1
|
Zhang G, Liu J, Liu C, Ding F, Li Y, Tang H, Ma M. Phosphate Group-Derivated Bipyridine-Ruthenium Complex and Titanium Dioxide Nanoparticles for Electrochemical Sensing of Protein Kinase Activity. ACS Sens 2021; 6:4451-4460. [PMID: 34870972 DOI: 10.1021/acssensors.1c01908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring of protein kinase activity is of significance for fundamentals of biochemistry, biomedical diagnose, and drug screening. To reduce the usage of a relatively complicated bio-labeled signal probe, the phosphate group-derivated bipyridine-ruthenium (Pbpy-Ru) complex and titanium dioxide nanoparticles (TiO2 NPs) were employed as signal probes to develop an electrochemical sensor for evaluating the protein kinase A (PKA) activity. Through the specific interaction between the phosphate groups and TiO2 NPs, the preparation of a Pbpy-Ru-TiO2 NP signal probe and its linkage with the phosphorylated PKA substrate peptides could be performed in a simple and effective way. The tethering of Pbpy-Ru onto the TiO2 NP surface does not degrade the electrochemical property of the complex. The Pbpy-Ru-TiO2 NP probe exhibits well-defined redox signals at about 1.0 V versus Ag/AgCl reference and notably has about fivefold current response than that of the TiO2 NPs with physically adsorbed tris-(bipyridine)-Ru. The PKA activity evaluation was realized by measuring the electrochemical response of the Pbpy-Ru-TiO2 NPs at the phosphorylated peptide-assembled electrode. Operating at optimal conditions, the cathodic signals at the potential of 1.03 V exhibit a good linearity with the PKA concentrations of 0.5-40 U mL-1. The electrochemical sensor shows good selectivity, low detection limit (0.2 U mL-1, signal/noise = 3), qualified reproducibility, and satisfactory applicability for PKA determination in the cell lysate. The Pbpy-Ru-TiO2 NPs/electrode system would be an excellent electrochemical platform for protein phosphorylation monitoring and sensing.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Jingwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Chengying Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Fan Ding
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Yingqian Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Hao Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China
| |
Collapse
|
2
|
Chang Y, Ma X, Sun T, Liu L, Hao Y. Electrochemical detection of kinase by converting homogeneous analysis into heterogeneous assay through avidin-biotin interaction. Talanta 2021; 234:122649. [PMID: 34364458 DOI: 10.1016/j.talanta.2021.122649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/27/2022]
Abstract
In the classical heterogeneous electrochemical assay, phosphorylation of peptide substrate is usually performed on the solid-liquid surface. However, immobilization of probe on the solid surface may limit the interaction between the reaction site of probe and the active center of kinase due to the steric hindrance effect. In this work, we proposed a heterogeneous electrochemical method for kinase detection, in which the probe is immobilization-free during the phosphorylation reaction. A biotinylated peptide was used as the kinase substrate. After phosphorylation, the biotinylated phosphopeptide was captured by the neutravidin (NA)-modified electrode through the avidin-biotin interaction. The phosphate groups on the electrode surface were then recognized by the conjugates preformed between biotinylated Phos-tag™ (Bio-tag-Phos) and ferrocene (Fc)-capped NA-modified gold nanoparticle (Fc-AuNP-NA). The method integrates the advantages of homogeneous reaction and heterogeneous detection with high simplicity, sensitivity and specificity. The strategy can be applied to design other heterogeneous biosensors without the immobilization of probe during the enzyme catalyzed reaction.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; School of Chemistry and Materials Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xiaohua Ma
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China
| | - Ting Sun
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People's Republic of China; College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China.
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, People's Republic of China.
| |
Collapse
|
3
|
Chen Y, Zhou Y, Yin H. Recent advances in biosensor for histone acetyltransferase detection. Biosens Bioelectron 2021; 175:112880. [DOI: 10.1016/j.bios.2020.112880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
|
4
|
Zhou Y, Yin H, Zhao WW, Ai S. Electrochemical, electrochemiluminescent and photoelectrochemical bioanalysis of epigenetic modifiers: A comprehensive review. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213519] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Chuan-Hua Zhou, Li X, Zi QJ, Wang J, Zhao WY, Cao QE. An Enzyme-Induced Metallization-Based Electrochemical Signal Amplification Strategy for Ultrahigh Sensitive Alkaline Phosphatase Detection at Attomolar Concentrations. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820060192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Jia LP, Zhao RN, Wang LJ, Ma RN, Zhang W, Shang L, Wang HS. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction. Biosens Bioelectron 2018; 117:690-695. [PMID: 30014942 DOI: 10.1016/j.bios.2018.06.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023]
Abstract
The present work reported a simple, lable-free and sensitive electrochemical method for the detection of protein kinase A (PKA) activity. This method was based on the specific recognition of aptamer and the aptamer-induced hybridization chain reaction (HCR) amplification strategy. The aptasensor was constructed by immobilizing capture probe on a gold electrode via an Au-S bond. When adenosine triphosphate (ATP) aptamer was introduced, its one terminus hybridized with capture probe and the other hybridized with the complementary region of an auxiliary probe, which other region triggered HCR between two hairpin DNA (H1 and H2) to form a long DNA concatamer. At last a large number of electroactive methyle blue (MB) molecules were assembled on the dsDNA concatamer, which generated a significantly amplified electrochemical signal. In the presence of ATP, the HCR would not be performed because the aptamer specifically bond to ATP and the electrochemical response would decrease. However, when ATP and PKA coexisted, the electrochemical response would recovery because that ATP had been translated into ADP by PKA. So the activity of PKA could be effectively monitored according to the change of electrochemical signal. Based on the HCR amplification strategy, the aptasensor showed a wide linear range (4 - 4 ×105 U L-1) and a low detection limit (1.5 U L-1) for the detection of PKA. Furthermore, the method was applied to study the inhibitory effect of H-89 on PKA activity. The developed aptasensor was also used to the analysis of drug-induced PKA activity in cell lysates, indicating the potential application of the developed method in the fields of clinical diagnostics and discovery of new targeted drugs.
Collapse
Affiliation(s)
- Li-Ping Jia
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruo-Nan Zhao
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li-Juan Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Rong-Na Ma
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Wei Zhang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Lei Shang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Huai-Sheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
7
|
Wang M, Lin Z, Liu Q, Jiang S, Liu H, Su X. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection. Anal Chim Acta 2018; 1012:66-73. [DOI: 10.1016/j.aca.2018.01.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/10/2018] [Accepted: 01/15/2018] [Indexed: 02/08/2023]
|
8
|
Sun K, Chang Y, Zhou B, Wang X, Liu L. Gold nanoparticles-based electrochemical method for the detection of protein kinase with a peptide-like inhibitor as the bioreceptor. Int J Nanomedicine 2017; 12:1905-1915. [PMID: 28331314 PMCID: PMC5352234 DOI: 10.2147/ijn.s127957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This article presents a general method for the detection of protein kinase with a peptide-like kinase inhibitor as the bioreceptor, and it was done by converting gold nanoparticles (AuNPs)-based colorimetric assay into sensitive electrochemical analysis. In the colorimetric assay, the kinase-specific aptameric peptide triggered the aggregation of AuNPs in solution. However, the specific binding of peptide to the target protein (kinase) inhibited its ability to trigger the assembly of AuNPs. In the electrochemical analysis, peptides immobilized on a gold electrode and presented as solution triggered together the in situ formation of AuNPs-based network architecture on the electrode surface. Nevertheless, the formation of peptide-kinase complex on the electrode surface made the peptide-triggered AuNPs assembly difficult. Electrochemical impedance spectroscopy was used to measure the change in surface property in the binding events. When a ferrocene-labeled peptide (Fc-peptide) was used in this design, the network of AuNPs/Fc-peptide produced a good voltammetric signal. The competitive assay allowed for the detection of protein kinase A with a detection limit of 20 mU/mL. This work should be valuable for designing novel optical or electronic biosensors and likely lead to many detection applications.
Collapse
Affiliation(s)
- Kai Sun
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Yong Chang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Binbin Zhou
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Xiaojin Wang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, People’s Republic of China
| |
Collapse
|
9
|
Gao FF, Wang YB, Wang K, Xia XH. Competitive approach to the electrochemical detection of phosphopeptides on a porous ZrO2 thin film electrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
11
|
Dong M, Liu X, Dang Q, Qi H, Huang Y, Gao Q, Zhang C. Sensitive and versatile electrogenerated chemiluminescence biosensing platform for protein kinase based on Ru(bpy)32+ functionalized gold nanoparticles mediated signal transduction. Anal Chim Acta 2016; 906:72-79. [DOI: 10.1016/j.aca.2015.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023]
|
12
|
Electrochemical detection of amyloid-β oligomer with the signal amplification of alkaline phosphatase plus electrochemical–chemical–chemical redox cycling. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Song W, Liang RP, Wang Y, Zhang L, Qiu JD. Green synthesis of peptide-templated gold nanoclusters as novel fluorescence probes for detecting protein kinase activity. Chem Commun (Camb) 2015; 51:10006-9. [DOI: 10.1039/c5cc02280k] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A green method was employed for synthesizing peptide-templated nanoclusters without requiring strong reducing agents. Using synthetic peptide–gold nanoclusters as fluorescence probes, a novel assay for detecting protein kinase is developed.
Collapse
Affiliation(s)
- Wei Song
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Ru-Ping Liang
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Ying Wang
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Li Zhang
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Jian-Ding Qiu
- Department of Chemistry
- Nanchang University
- Nanchang 330031
- China
| |
Collapse
|
14
|
Zhang J, Zhao Y, Yuan CG, Ji LN, Yu XD, Wang FB, Wang K, Xia XH. Donnan potential caused by polyelectrolyte monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10127-10132. [PMID: 25083596 DOI: 10.1021/la502320m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The Donnan potential is successfully isolated from ion pair potential on a ferrocene-labeled polyelectrolyte (DNA) monolayer. The isolated Donnan potential shifts negatively upon the increase in NaClO4 concentration with a slope of -58.8 mV/decade. With the salt concentration grown up to 1 M, the stretched DNA chains in low salt concentration are found to experience a gradual conformation relaxing process. At salt concentrations higher than 2 M, Donnan breakdown occurs where only the ion pair effect modulates the apparent potential. The apparent formal potential also shows strong dependence on solution pH, which reveals that the charge density in the polyelectrolyte monolayer plays an important role in the establishment of Donnan equilibrium.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and ‡State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , 22 Hankou Road, Nanjing 210093, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang Z, Sun N, He Y, Liu Y, Li J. DNA assembled gold nanoparticles polymeric network blocks modular highly sensitive electrochemical biosensors for protein kinase activity analysis and inhibition. Anal Chem 2014; 86:6153-9. [PMID: 24814403 DOI: 10.1021/ac501375s] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A highly sensitive electrochemical biosensor was built for the detection of kinase activity based on the DNA induced gold nanoparticles (AuNPs) polymeric network block signal amplification. In this strategy, the DNA1 conjugated AuNPs were integrated with the phosphorylated peptide by Zr(4+) and assembled into DNA-AuNPs polymeric network block by the hybridization of cDNA with each side sequences of DNA1 and joint DNA2. The kinase activity was determined by the amperometric responses of [Ru(NH3)6](3+) absorbed on the network block by electrostatic interaction. Due to its excellent electroactivity and high accommodation of the DNA-AuNPs polymeric network block for [Ru(NH3)6](3+), the current signal was significantly amplified, affording a highly sensitive electrochemical analysis of kinase activity. The as-proposed biosensor presents a low detection limit of 0.03 U mL(-1) for protein kinase A (PKA) activity, wide linear range (from 0.03 to 40 U mL(-1)), and excellent stability even in cell lysates and serum samples. This biosensor can also be applied for quantitative kinase inhibitor screening. Finally, the PKA activities from BE4S-2B, A549, and MCF-7 cell lysates were further analyzed, which provided a valuable strategy in developing a high-throughput assay of in vitro kinase activity and inhibitor screening for clinic diagnostics and therapeutics.
Collapse
Affiliation(s)
- Zonghua Wang
- Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University , Qingdao, Shandong 266071, China
| | | | | | | | | |
Collapse
|