photophysics of molecular aggregates, ultimately governing their particular function or application. Deoxyribonucleic acid (DNA) is a compelling scaffold in which to template molecular aggregates and promote exciton delocalization. As individual dye molecules are the basis of exciton delocalization in molecular aggregates, their judicious selection is important. Motivated by their excellent photostability and spectral properties, here, we examine the ability of squaraine dyes to undergo exciton delocalization when aggregated via a DNA Holliday junction (HJ) template. A commercially available indolenine squaraine dye was chosen for the study given its strong structural resemblance to Cy5, a commercially available cyanine dye previously shown to undergo exciton delocalization in DNA HJs. Three types of DNA-dye aggregate configurations-transverse dimer, adjacent dimer, and tetramer-were investigated. Signatures of exciton delocalization were observed in all squaraine-DNA aggregates. Specifically, strong blue shift and Davydov splitting were observed in steady-state absorption spectroscopy and exciton-induced features were evident in circular dichroism (CD) spectroscopy. Strongly suppressed fluorescence emission provided additional, indirect evidence for exciton delocalization in the DNA-templated squaraine dye aggregates. To quantitatively evaluate and directly compare the excitonic Coulombic coupling responsible for exciton delocalization, the strength of excitonic hopping interactions between the dyes was obtained by simultaneously fitting the experimental steady-state absorption and CD spectra via a Holstein-like Hamiltonian, in which, following the theoretical approach of Kühn, Renger, and May, the dominant vibrational mode is explicitly considered. The excitonic hopping strength within indolenine squaraines was found to be comparable to that of the analogous Cy5 DNA-templated aggregate. The squaraine aggregates adopted primarily an H-type (dyes oriented parallel to each other) spatial arrangement. Extracted geometric details of the dye mutual orientation in the aggregates enabled a close comparison of aggregate configurations and the elucidation of the influence of dye angular relationship on excitonic hopping interactions in squaraine aggregates. These results encourage the application of squaraine-based aggregates in next-generation systems driven by molecular excitons.
Collapse
Affiliation(s)
| | | | | | | | | | - Ewald A Terpetschnig
- SETA BioMedicals, LLC, 2014 Silver Court East, Urbana, Illinois 61801, United States
| | | | | | | | | |
Collapse
|
22
|
Zhou Z, Long Y, Chen X, Yang T, Zhao J, Meng Y, Chi Z, Liu S, Chen X, Aldred MP, Xu J, Zhang Y. Preserving High-Efficiency Luminescence Characteristics of an Aggregation-Induced Emission-Active Fluorophore in Thermostable Amorphous Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34198-34207. [PMID: 32594733 DOI: 10.1021/acsami.0c08480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Luminophores usually suffer from luminescent quenching when introduced into a polymer backbone or side chain, which leads to the inefficient luminescence or even no luminescence of the polymer. In this work, alicyclic imide rings were found to be capable of balancing the donor-acceptor properties between the rigid spacer and the aggregation-induced emission-active fluorophore in light-emitting polymers. Along with the nonplanar and rigid emitter, the suppressed intramolecular charge-transfer effect and interchain disturbance can efficiently preserve the luminescence characteristics of the active center, resulting in high solid-state photoluminescence quantum yields of up to 89%. The amorphous polyimides exhibit excellent thermal properties, such as high glass transition temperature (Tg) values (398 °C) and high thermal decomposition temperature (Td) values (538 °C). As far as we know, these luminescent polymer materials are of excellent heat resistance with the highest luminescence efficiency reported. The results have significant impact for the precise prediction of the optical properties of light-emitting polymers by appropriate monomer design, providing controllable ways for synthesizing high thermal stability polymeric materials with efficient fluorescence properties.
Collapse
Affiliation(s)
- Zhuxin Zhou
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Shenzhen Yanyi New Materials Co., Ltd., Shenzhen 518110, China
| | - Yubo Long
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaojie Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Tingting Yang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Juan Zhao
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Meng
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenguo Chi
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Siwei Liu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xudong Chen
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Matthew P Aldred
- Lomox Limited, Bank House, Market Square, Congleton, Cheshire CW12 1ET, U.K
| | - Jiarui Xu
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Fritz Y, Wagenknecht HA. Influences of Linker and Nucleoside for the Helical Self-Assembly of Perylene Along DNA Templates. Front Chem 2019; 7:659. [PMID: 31696102 PMCID: PMC6817502 DOI: 10.3389/fchem.2019.00659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022] Open
Abstract
Six different conjugates of perylene with 2'-deoxyuridine and with 2-amino-2'-deoxyadenosine were synthesized and applied for DNA-templated assembly in aqueous buffer solutions. They differ by the linkers ethynylene, phenylene, and phenylene-ethynylene between nucleoside and chromophore. The nucleosides were investigated as monomers in CHCl3 and dimethyl sulfoxide by optical spectroscopy. The properties of the four phenylene-linked conjugates are similar to that of perylene as reference because these linkers separate both aromatic parts. The ethynylene linker electronically couples the chromophore with the respective nucleoside and thus red shifts the absorbance. The DNA-templated assembly properties were elucidated by mixing the templates in aqueous buffer with the perylene-nucleoside conjugates from a dimethyl sulfoxide stock solution. Specific binding of the nucleosides was probed by comparing the results with dA20 and T20 as single-stranded DNA templates. Our studies reveal the structural parameters that are important for the DNA-templated assembly of perylenes. First, perylene-2'-deoxyuridine conjugates do not form DNA-templated helical assemblies, regardless of the choice of linker. Second, the ethynylene linker is crucial for successful DNA-templated chromophore assemblies of perylene-2-amino-2'-deoxyadenosine conjugates. Third, in contrast, the phenylene linker inhibits self-assembly along single-stranded DNA templates. In conclusion, the 2-amino-2'-deoxyadenosin in combination with the ethynylene linker provides the best structural feature for specific and helical DNA-templated assembly of perylenes. This result is important for the design of future DNA-based supramolecular architectures with chromophores, in particular DNA-based light-harvesting systems and DNA systems for emitting or sensing circularly polarized luminescence.
Collapse
Affiliation(s)
- Yannic Fritz
- Karlsruhe Institute of Technology, Institute of Organic Chemistry, Karlsruhe, Germany
| | | |
Collapse
|
24
|
Nakamura M, Takada T, Yamana K. Controlling Pyrene Association in DNA Duplexes by B‐ to Z‐DNA Transitions. Chembiochem 2019; 20:2949-2954. [DOI: 10.1002/cbic.201900350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Tadao Takada
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| | - Kazushige Yamana
- Department of Applied ChemistryUniversity of Hyogo 2167 Shosha Himeji Hyogo 671–2280 Japan
| |
Collapse
|
25
|
Pathak P, Yao W, Hook KD, Vik R, Winnerdy FR, Brown JQ, Gibb BC, Pursell ZF, Phan AT, Jayawickramarajah J. Bright G-Quadruplex Nanostructures Functionalized with Porphyrin Lanterns. J Am Chem Soc 2019; 141:12582-12591. [PMID: 31322869 DOI: 10.1021/jacs.9b03250] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The intricate arrangement of numerous and closely placed chromophores on nanoscale scaffolds can lead to key photonic applications ranging from optical waveguides and antennas to signal-enhanced fluorescent sensors. In this regard, the self-assembly of dye-appended DNA sequences into programmed photonic architectures is promising. However, the dense packing of dyes can result in not only compromised DNA assembly (leading to ill-defined structures and precipitates) but also to essentially nonfluorescent systems (due to π-π aggregation). Here, we introduce a two-step "tether and mask" strategy wherein large porphyrin dyes are first attached to short G-quadruplex-forming sequences and then reacted with per-O-methylated β-cyclodextrin (PMβCD) caps, to form supramolecular synthons featuring the porphyrin fluor fixed into a masked porphyrin lantern (PL) state, due to intramolecular host-guest interactions in water. The PL-DNA sequences can then be self-assembled into cyclic architectures or unprecedented G-wires tethered with hundreds of porphyrin dyes. Importantly, despite the closely arrayed PL units (∼2 nm), the dyes behave as bright chromophores (up to 180-fold brighter than the analogues lacking the PMβCD masks). Since other self-assembling scaffolds, dyes, and host molecules can be used in this modular approach, this work lays out a general strategy for the bottom-up aqueous self-assembly of bright nanomaterials containing densely packed dyes.
Collapse
Affiliation(s)
- Pravin Pathak
- Department of Chemistry , Tulane University , 2015 Percival Stern Hall , New Orleans , Louisiana 70118 , United States
| | - Wei Yao
- Department of Chemistry , Tulane University , 2015 Percival Stern Hall , New Orleans , Louisiana 70118 , United States
| | - Katherine Delaney Hook
- Department of Biochemistry and Molecular Biology , Tulane University , New Orleans , Louisiana 70112 , United States
| | - Ryan Vik
- Department of Chemistry , Tulane University , 2015 Percival Stern Hall , New Orleans , Louisiana 70118 , United States
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Jonathon Quincy Brown
- Department of Biomedical Engineering , Tulane University , New Orleans , Louisiana 70118 , United States
| | - Bruce C Gibb
- Department of Chemistry , Tulane University , 2015 Percival Stern Hall , New Orleans , Louisiana 70118 , United States
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology , Tulane University , New Orleans , Louisiana 70112 , United States
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Janarthanan Jayawickramarajah
- Department of Chemistry , Tulane University , 2015 Percival Stern Hall , New Orleans , Louisiana 70118 , United States
| |
Collapse
|
26
|
Wu F, Wu X, Duan Z, Huang Y, Lou X, Xia F. Biomacromolecule-Functionalized AIEgens for Advanced Biomedical Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804839. [PMID: 30740889 DOI: 10.1002/smll.201804839] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The advances in bioinformatics and biomedicine have promoted the development of biomedical imaging and theranostic systems to respectively extend the endogenous biomarker imaging with high contrast and enhance the therapeutic effect with high efficiency. The emergence of biomacromolecule-functionalized aggregation-induced emitters (AIEgens), utilizing AIEgens, and biomacromolecules (nucleic acids, peptides, glycans, and lipids), displays specific targeting ability to cancer cell, improved biocompatibility, reduced toxicity, enhanced therapeutic effect, and so forth. This review summarizes the rational design of biomacromolecule-functionalized AIEgens and their biomedical applications in recent ten years, including high-resolution optical imaging of cell, tissue, and small animal model with low background; the biomarker detection for early diagnosis and prognosis; the delivery and monitoring of prodrugs; image-guide photodynamic therapy and its combination with chemotherapy. Through illustrating their functional mechanisms and application, it is hoped that this review would open up a completely new train of research thought for attracted researchers in various fields.
Collapse
Affiliation(s)
- Feng Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xia Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhijuan Duan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
27
|
Adeel M, Zhao B, Xu S, Zheng S. Fluorescence Enhancement Induced by Curing Reaction in Nanostructured Epoxy Thermosets Containing a Diblock Copolymer. J Phys Chem B 2019; 123:6282-6289. [PMID: 31313587 DOI: 10.1021/acs.jpcb.9b00925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, a novel curing-induced fluorescence (FL) enhancement phenomenon in the nanostructuring process of epoxy thermosets was investigated. Toward this end, a diblock copolymer composed of poly(ethylene oxide) and poly(((4-vinylphenyl)ethene-1,1,2-triyl)tribenzene) (PTPEE) blocks was introduced into epoxy thermosets. Before curing reaction, the mixtures of epoxy precursors with the diblock copolymer only emitted feeble FL under ultra-visible (UV) irradiation. However, photoluminescence was significantly enhanced after the curing reaction was carried out. It was found that the novel FL enhancement phenomenon resulted from the aggregation-induced emission behavior of PTPEE blocks, which was triggered by curing reaction. In the nanostructured thermosets, the fluorophore blocks (viz. PTPEE) of this diblock copolymer were segregated into aggregates, that is, a reaction-induced microphase separation occurred. Owing to the generation of PTPEE microdomains, the epoxy nanocomposites significantly displayed the enhanced dielectric constants due to the promoted contribution from electron polarizations via π-π conjugation in the materials.
Collapse
Affiliation(s)
- Muhammad Adeel
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Bingjie Zhao
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Sen Xu
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Sixun Zheng
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
28
|
Nakamura M, Matsui Y, Takada T, Yamana K. Chromophore Arrays Constructed in the Major Groove of DNA Duplexes Using a Post-Synthetic Strategy. ChemistrySelect 2019. [DOI: 10.1002/slct.201803464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mitsunobu Nakamura
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Yuki Matsui
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Tadao Takada
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| | - Kazushige Yamana
- Department of Applied Chemistry; University of Hyogo; 2167 Shosha, Himeji Hyogo 671-2280 Japan
| |
Collapse
|
29
|
Wang X, Xu M, Huang K, Lou X, Xia F. AIEgens/Nucleic Acid Nanostructures for Bioanalytical Applications. Chem Asian J 2019; 14:689-699. [PMID: 30489015 DOI: 10.1002/asia.201801595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/29/2018] [Indexed: 12/27/2022]
Abstract
DNA occupies significant roles in life processes, which include encoding the sequences of proteins and accurately transferring genetic information from generation to generation. Recent discoveries have demonstrated that a variety of biological functions are correlated with DNA's conformational transitions. The non-B form has attained great attention among the diverse forms of DNA over the past several years. The main reason for this is that a large number of studies have shown that the non-B form of DNA is associated with gross deletions, inversions, duplications, translocations as well as simple repeating sequences, which therefore causes human diseases. Consequently, the conformational transition of DNA between the B-form and the non-B form is important for biology. Conventional fluorescence probes based on the conformational transitions of DNA usually need a fluorophore and a quencher group, which suffers from the complex design of the structure and tedious synthetic procedures. Moreover, conventional fluorescence probes are subject to the aggregation-caused quenching (ACQ) effect, which limits their application toward imaging and analyte detection. Fluorogens exhibiting aggregation-induced emission (AIE) have attracted tremendous attention over the past decade. By taking advantage of this unique behavior, plenty of fluorescent switch-on probes without the incorporation of fluorescent quenchers/fluorophore pairs have been widely developed as biosensors for imaging a variety of analytes. Herein, the recent progress in bioanalytical applications on the basis of aggregation-induced emission luminogens (AIEgens)/nucleic acid nanostructures are presented and discussed.
Collapse
Affiliation(s)
- Xudong Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Xu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
30
|
Yokoyama S, Nishiwaki N. Fluorescence Behavior of Bis(cyanostyryl)pyrrole Derivatives Depending on the Substituent Position of Cyano Groups in Solution and in Solid State. J Org Chem 2019; 84:1192-1200. [PMID: 30567431 DOI: 10.1021/acs.joc.8b02517] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We synthesized a novel fluorophore of distyrylpyrrole derivatives possessing cyano groups at different positions on olefin. Their fluorescence properties in solution and solid state were investigated by photoluminescence quantum yield and lifetime measurements, which provided a radiative decay constant ( kf) and nonradiative decay constant ( knr). The derivative with cyano groups at the inner position of the molecule, inner isomer, shows a high fluorescence quantum yield (Φf = 0.43) in solution, while another derivative with a cyano group at the outer position, outer isomer, hardly shows fluorescence (Φf < 0.01) due to the large nonradiative decay ( knr > 10 ns-1). Upon formation of a single crystal or nanoparticles, these difference were inverted; the quantum yield of the outer and inner isomer was enhanced and diminished, respectively. We explained these differences between in solution and solid state by means of analysis of a single X-ray structure and computation study.
Collapse
Affiliation(s)
- Soichi Yokoyama
- School of Environmental Science and Engineering, and Research Center for Material Science and Engineering , Kochi University of Technology , Tosayamada, Kami , Kochi 782-8502 , Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, and Research Center for Material Science and Engineering , Kochi University of Technology , Tosayamada, Kami , Kochi 782-8502 , Japan
| |
Collapse
|
31
|
Zhu C, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS APPLIED BIO MATERIALS 2018; 1:1768-1786. [DOI: 10.1021/acsabm.8b00600] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chunlei Zhu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ryan T. K. Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering and Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Centre for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|
32
|
Krishnan N, Golla M, Thelu HVP, Albert SK, Atchimnaidu S, Perumal D, Varghese R. Self-assembly of DNA-tetraphenylethylene amphiphiles into DNA-grafted nanosheets as a support for the immobilization of gold nanoparticles: a recyclable catalyst with enhanced activity. NANOSCALE 2018; 10:17174-17181. [PMID: 30187067 DOI: 10.1039/c8nr03746a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Preventing the aggregation of NPs and their recovery are the two major hurdles in NP based catalysis. Immobilization of NPs on a support has proven to be a promising strategy to overcome these difficulties. Herein we report the design of high aspect ratio two-dimensional (2D) crystalline DNA nanosheets formed from the amphiphilicity-driven self-assembly of DNA-tetraphenylethylene amphiphiles and also demonstrate the potential of DNA nanosheets for the immobilization of catalytically active NPs. The most remarkable feature of this approach is the high loading of NPs in a non-aggregated manner, and hence exhibiting enhanced catalytic activity. Recycling of NP loaded nanosheets for several cycles without reduction in catalytic efficiency by simple ultrafiltration is also demonstrated.
Collapse
Affiliation(s)
- Nithiyanandan Krishnan
- School of Chemistry, Indian Institute of Science Education and Research-Thiruvananthapuram (IISER-TVM), Vithura, Trivandrum-695551, India.
| | | | | | | | | | | | | |
Collapse
|
33
|
Chen JY, Komeily-Nia Z, Fan LP, Li ZY, Yuan B, Tang B, Li JL. Manipulating the fractal fiber network of a molecular gel with surfactants. J Colloid Interface Sci 2018; 526:356-365. [DOI: 10.1016/j.jcis.2018.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023]
|
34
|
AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing. Biosens Bioelectron 2018; 111:124-130. [DOI: 10.1016/j.bios.2018.04.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 01/30/2023]
|
35
|
Pont I, González-García J, Inclán M, Reynolds M, Delgado-Pinar E, Albelda MT, Vilar R, García-España E. Aza-Macrocyclic Triphenylamine Ligands for G-Quadruplex Recognition. Chemistry 2018; 24:10850-10858. [DOI: 10.1002/chem.201802077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/14/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Isabel Pont
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
- Department of Chemistry; Imperial College London; London SW7 2AZ UK
| | - Jorge González-García
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
- Department of Chemistry; Imperial College London; London SW7 2AZ UK
| | - Mario Inclán
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
| | - Matthew Reynolds
- Department of Chemistry; Imperial College London; London SW7 2AZ UK
| | - Estefanía Delgado-Pinar
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
| | - M. Teresa Albelda
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
- GIBI2030, Grupo de Investigación Biomédica en Imagen, IIS La Fe; Valencia Spain
| | - Ramon Vilar
- Department of Chemistry; Imperial College London; London SW7 2AZ UK
| | - Enrique García-España
- Department of Inorganic Chemistry, Institute of Molecular Science; University of Valencia; Catedrático José Beltran 2 46980 Paterna Spain
| |
Collapse
|
36
|
Cannon BL, Patten LK, Kellis DL, Davis PH, Lee J, Graugnard E, Yurke B, Knowlton WB. Large Davydov Splitting and Strong Fluorescence Suppression: An Investigation of Exciton Delocalization in DNA-Templated Holliday Junction Dye Aggregates. J Phys Chem A 2018; 122:2086-2095. [PMID: 29420037 DOI: 10.1021/acs.jpca.7b12668] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exciton delocalization in dye aggregate systems is a phenomenon that is revealed by spectral features, such as Davydov splitting, J- and H-aggregate behavior, and fluorescence suppression. Using DNA as an architectural template to assemble dye aggregates enables specific control of the aggregate size and dye type, proximal and precise positioning of the dyes within the aggregates, and a method for constructing large, modular two- and three-dimensional arrays. Here, we report on dye aggregates, organized via an immobile Holliday junction DNA template, that exhibit large Davydov splitting of the absorbance spectrum (125 nm, 397.5 meV), J- and H-aggregate behavior, and near-complete suppression of the fluorescence emission (∼97.6% suppression). Because of the unique optical properties of the aggregates, we have demonstrated that our dye aggregate system is a viable candidate as a sensitive absorbance and fluorescence optical reporter. DNA-templated aggregates exhibiting exciton delocalization may find application in optical detection and imaging, light-harvesting, photovoltaics, optical information processing, and quantum computing.
Collapse
Affiliation(s)
- Brittany L Cannon
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Lance K Patten
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Donald L Kellis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| |
Collapse
|
37
|
Adeel M, Xu S, Zhao B, Li L, Zheng S. Photoluminescent polymeric micelles from poly(ethylene oxide)-block-poly(((4-vinylphenyl)ethene-1,1,2-triyl)tribenzene) diblock copolymers. NEW J CHEM 2018. [DOI: 10.1039/c8nj00366a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of poly(ethylene oxide)-block-poly(((4-vinylphenyl)ethene-1,1,2-triyl)tribenzene) diblock copolymers via RAFT polymerization. The diblock copolymers were capable of self-assembling into photoluminescent micelles in aqueous media.
Collapse
Affiliation(s)
- Muhammad Adeel
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Sen Xu
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Bingjie Zhao
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Lei Li
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
38
|
Tarai A, Baruah JB. Different self-assemblies and absorption–emission properties of the picrate salts of aromatic amine or heterocycle linked oximes. NEW J CHEM 2018. [DOI: 10.1039/c7nj04349j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different sub-assemblies and fluorescence quenching in picrate salts of an aromatic amine and of three different heterocycle tethered aldoximes are described.
Collapse
Affiliation(s)
- Arup Tarai
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781 039
- India
| | - Jubaraj B. Baruah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781 039
- India
| |
Collapse
|
39
|
Appukutti N, Serpell CJ. High definition polyphosphoesters: between nucleic acids and plastics. Polym Chem 2018. [DOI: 10.1039/c8py00251g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nucleic acids and synthetic polyphosphoester materials have been distinct fields – this review shows how these areas now comprise a continuum.
Collapse
|
40
|
Li P, Chen Z, Huang Y, Li J, Xiao F, Zhai S, Wang Z, Zhang X, Tian L. A pH responsive fluorescent probe based on dye modified i-motif nucleic acids. Org Biomol Chem 2018; 16:9402-9408. [DOI: 10.1039/c8ob02885k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA-AIEgen hybrids show pH-responsive AIE effects induced by the conformational changes of DNA upon pH variation.
Collapse
Affiliation(s)
- Pan Li
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Zhe Chen
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
- Faculty of Health Sciences
| | - Yishun Huang
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Jing Li
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Fan Xiao
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Shiyao Zhai
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Zhiming Wang
- HKUST-Shenzhen Research Institute
- The Hong Kong University of Science & Technology (HKUST)
- Shenzhen 518057
- China
| | - Xuanjun Zhang
- Faculty of Health Sciences
- University of Macau
- Macau
- China
| | - Leilei Tian
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
41
|
Wang Z, Gu Y, Liu J, Cheng X, Sun JZ, Qin A, Tang BZ. A novel pyridinium modified tetraphenylethene: AIE-activity, mechanochromism, DNA detection and mitochondrial imaging. J Mater Chem B 2018; 6:1279-1285. [DOI: 10.1039/c7tb03012f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A cationic AIE-gen demonstrates multiple functions including mechanoluminochromic and solvatochromic effects, fluorescence turn-on responses to DNA-binding and mitochondria-specific living cell imaging.
Collapse
Affiliation(s)
- Zhaoyang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yuan Gu
- Department of Chemistry
- Institute for Advanced Study
- Institute of Molecular Functional Materials, and State Key Laboratory of Molecular Neuroscience
- The Hong Kong University of Science and Technology
- Clear Water Bay
| | - Junyuan Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiao Cheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Anjun Qin
- Guangdong Innovative Research Team
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
42
|
Gu X, Kwok RT, Lam JW, Tang BZ. AIEgens for biological process monitoring and disease theranostics. Biomaterials 2017; 146:115-135. [DOI: 10.1016/j.biomaterials.2017.09.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 02/06/2023]
|
43
|
Kamsaeng P, Tassanakajon A, Somboonwiwat K. Regulation of antilipopolysaccharide factors, ALFPm3 and ALFPm6, in Penaeus monodon. Sci Rep 2017; 7:12694. [PMID: 28978934 PMCID: PMC5627258 DOI: 10.1038/s41598-017-12137-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/01/2017] [Indexed: 12/28/2022] Open
Abstract
ALFPm6, a member of antimicrobial peptide in the antilipopolysaccharide factor (ALF) family from Penaeus monodon, plays important roles in shrimp immunity against pathogens. However, its antimicrobial activity and underlying mechanism have not been reported. The synthetic cyclic ALFPm6#29–52 peptide (cALFPm6#29–52) corresponding to the ALFPm6 LPS-binding domain can agglutinate and exhibited bacterial killing activity toward a Gram-negative bacterium, Escherichia coli 363 and Gram-positive bacteria, Bacillus megaterium, Aerococcus viridans, and Micrococcus luteus, with MIC values of 25–50 μM. Specifically, ALFPm6 and ALFPm3, the most abundant ALF isoforms, are different in terms of gene expression patterns upon pathogen infections. Herein, the regulation of ALFPm3 and ALFPm6 gene expression was studied. The 5′-upstream and promoter sequences were identified and the putative transcription factor (TF)-binding sites were predicted. The narrow down assay indicated that the ALFPm3 promoter and partial promoter of the ALFPm6 active regions were located at nucleotide positions (−814/+302) and (−282/+85), respectively. Mutagenesis of selected TF-binding sites revealed that Rel/NF-κB (−280/−270) of ALFPm3 and C/EBPβ (−88/−78) and Sp1 (−249/−238) sites of ALFPm6 were the activator-binding sites. Knockdown of the PmMyD88 and PmRelish genes in V. harveyi-infected shrimp suggested that the ALFPm3 gene was regulated by Toll and IMD pathways, while the ALFPm6 gene was regulated by the Toll pathway.
Collapse
Affiliation(s)
- Pitchayanan Kamsaeng
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand
| | - Kunlaya Somboonwiwat
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phayathai Rd., Bangkok, 10330, Thailand.
| |
Collapse
|
44
|
Li Q, Li Z. The Strong Light-Emission Materials in the Aggregated State: What Happens from a Single Molecule to the Collective Group. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600484. [PMID: 28725526 PMCID: PMC5515118 DOI: 10.1002/advs.201600484] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/13/2017] [Indexed: 05/22/2023]
Abstract
The strong light emission of organic luminogens in the aggregated state is essential to their applications as optoelectronic materials with good performance. In this review, with respect to the aggregation-induced emission and room-temperature phosphorescence luminogens, the important role of molecular packing modes is highlighted. As demonstrated in the selected examples, the molecular packing status in the aggregate state is affected by many factors, including the molecular configurations, the inherent electronic properties, the special functional groups, and so on. With the consideration of all these parameters, the strong fluorescence and phosphorescence in the aggregated state could be achieved in the rationally designed organic luminogens, providing some guidance for the further development.
Collapse
Affiliation(s)
- Qianqian Li
- Department of ChemistryHubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsWuhan UniversityWuhan430072China
| | - Zhen Li
- Department of ChemistryHubei Key Lab on Organic and Polymeric Opto‐Electronic MaterialsWuhan UniversityWuhan430072China
| |
Collapse
|
45
|
Tyagi A, Chu KL, Abidi IH, Cagang AA, Zhang Q, Leung NLC, Zhao E, Tang BZ, Luo Z. Single-probe multistate detection of DNA via aggregation-induced emission on a graphene oxide platform. Acta Biomater 2017; 50:334-343. [PMID: 27940196 DOI: 10.1016/j.actbio.2016.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 01/27/2023]
Abstract
Graphene and graphene oxides (GO), or their reduced forms, have been introduced in a variety of biosensing platforms and have exhibited enhanced performance levels in these forms. We herein report a DNA sensing platform consisting of aggregation-induced emission (AIE) molecules and complementary DNA (comDNA) adsorbed on GO. We experimentally turned the AIE molecule on and off by adjusting its distance, which correlates with DNA structures as shown in our computational results, from the GO sheet, which quenches depending on its distance from the graphene plane. The changes in florescence are reproducible, which demonstrates the probe's ability to identify the binding state of the DNA. Our molecular dynamics simulation results reveal strong π-π interactions between single-strand DNA (ssDNA) and GO, which enable the ssDNA molecule to move closer to the graphene oxide. This reduces the center of mass and binding free energies in the simulation. When hybridized with comDNA, the increased distance, evidenced by the reduced interaction, eliminates the quenching effect and turns on the AIE molecule. Our protocol use of the AIE molecule as a probe thus avoids the complicated steps involved in covalent functionalization and allows the rapid and label-free detection of DNA molecules. STATEMENT OF SIGNIFICANCE A simple, rapid method of fluorescent measurement of DNA hybridization in the presence of graphene (oxide) is presented. Conventional fluorescent dyes offer high performance in biosensors. However, labeling procedures are synthetically demanding in time and resources making it less cost-effective. Molecules with aggregation-induced-emission (AIE) property have advantages over traditional fluorescent molecules because of their intrinsic preference for detection as a turn-on probe and their single-molecule detection ability. Previous work has shown AIE dyes act as excellent "label-free" bioprobes with high sensitivity but with limited selectivity. Graphene oxide (GO) with its unique optical properties and affinity to different kinds of biomolecules can be used as an auxiliary to enhance selectivity of AIE dyes. In this work, we report a label-free strategy to detect DNA of particular sequence by water-soluble AIE probes with the aid of GO, supported by the computational explanations for this phenomenon.
Collapse
Affiliation(s)
- Abhishek Tyagi
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kin Leung Chu
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Irfan Haider Abidi
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Aldrine Abenoja Cagang
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Qicheng Zhang
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Nelson L C Leung
- Department of Chemistry and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Engui Zhao
- Department of Chemistry and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ben Zhong Tang
- Department of Chemistry and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhengtang Luo
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
46
|
Anuradha, La DD, Al Kobaisi M, Gupta A, Bhosale SV. Chiral Assembly of AIE-Active Achiral Molecules: An Odd Effect in Self-Assembly. Chemistry 2017; 23:3950-3956. [DOI: 10.1002/chem.201605458] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Anuradha
- School of Science; RMIT University, GPO Box 2476; Melbourne VIC 3001 Australia
| | - Duong Duc La
- School of Science; RMIT University, GPO Box 2476; Melbourne VIC 3001 Australia
| | - Mohammad Al Kobaisi
- School of Science; RMIT University, GPO Box 2476; Melbourne VIC 3001 Australia
| | - Akhil Gupta
- School of Science; RMIT University, GPO Box 2476; Melbourne VIC 3001 Australia
| | | |
Collapse
|
47
|
Han H, Jin Q, Wang H, Teng W, Wu J, Tong H, Chen T, Ji J. Intracellular Dual Fluorescent Lightup Bioprobes for Image-Guided Photodynamic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3870-3878. [PMID: 27322139 DOI: 10.1002/smll.201600950] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/08/2016] [Indexed: 06/06/2023]
Abstract
An intracellular dual fluorescent light-up bioprobe with aggregation-induced emission features and endogenously producing photosensitizer protoporphyrin IX (PpIX) abilities is designed and synthesized. The bioprobe is nonemissive in physiological environment. However, the bioprobe can selectively light up cancer cells with blue fluorescence of tetraphenylene (TPE) and red fluorescence of PpIX, owing to the release of TPE and methyl aminolevulinate after targeted internalization by cancer cells. Moreover, upon endogenous generation and accumulation of PpIX in cancer cells, efficient photodynamic ablation of cancer cells after light irradiation is demonstrated with easy regulation for optimal therapeutic efficacy. The design of such dual fluorescent light-up bioprobes might provide a new opportunity for targeted and image-guided photodynamic cancer therapy.
Collapse
Affiliation(s)
- Haijie Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haibo Wang
- Textile Institute, College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenzhuo Teng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jina Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hongxin Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tingting Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
48
|
Kumar Verma R, Takei F, Nakatani K. Synthesis and Photophysical Properties of Fluorescence Molecular Probe for Turn-ON-Type Detection of Cytosine Bulge DNA. Org Lett 2016; 18:3170-3. [DOI: 10.1021/acs.orglett.6b01378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rajiv Kumar Verma
- Department
of Regulatory Bioorganic Chemistry, The Institute of Scientific and
Industrial Research, Osaka University, Mihogaoka, 8-1,
Ibaraki, Osaka 567-0047, Japan
| | - Fumie Takei
- National Defense Medical College, Namiki, 3-2, Tokorozawa, Saitama 359-8513, Japan
| | - Kazuhiko Nakatani
- Department
of Regulatory Bioorganic Chemistry, The Institute of Scientific and
Industrial Research, Osaka University, Mihogaoka, 8-1,
Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
49
|
Zhou H, Li J, Chua MH, Yan H, Ye Q, Song J, Lin TT, Tang BZ, Xu J. Tetraphenylethene (TPE) modified polyhedral oligomeric silsesquioxanes (POSS): unadulterated monomer emission, aggregation-induced emission and nanostructural self-assembly modulated by the flexible spacer between POSS and TPE. Chem Commun (Camb) 2016; 52:12478-12481. [DOI: 10.1039/c6cc07216j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mono-TPE modified POSS molecules exhibit monomer and AIE emission under different conditions.
Collapse
Affiliation(s)
- Hui Zhou
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
- Innovis, #08-03
- Singapore 138634
| | - Jiesheng Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
- Innovis, #08-03
- Singapore 138634
| | - Ming Hui Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
- Innovis, #08-03
- Singapore 138634
| | - Hong Yan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
- Innovis, #08-03
- Singapore 138634
| | - Qun Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
- Innovis, #08-03
- Singapore 138634
| | - Jing Song
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
- Innovis, #08-03
- Singapore 138634
| | - Ting Ting Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
- Innovis, #08-03
- Singapore 138634
| | - Ben Zhong Tang
- Department of Chemistry
- The Hong Kong University of Science & Technology
- Kowloon
- China
| | - Jianwei Xu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
- Innovis, #08-03
- Singapore 138634
- Department of Chemistry
- National University of Singapore
| |
Collapse
|
50
|
Han X, Chen Q, Lu H, Ma J, Gao H. Probe Intracellular Trafficking of a Polymeric DNA Delivery Vehicle by Functionalization with an Aggregation-Induced Emissive Tetraphenylethene Derivative. ACS APPLIED MATERIALS & INTERFACES 2015; 7:28494-28501. [PMID: 26634294 DOI: 10.1021/acsami.5b09639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Characteristic aggregation-induced quenching of π-fluorophores imposed substantial hindrance to their utilization in nanomedicine for insight into microscopic intracellular trafficking of therapeutic payload. To address this obstacle, we attempted to introduce a novel aggregation-induced emission (AIE) fluorophore into the cationic polymer, which was further used for formulation of a gene delivery carrier. Note that the selective restriction of the intramolecular rotation of the AIE fluorophore through its covalent bond to the polymer conduced to immense AIE. Furthermore, DNA payload labeled with the appropriate fluorophore as the Förster resonance energy transfer (FRET) acceptor verified a facile strategy to trace intracellular DNA releasing activity relying on the distance limitation requested by FRET (AIE fluorophore as FRET donor). Moreover, the hydrophobic nature of the AIE fluorophore appeared to promote colloidal stability of the constructed formulation. Together with other chemistry functionalization strategies (including endosome escape), the ultimate formulation exerted dramatic gene transfection efficiency. Hence, this report manifested a first nanomedicine platform combining AIE and FRET for microscopic insight into DNA intracellular trafficking activity.
Collapse
Affiliation(s)
- Xiongqi Han
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 300384 Tianjin, China
| | - Qixian Chen
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Hongguang Lu
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 300384 Tianjin, China
| | - Jianbiao Ma
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 300384 Tianjin, China
| | - Hui Gao
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology , 300384 Tianjin, China
| |
Collapse
|