1
|
Nsanzamahoro S, Nan F, Shen L, Iradukunda Y, Li B, Yu WW. Designing a Hypoxia-Activated Sensing Platform Using an Azo Group-Triggered Reaction with the Formation of Silicon Nanoparticles. Anal Chem 2024; 96:11977-11984. [PMID: 38975827 DOI: 10.1021/acs.analchem.4c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Hypoxia is known as a specific signal of various diseases, such as liver fibrosis. We designed a hypoxia-sensitive fluorometric approach that cleaved the azo bond (N═N) in the presence of hypoxia-controlled agents (sodium dithionite and azoreductase). 4-(2-Pyridylazo) resorcinol (Py-N═N-RC) bears a desirable hypoxia-responsive linker (N═N), and its azo bond breakup can only occur in the presence of sodium dithionite and azoreductase and leads to the release of 2,4-dihydroxyaniline, which can react with 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane to generate yellow fluorescent silicon nanoparticles. This approach exhibited high selectivity and sensitivity toward both sodium dithionite and azoreductase over other potential interferences. The mouse liver microsome, which is known to contain azoreductase, was applied and confirmed the feasibility of the designed platform. Py-N═N-RC is expected to be a practical substrate for hypoxia-related biological analyses. Furthermore, silicon nanoparticles were successfully applied for Hela cell imaging owing to their negligible cytotoxicity and superb biocompatibility.
Collapse
Affiliation(s)
- Stanislas Nsanzamahoro
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| | - Fuchun Nan
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| | - Lanbo Shen
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, China
| | - Yves Iradukunda
- Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bin Li
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan 250100, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Chen MM, Tang X, Li JJ, Chen FY, Jiang ZT, Fu R, Li HB, Hu XY, Geng WC, Guo DS. Active targeting tumor therapy using host-guest drug delivery system based on biotin functionalized azocalix[4]arene. J Control Release 2024; 368:691-702. [PMID: 38492860 DOI: 10.1016/j.jconrel.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Xingchen Tang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Ze-Tao Jiang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Rong Fu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Hua-Bin Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China.
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
3
|
Michel L, Auvray M, Askenatzis L, Badet-Denisot MA, Bignon J, Durand P, Mahuteau-Betzer F, Chevalier A. Visualization of an Endogenous Mitochondrial Azoreductase Activity under Normoxic Conditions Using a Naphthalimide Azo-Based Fluorogenic Probe. Anal Chem 2024; 96:1774-1780. [PMID: 38230524 DOI: 10.1021/acs.analchem.3c05030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this paper, we demonstrate the existence of an endogenous mitochondrial azoreductase (AzoR) activity that can induce the cleavage of N═N double bonds of azobenzene compounds under normoxic conditions. To this end, 100% OFF-ON azo-based fluorogenic probes derived from 4-amino-1,8-naphthalimide fluorophores were synthesized and evaluated. The in vitro study conducted with other endogenous reducing agents of the cell, including reductases, demonstrated both the efficacy and the selectivity of the probe for AzoR. Confocal experiments with the probe revealed an AzoR activity in the mitochondria of living cells under normal oxygenation conditions, and we were able to demonstrate that this endogenous AzoR activity appears to be expressed at different levels across different cell lines. This discovery provides crucial information for our understanding of the biochemical processes occurring within the mitochondria. It thus contributes to a better understanding of its function, which is implicated in numerous pathologies.
Collapse
Affiliation(s)
- Laurane Michel
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marie Auvray
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer Institut Curie,Université PSL, 91400 Orsay, France
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay, 91400 Orsay, France
| | - Laurie Askenatzis
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Marie-Ange Badet-Denisot
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Jérôme Bignon
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Philippe Durand
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Florence Mahuteau-Betzer
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer Institut Curie,Université PSL, 91400 Orsay, France
- CNRS UMR 9187, Inserm U1196 Chemistry and Modeling for the Biology of Cancer, Université Paris-Saclay, 91400 Orsay, France
| | - Arnaud Chevalier
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, UPR 2301, 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Li JJ, Rong RX, Yang Y, Hu ZY, Hu B, Zhao YY, Li HB, Hu XY, Wang KR, Guo DS. Triple targeting host-guest drug delivery system based on lactose-modified azocalix[4]arene for tumor ablation. MATERIALS HORIZONS 2023; 10:1689-1696. [PMID: 36825769 DOI: 10.1039/d3mh00018d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Host-guest drug delivery systems (HGDDSs) have been studied in an effort to modify the characteristics of therapeutic agents through noncovalent interactions, reduce toxic side effects and improve therapeutic effects. However, it is still an important task to continuously improve the targeting ability of HGDDSs, which is conducive to the development of precision medicine. Herein, we utilize the lactose-modified azocalix[4]arene (LacAC4A) as a triple targeting drug carrier customized for antitumor purposes. LacAC4A integrates three targeting features, passive targeting through the enhancing permeability and retention effect, active targeting by the interactions of lactose and the asialoglycoprotein receptors on the surface of tumor cells, and stimuli-responsive targeting via the reduction of the azo group under a hypoxia microenvironment. After loading doxorubicin (DOX) in LacAC4A, the supramolecular nanoformulation DOX@LacAC4A clearly showed the effective suppression of tumor growth through in vivo experiments. LacAC4A can achieve effective targeting, rapid release, and improve drug bioavailability. This design principle will provide a new material for drug delivery systems.
Collapse
Affiliation(s)
- Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Rui-Xue Rong
- Department of Medical Microbiology and Immunology, School of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Yan Yang
- Department of Medical Microbiology and Immunology, School of Basic Medical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Medical Comprehensive Experimental Center, Hebei University, Baoding 071002, China
| | - Zong-Ying Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Bing Hu
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Ying-Ying Zhao
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Ke-Rang Wang
- College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China.
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Synthesis and Characterization of New Potential Hypoxia-Sensitive Azo-thiacalix[4]arenes Derivatives. MOLBANK 2023. [DOI: 10.3390/m1570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The subject of this article is new potential hypoxia-sensitive azo-thiacalix[4]arenes derivatives in the 1,3-alternate configuration. Previously, it was shown that azo derivatives of calix[4]arene in the cone conformation form complexes with rhodamine dyes. The present work is devoted to the synthesis of new azo derivatives using the thiacalix[4]arene platform. A new highly productive method for the synthesis of thiacalixarene with four anionic sulfonate azo fragments on the lower rim (compounds 2a–b) for further complexation with the most common cationic dyes is reported. The chemical structures of the products obtained were established based on 1H and 13C NMR, IR spectroscopy, MALDI TOF mass spectrometry, and elemental analysis.
Collapse
|
6
|
Galieva F, Khalifa M, Akhmetzyanova Z, Mironova D, Burilov V, Solovieva S, Antipin I. New Supramolecular Hypoxia-Sensitive Complexes Based on Azo-Thiacalixarene. Molecules 2023; 28:molecules28020466. [PMID: 36677529 PMCID: PMC9862174 DOI: 10.3390/molecules28020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Hypoxia accompanies many human diseases and is an indicator of tumor aggressiveness. Therefore, measuring hypoxia in vivo is clinically important. Recently, complexes of calix[4]arene were identified as potent hypoxia markers. The subject of this paper is new hypoxia-sensitive host-guest complexes of thiacalix[4]arene. We report a new high-yield synthesis method for thiacalix[4]arene with four anionic carboxyl azo fragments on the upper rim (thiacalixarene L) and an assessment of the complexes of thiacalixarene L with the most widespread cationic rhodamine dyes (6G, B, and 123) sensitivity to hypoxia. Moreover, 1D and 2D NMR spectroscopy data support the ability of the macrocycles to form complexes with dyes. Rhodamines B and 123 formed host-guest complexes of 1:1 stoichiometry. Complexes of mixed composition were formed with rhodamine 6G. The association constant between thiacalixarene L and rhodamine 6G is higher than for other dyes. Thiacalixarene L-dye complexes with rhodamine 6G and rhodamine B are stable in the presence of various substances present in a biological environment. The UV-VIS spectrometry and fluorescence showed hypoxia responsiveness of the complexes. Our results demonstrate that thiacalixarene L has a stronger binding with dyes compared with the previously reported azo-calix[4]arene carboxylic derivative. Thus, these results suggest higher selective visualization of hypoxia for the complexes with thiacalixarene L.
Collapse
Affiliation(s)
- Farida Galieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
- Correspondence: (F.G.); (S.S.)
| | - Mohamed Khalifa
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
- Chemistry Department, Faculty of Science, Damanhour University, Damanhur 22511, Egypt
| | - Zaliya Akhmetzyanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| | - Diana Mironova
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Vladimir Burilov
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana Solovieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (F.G.); (S.S.)
| | - Igor Antipin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
- Department of Organic and Medical Chemistry, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
7
|
Hu L, Li B, Liao Y, Wang S, Hou P, Cheng Y, Zhang S. Nitroreductase-induced bioorthogonal ligation for prodrug activation: A traceless strategy for cancer-specific imaging and therapy. Bioorg Chem 2022; 129:106167. [PMID: 36166897 DOI: 10.1016/j.bioorg.2022.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
Prodrug development is of great interest in cancer therapy. From bio-friendly standpoints, traceless prodrug activation would be an ideal approach for cancer treatment owning to the avoidance of byproduct which might induce side effects in living system. Here, we report a fully traceless strategy for cancer imaging and therapy via a metal-free bioorthogonal ligation triggered by nitroreductase (NTR) overexpressed in solid tumors. The reduction of nitro substrates to amines by NTR and further condensation of amines with aldehydes can be seamlessly combined to yield imine-based resveratrol (RSV) with water as the only byproduct. In comparison with RSV, this precursor exhibited not only the same level of anticancer efficiency both in vitro and in vivo under hypoxia, but also a high sensitivity to hypoxia and much lower perturbation towards normal cells, which holds a great potential of theranostic prodrug for cancer therapy.
Collapse
Affiliation(s)
- Liangkui Hu
- National Engineering Research Center for Biomaterials and College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Bing Li
- National Engineering Research Center for Biomaterials and College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, 30 South Renmin Road, 442000 Shiyan, Hubei, China
| | - Yulong Liao
- National Engineering Research Center for Biomaterials and College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Simeng Wang
- Key Laboratory for Tumor Precision Medicine of Shanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, China
| | - Yangyang Cheng
- Key Laboratory for Tumor Precision Medicine of Shanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, China.
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials and College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
8
|
Novel Near‐Infrared Fluorescent Nanoprobe Synthesized by the RAFT‐mediated PISA Strategy for Hypoxia‐Triggered Tumor Imaging and Azoreductase‐Responsive Drug Release. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Yu C, Wang S, Xu C, Ding Y, Zhang G, Yang N, Wu Q, Xiao Q, Wang L, Fang B, Pu C, Ge J, Gao L, Li L, Yao SQ. Two-Photon Small-Molecule Fluorogenic Probes for Visualizing Endogenous Nitroreductase Activities from Tumor Tissues of a Cancer Patient. Adv Healthc Mater 2022; 11:e2200400. [PMID: 35485404 DOI: 10.1002/adhm.202200400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Nitroreductase (NTR), a common enzymatic biomarker of hypoxia, is widely used to evaluate tumor microenvironments. To date, numerous optical probes have been reported for NTRs detection. Approaches capable of concisely guiding the probe design of NTRs suitable for deep-tissue imaging, however, are still lacking. As such, direct optical imaging of endogenous NTR activities from tumors derived from cancer patients is thus far not possible. Herein, aided by computational calculations, the authors have successfully developed a series of two-photon (TP) small-molecule fluorogenic probes capable of sensitively detecting general NTR activities from various biological samples; by optimizing the distance between the recognition moiety and the reactive site of NTRs from different sources, the authors have discovered and experimentally proven that X4 displays the best performance in both sensitivity and selectivity. Furthermore, X4 shows excellent TP excited fluorescence properties capable of directly monitoring/imaging endogenous NTR activities from live mammalian cells, growing zebrafish, and tumor-bearing mice. Finally, with an outstanding TP tissue-penetrating imaging property, X4 is used, for the first time, to successfully detect endogenous NTR activities from the liver lysates and cardia tissues of a cancer patient. The work may provide a universal strategy to design novel TP small-molecule enzymatic probes in future clinical applications.
Collapse
Affiliation(s)
- Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
- State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210023 P. R. China
| | - Shuangxi Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Chenchen Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Gaobin Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
| | - Qicai Xiao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Chibin Pu
- Department of Gastroenterology Zhongda Hospital School of Medicine Southeast University Nanjing 210009 P. R. China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen 518107 P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing 211816 P. R. China
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China
- The Institute of Flexible Electronics (IFE Future Technologies) Xiamen University Xiamen 361005 P. R. China
| | - Shao Q. Yao
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
10
|
Sarkar D, Chowdhury M, Das PK. Naphthalimide-Based Azo-Functionalized Supramolecular Vesicle in Hypoxia-Responsive Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3480-3492. [PMID: 35261245 DOI: 10.1021/acs.langmuir.1c03334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supramolecular materials that respond to external triggers are being extensively utilized in developing spatiotemporal control in biomedical applications ranging from drug delivery to diagnostics. The present article describes the development of self-assembled vesicles in 1:9 (v/v), tetrahydrofuran (THF)-water by naphthalimide-based azo moiety containing amphiphile (NI-Azo) where azo moiety would act as the stimuli-responsive junction. The self-assembly of NI-Azo took place through H-type of aggregation. Microscopic and spectroscopic analyses confirmed the formation of supramolecular vesicles with a dimension of 200-250 nm. Azo (-N═N-) moiety is known to get reduced to amine derivatives in the presence of the azoreductase enzyme, which is overexpressed in the hypoxic microenvironment. The absorbance intensity of this characteristic azo (-N═N-) moiety of NI-Azo (1:9 (v/v), THF-water) at 458 nm got diminished in the presence of both extracellular and intracellular bacterial azoreductase extracted from Escherichia coli bacteria. The same observation was noted in the presence of sodium dithionite (mimic of azoreductase), indicating that azoreductase/sodium dithionite induced azo bond cleavage of NI-Azo, which was confirmed by matrix-assisted laser desorption ionization time-of-flight spectrometric data of the corresponding aromatic amine fragments. The anticancer drug, curcumin, was encapsulated inside NI-Azo vesicles that successfully killed B16F10 cells (cancer cells) in CoCl2-induced hypoxic environment owing to the azoreductase-responsive release of drug. The cancer cell killing efficiency by curcumin-loaded NI-Azo vesicles in the hypoxic condition was 2.15-fold higher than that of the normoxic environment and 2.4-fold higher compared to that of native curcumin in the hypoxic condition. Notably, cancer cell killing efficiency of curcumin-loaded NI-Azo vesicles was 4.5- and 1.9-fold higher than that of noncancerous NIH3T3 cells in normoxic and hypoxic environments, respectively. Cell killing was found to be primarily through the early apoptotic pathway.
Collapse
Affiliation(s)
- Deblina Sarkar
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
11
|
Zhang TX, Hou X, Kong Y, Yang F, Yue YX, Shah MR, Li HB, Huang F, Liu J, Guo DS. A hypoxia-responsive supramolecular formulation for imaging-guided photothermal therapy. Theranostics 2022; 12:396-409. [PMID: 34987652 PMCID: PMC8690909 DOI: 10.7150/thno.67036] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Photothermal agents (PTAs) based on organic small-molecule dyes emerge as promising theranostic strategy in imaging and photothermal therapy (PTT). However, hydrophobicity, photodegradation, and low signal-to-noise ratio impede their transformation from bench to bedside. In this study, a novel supramolecular PTT formulation by a stimuli-responsive macrocyclic host is prepared to overcome these obstacles of organic small-molecule PTAs. Methods: Sulfonated azocalix[4]arene (SAC4A) was synthesized as a hypoxia-responsive macrocyclic host. Taking IR780 as an example, the supramolecular nanoformulation IR780@SAC4A was constructed by grinding method, and its solubility, photostability, and photothermal conversion were evaluated. The hypoxia tumor-selective imaging and supramolecular PTT of IR780@SAC4A were further evaluated in vitro and in vivo. Results: IR780@SAC4A is capable of enhancing the solubility, photostability, and photothermal conversion of IR780 significantly, which achieve this supramolecular formulation with good imaging-guided PTT efficacy in vitro and in vivo. Conclusions: This study demonstrates that the supramolecular PTT strategy is a promising cancer theranostic method. Moreover, this supramolecular approach is applicative to construct kinds of supramolecular PTAs, opening a general avenue for extending smart PTT formulations.
Collapse
|
12
|
Jenni S, Renault K, Dejouy G, Debieu S, Laly M, Romieu A. In Situ Synthesis of Phenoxazine Dyes in Water: Application for "Turn‐On" Fluorogenic and Chromogenic Detection of Nitric Oxide. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sébastien Jenni
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Kévin Renault
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Garance Dejouy
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Sylvain Debieu
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Myriam Laly
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Anthony Romieu
- University of Burgundy Franche-Comté ICMUB - UMR CNRS 6302 Faculté des Sciences Mirande9, avenue Alain SavaryBP 47870 21078 Dijon FRANCE
| |
Collapse
|
13
|
A novel BODIPY-based reductant-sensitive near-infrared fluorescent probe for real-time reporting azoreductase-triggered release. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Sidhu JS, Kaur N, Singh N. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens Bioelectron 2021; 191:113441. [PMID: 34167075 DOI: 10.1016/j.bios.2021.113441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/23/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Oxidoreductases are diverse class of enzymes engaged in modulating the redox homeostasis and cellular signaling cascades. Abnormal expression of oxidoreductases including thioredoxin reductase, azoreductase, cytochrome oxidoreductase, tyrosinase and monoamine oxidase leads to the initiation of numerous disorders. Thus, enzymes are the promising biomarkers of the diseased cells and their accurate detection has utmost significance for clinical diagnosis. The detection method must be extremely selective, sensitive easy to use, long self-life, mass manufacturable and disposable. Fluorescence assay approach has been developed potential substitute to conventional techniques used in enzyme's quantification. The fluorescent probes possess excellent stability, high spatiotemporal ratio and reproducibility represent applications in real sample analysis. Therefore, the enzymatic transformations have been monitored by small activatable organic fluorescent probes. These probes are generally integrated with enzyme's substrate/inhibitors to improve their binding affinity toward the enzyme's catalytic site. As the recognition unit bio catalyzed, the signaling unit produces the readout signals and provides novel insights to understand the biochemical reactions for diagnosis and development of point of care devices. Several structural modifications are required in fluorogenic scaffolds to tune the selectivity for a particular enzyme. Hence, the fluorescent probes with their structural features and enzymatic reaction mechanism of oxidoreductase are the key points discussed in this review. The basic strategies to detect each enzyme are discussed. The selectivity, sensitivity and real-time applications are critically compared. The kinetic parameters and futuristic opportunities are present, which would be enormous benefits for chemists and biologists to understand the facts to design and develop unique fluorophore molecules for clinical applications.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India; Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
15
|
Liu BW, Huang PC, Wu FY. A novel light-controlled colorimetric detection assay for nitroreductase based on p-aminophenol-catalyzed and NADH-mediated synthesis of silver nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2223-2228. [PMID: 33908472 DOI: 10.1039/d1ay00231g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel and efficient light-controlled colorimetric assay for the quantification and detection of nitroreductase (NTR) was constructed based on p-aminophenol (pAP)-catalyzed and nicotinamide adenine dinucleotide (NADH)-mediated generation of AgNPs. Due to the hydrolysis of p-nitrophenol by NTR in the presence of NADH, the hydrolysis product can be used as a catalyst to catalyze the reduction of Ag+ by NADH under the light. As the concentration of NTR increases, the value of absorbance at ca. 400 nm (A400) decreases and the color of the solution turns from brown to bright yellow. A linear correlation was obtained between A400 and the NTR concentration in the range from 1-50 μg mL-1 and the limit of detection (LOD) is 0.27 μg mL-1. The detection system does not respond to other common biological molecules due to the specificity of enzymes and the effect of the nitroreductase inhibitor on the NTR activity was also tested. Finally, we applied the assay to determine NTR in human serum samples by spiking different concentrations of NTR with a recovery of 85.2%-92.5%.
Collapse
Affiliation(s)
- Bo-Wen Liu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Peng-Cheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China. and Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China. and Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
16
|
Yuan J, Peng R, Su D, Zhang X, Zhao H, Zhuang X, Chen M, Zhang X, Yuan L. Cell membranes targeted unimolecular prodrug for programmatic photodynamic-chemo therapy. Theranostics 2021; 11:3502-3511. [PMID: 33537100 PMCID: PMC7847693 DOI: 10.7150/thno.55014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/17/2020] [Indexed: 11/29/2022] Open
Abstract
Photodynamic therapy (PDT) has emerged as one of the most up-and-coming non-invasive therapeutic modalities for cancer therapy in rencent years. However, its therapeutic effect was still hampered by the short life span, limited diffusion distance and ineluctable depletion of singlet oxygen (1O2), as well as the hypoxic microenvironment in the tumor tissue. Such problems have limited the application of PDT and appropriate solutions are highly demand. Methods: Herein, a programmatic treatment strategy is proposed for the development of a smart molecular prodrug (D-bpy), which comprise a two-photon photosensitizer and a hypoxia-activated chemotherapeutic prodrug. A rhodamine dye was designed to connect them and track the drug release by the fluorescent signal generated through azo bond cleavage. Results: The prodrug (D-bpy) can stay on the cell membrane and enrich at the tumor site. Upon light irradiation, the therapeutic effect was enhanced by a stepwise treatment: (i) direct generation of 1O2 on the cell membrane induced membrane destruction and promoted the D-bpy uptake; (ii) deep tumor hypoxia caused by two-photon PDT process further triggered the activation of the chemotherapy prodrug. Both in vitro and in vivo experiments, D-bpy have exhabited excellent tumor treatment effect. Conclusion: The innovative programmatic treatment strategy provides new strategy for the design of follow-up anticancer drugs.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R China
| | - Rong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R China
| | - Dongdong Su
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R China
| | - Hepeng Zhao
- College of Physics and Microelectronics Science, Hunan University, Changsha 410082, P. R China
| | - Xiujuan Zhuang
- College of Physics and Microelectronics Science, Hunan University, Changsha 410082, P. R China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P. R China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R China
| |
Collapse
|
17
|
An Enzyme‐Activable Noncovalent Fluorescent Probe Based on Water Soluble Azobenzene Containing Polymer and AIEgen. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Jang EH, Kim GL, Park MG, Shim MK, Kim JH. Hypoxia-responsive, organic-inorganic hybrid mesoporous silica nanoparticles for triggered drug release. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Hypoxia-responsive folic acid conjugated glycol chitosan nanoparticle for enhanced tumor targeting treatment. Int J Pharm 2020; 580:119237. [PMID: 32201251 DOI: 10.1016/j.ijpharm.2020.119237] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 03/15/2020] [Indexed: 12/19/2022]
Abstract
Hypoxia is a characteristic feature of various ischemic diseases, including cancer. This study describes the development of glycol chitosan nanoparticles, hydrophobically modified with 4-nitrobenzyl chloroformate and folic acid (FA), that can specifically release drugs under hypoxic conditions. This hypoxia-responsive glycol chitosan nanoparticle conjugated with FA (HRGF) possesses tumor-targeting properties by virtue of conjugated FA and is able to release drugs in a nitroreductase (NTR)-dependent manner because its structure is cleaved by NTR under hypoxic conditions. HRGF nanoparticles showed improved in vivo cancer-targeting ability compared with HRG nanoparticles without FA. In vitro drug release profiles revealed that doxorubicin (DOX)-loaded HRGF (D@HRGF) nanoparticles showed rapid release under hypoxia conditions than normoxic conditions. In vitro cytotoxicity tests and microscopic observations showed that D@HRGF nanoparticles were more toxic towards hypoxic cells than normoxic cells, and that the release of DOX was more effective in hypoxia than normoxia. In vivo, D@HRGF nanoparticles showed more effective antitumor activity in mice compared with D@HRG and free DOX. Collectively, these results show that HRGF nanoparticles function as an effective drug-delivery system in hypoxic conditions. Moreover, these hypoxia-responsive nanoparticles would be effective not only in cancer, but also in other ischemic diseases.
Collapse
|
20
|
Zhou Y, Wang Z, Wang Y, Li L, Zhou N, Cai Y, Zhang Z, Zhu X. Azoreductase-triggered fluorescent nanoprobe synthesized by RAFT-mediated polymerization-induced self-assembly for drug release. Polym Chem 2020. [DOI: 10.1039/d0py00826e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, micelles loaded with doxorubicin (DOX) in situ were synthesized by polymerization-induced self-assembly. Furthermore, the DOX-loaded micelles showed release and fluorescence change, owing to azoreductase-triggered azo bond cleavage.
Collapse
Affiliation(s)
- Yechun Zhou
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhe Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yuqing Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Lishan Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Nianchen Zhou
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yuanli Cai
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
21
|
Fan L, Zan Q, Lin B, Wang X, Gong X, Zhao Z, Shuang S, Dong C, Wong MS. Hypoxia imaging in living cells, tissues and zebrafish with a nitroreductase-specific fluorescent probe. Analyst 2020; 145:5657-5663. [DOI: 10.1039/d0an00378f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a nitroreductase-specific fluorescent probe (NTNO) for hypoxia imaging in living cells, tissues and zebrafish.
Collapse
Affiliation(s)
- Li Fan
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Qi Zan
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Bo Lin
- Research Center for Analytical Sciences
- Department of Chemistry
- College of Sciences
- Northeastern University
- Shenyang
| | - Xiaodong Wang
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Xiaojuan Gong
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Zhonghua Zhao
- Department of Human Genetic Disease and Animal model
- Institute of Biomedical Sciences
- Shanxi University
- Taiyuan
- P. R. China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan
- P. R. China
| | - Chuan Dong
- Institute of Environmental Science
- Shanxi University
- Taiyuan
- P. R. China
| | - Man Shing Wong
- Department of Chemistry and Institute of Molecular Functional Materials
- Hong Kong Baptist University
- Hong Kong SAR
- P. R. China
| |
Collapse
|
22
|
Zhang H, Liang F, Yang Y. Dual‐Stimuli Responsive 2D Supramolecular Organic Framework for the Detection of Azoreductase Activity. Chemistry 2019; 26:198-205. [DOI: 10.1002/chem.201904443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/16/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Hao Zhang
- The State Key Laboratory of Refractories and Metallurgy School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of, Nano-Micro Architecture Chemistry (NMAC) College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Ying‐Wei Yang
- The State Key Laboratory of Refractories and Metallurgy School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of, Nano-Micro Architecture Chemistry (NMAC) College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
23
|
Tian Y, Li Y, Jiang WL, Zhou DY, Fei J, Li CY. In-Situ Imaging of Azoreductase Activity in the Acute and Chronic Ulcerative Colitis Mice by a Near-Infrared Fluorescent Probe. Anal Chem 2019; 91:10901-10907. [DOI: 10.1021/acs.analchem.9b02857] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Geng W, Jia S, Zheng Z, Li Z, Ding D, Guo D. A Noncovalent Fluorescence Turn‐on Strategy for Hypoxia Imaging. Angew Chem Int Ed Engl 2019; 58:2377-2381. [DOI: 10.1002/anie.201813397] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/08/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Wen‐Chao Geng
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Shaorui Jia
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai University Tianjin 300071 China
| | - Zhe Zheng
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Zhihao Li
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| | - Dan Ding
- Key Laboratory of Bioactive MaterialsMinistry of EducationCollege of Life SciencesNankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- College of ChemistryKey Laboratory of Functional Polymer Materials (Ministry of Education)State Key Laboratory of Elemento-Organic ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
25
|
Geng WC, Jia S, Zheng Z, Li Z, Ding D, Guo DS. A Noncovalent Fluorescence Turn-on Strategy for Hypoxia Imaging. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813397] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry; Key Laboratory of Functional Polymer Materials (Ministry of Education); State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - Shaorui Jia
- Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Zhe Zheng
- College of Chemistry; Key Laboratory of Functional Polymer Materials (Ministry of Education); State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - Zhihao Li
- College of Chemistry; Key Laboratory of Functional Polymer Materials (Ministry of Education); State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| | - Dan Ding
- Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Dong-Sheng Guo
- College of Chemistry; Key Laboratory of Functional Polymer Materials (Ministry of Education); State Key Laboratory of Elemento-Organic Chemistry; Nankai University; Tianjin 300071 China
| |
Collapse
|
26
|
Zhang Q, Wang Q, Chen XX, Zhang P, Ding CF, Li Z, Jiang YB. Developing the spectral sensing scheme with in situ generated chromophores. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Váradi L, Wang M, Mamidi RR, Luo JL, Perry JD, Hibbs DE, Groundwater PW. A latent green fluorescent styrylcoumarin probe for the selective growth and detection of Gram negative bacteria. Bioorg Med Chem 2018; 26:4745-4750. [DOI: 10.1016/j.bmc.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
|
28
|
Zhou L, Gong L, Hu S. Construction of an efficient two-photon fluorescent probe for imaging nitroreductase in live cells and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 199:254-259. [PMID: 29626816 DOI: 10.1016/j.saa.2018.03.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Compared with traditional confocal microscopy, two-photon fluorescence microscopy (TPFM), which excites a two-photon (TP) fluorophore by near-infrared light, provides improved three-dimensional image resolution with increased tissue-image depth (>500μm) and an extended observation time. Therefore, the development of novel functional TP fluorophores has attracted great attention in recent years. Herein, a novel TP fluorophore CM-NH2, which have the donor-π-acceptor (D-π-A)-structure, was designed and synthesized. We further used this dye developed a new type of TP fluorescent probe CM-NO2 for detecting nitroreductase (NTR). Upon incubated with NTR for 15min, CM-NO2 displayed a ~90-fold fluorescence enhancement at 505nm and the maximal TP action cross-section value after reaction was detected and calculated to be 200 GM at 760nm. The probe exhibited excellent properties such as high sensitivity, high selectivity, low cytotoxicity, and high photostability. Moreover, the probe was utilized to image the tumor hypoxia in live HeLa cells. Finally, using the CM-NO2 to image NTR in tissues was demonstrated.
Collapse
Affiliation(s)
- Liyi Zhou
- College of Life Sciences and Chemistry, Hunan University of Technology, Hunan 412007, PR China; College of Food Science and Technology, Central South University of Forestry and Technology Changsha, Hunan 410004, PR China; State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China; Hunan Key Laboratory of Processed Food for Special Medical Purpose.
| | - Liang Gong
- College of Life Sciences and Chemistry, Hunan University of Technology, Hunan 412007, PR China
| | - Shunqin Hu
- College of Life Sciences and Chemistry, Hunan University of Technology, Hunan 412007, PR China
| |
Collapse
|
29
|
Hu M, Yang C, Luo Y, Chen F, Yang F, Yang S, Chen H, Cheng Z, Li K, Xie Y. A hypoxia-specific and mitochondria-targeted anticancer theranostic agent with high selectivity for cancer cells. J Mater Chem B 2018; 6:2413-2416. [PMID: 32254457 DOI: 10.1039/c8tb00546j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel hypoxia-specific and mitochondria-targeted theranostic agent,HMX-1, was reported with certified anti-cancer efficiencyin vitroandin vivo.
Collapse
|
30
|
Piao W, Hanaoka K, Fujisawa T, Takeuchi S, Komatsu T, Ueno T, Terai T, Tahara T, Nagano T, Urano Y. Development of an Azo-Based Photosensitizer Activated under Mild Hypoxia for Photodynamic Therapy. J Am Chem Soc 2017; 139:13713-13719. [DOI: 10.1021/jacs.7b05019] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wen Piao
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomotsumi Fujisawa
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Toru Komatsu
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tasuku Ueno
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuya Terai
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tetsuo Nagano
- Drug
Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate
School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- AMED CREST (Japan) Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
31
|
Chevalier A, Renard PY, Romieu A. Azo-Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges. Chem Asian J 2017; 12:2008-2028. [DOI: 10.1002/asia.201700682] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS; University Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| |
Collapse
|
32
|
Chyan W, Kilgore HR, Gold B, Raines RT. Electronic and Steric Optimization of Fluorogenic Probes for Biomolecular Imaging. J Org Chem 2017; 82:4297-4304. [PMID: 28345343 PMCID: PMC5519408 DOI: 10.1021/acs.joc.7b00285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorogenic probes are invaluable tools for spatiotemporal investigations within live cells. In common fluorogenic probes, the intrinsic fluorescence of a small-molecule fluorophore is masked by esterification until entry into a cell, where endogenous esterases catalyze the hydrolysis of the masking groups, generating fluorescence. The susceptibility of masking groups to spontaneous hydrolysis is a major limitation of these probes. Previous attempts to address this problem have incorporated auto-immolative linkers at the cost of atom economy and synthetic adversity. Here, we report on a linker-free strategy that employs adventitious electronic and steric interactions in easy-to-synthesize probes. We find that X···C═O n→π* interactions and acyl group size are optimized in 2',7'-dichlorofluorescein diisobutyrate. This probe is relatively stable to spontaneous hydrolysis but is a highly reactive substrate for esterases both in vitro and in cellulo, yielding a bright, photostable fluorophore with utility in biomolecular imaging.
Collapse
Affiliation(s)
- Wen Chyan
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Henry R. Kilgore
- Graduate Program in Biophysics, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Brian Gold
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
33
|
Shin N, Hanaoka K, Piao W, Miyakawa T, Fujisawa T, Takeuchi S, Takahashi S, Komatsu T, Ueno T, Terai T, Tahara T, Tanokura M, Nagano T, Urano Y. Development of an Azoreductase-based Reporter System with Synthetic Fluorogenic Substrates. ACS Chem Biol 2017; 12:558-563. [PMID: 28036168 DOI: 10.1021/acschembio.6b00852] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzyme/substrate pairs, such as β-galactosidase with chromogenic x-gal substrate, are widely used as reporters to monitor biological events, but there is still a requirement for new reporter systems, which may be orthogonal to existing systems. Here, we focused on azoreductase (AzoR). We designed and synthesized a library of azo-rhodamine derivatives as candidate fluorogenic substrates. These derivatives were nonfluorescent, probably due to ultrafast conformational change around the N═N bond after photoexcitation. We found that AzoR-mediated reduction of the azo bond of derivatives bearing an electron-donating group on the azobenzene moiety was followed by nonenzymatic cleavage to afford highly fluorescent 2-methyl-rhodamine green (2-Me RG), which was well retained in cells. We show that the AzoR/compound 9 reporter system can detect azoreductase-expressing live cells at the single cell level.
Collapse
Affiliation(s)
- Narae Shin
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Wen Piao
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Miyakawa
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, Wako 351-0198, Japan
| | - Shodai Takahashi
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tasuku Ueno
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Terai
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, Wako 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), RIKEN, Wako 351-0198, Japan
| | - Masaru Tanokura
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tetsuo Nagano
- Drug
Discovery Initiative, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yasuteru Urano
- Graduate
School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Graduate
School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- AMED CREST (Japan) Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
34
|
Wang J, Kou J, Hou X, Zhao Z, Chao H. A ruthenium(II) anthraquinone complex as the theranostic agent combining hypoxia imaging and HIF-1α inhibition. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Verwilst P, Han J, Lee J, Mun S, Kang HG, Kim JS. Reconsidering azobenzene as a component of small-molecule hypoxia-mediated cancer drugs: A theranostic case study. Biomaterials 2017; 115:104-114. [DOI: 10.1016/j.biomaterials.2016.11.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022]
|
36
|
Liu ZR, Tang Y, Xu A, Lin W. A new fluorescent probe with a large turn-on signal for imaging nitroreductase in tumor cells and tissues by two-photon microscopy. Biosens Bioelectron 2016; 89:853-858. [PMID: 27816580 DOI: 10.1016/j.bios.2016.09.107] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 11/28/2022]
Abstract
Hypoxia is the important characteristic of solid tumors, and it may cause the bioactivity of nitroreductase (NTR) to display an elevated level. Hence, the development of effective monitoring methods of NTR in living systems is of great importance for detecting the occurrence and progress of tumors. Toward this goal, a novel two-photon fluorescence turn-on NTR probe GCTPOC-HY, based on the two-photon platform GCTPOC and the NTR recognition site p-nitrobenzyl ether, is designed and synthesized. The probe GCTPOC-HY exhibits eminent properties such as high sensitivity and selectivity, highly stable photo-stability, and low cytotoxicity. Besides, the probe responds to 1.5μg/mL NTR with a 130-fold fluorescence enhancement, which is larger than the reported two-photon fluorescent NTR probes. Moreover, the probe GCTPOC-HY is suitable for fluorescence imaging of NTR in living cells by one- and two-photon modes. Importantly, the probe GCTPOC-HY is successfully applied to monitor NTR in the tumor tissues with a significant fluorescence signal and a penetration depth of 70µm by using two-photon microscopy.
Collapse
Affiliation(s)
- Zhan-Rong Liu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science, University of Jinan, Jinan, Shandong, 250022 PR China
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science, University of Jinan, Jinan, Shandong, 250022 PR China
| | - An Xu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science, University of Jinan, Jinan, Shandong, 250022 PR China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science, University of Jinan, Jinan, Shandong, 250022 PR China.
| |
Collapse
|
37
|
Elmes RBP. Bioreductive fluorescent imaging agents: applications to tumour hypoxia. Chem Commun (Camb) 2016; 52:8935-56. [DOI: 10.1039/c6cc01037g] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The development of new optical chemosensors for various reductases presents an ideal approach to visualise areas of tissue hypoxia.
Collapse
Affiliation(s)
- Robert B. P. Elmes
- Department of Chemistry
- Maynooth University
- National University of Ireland
- Maynooth
- Ireland
| |
Collapse
|
38
|
Boso G, Ke D, Korzh B, Bouilloux J, Lange N, Zbinden H. Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector. BIOMEDICAL OPTICS EXPRESS 2016; 7:211-24. [PMID: 26819830 PMCID: PMC4722905 DOI: 10.1364/boe.7.000211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 05/03/2023]
Abstract
In clinical applications, such as PhotoDynamic Therapy, direct singlet-oxygen detection through its luminescence in the near-infrared range (1270 nm) has been a challenging task due to its low emission probability and the lack of suitable single-photon detectors. Here, we propose a practical setup based on a negative-feedback avalanche diode detector that is a viable alternative to the current state-of-the art for different clinical scenarios, especially where geometric collection efficiency is limited (e.g. fiber-based systems, confocal microscopy, scanning systems etc.). The proposed setup is characterized with Rose Bengal as a standard photosensitizer and it is used to measure the singlet-oxygen quantum yield of a new set of photosensitizers for site-selective photodynamic therapy.
Collapse
Affiliation(s)
- Gianluca Boso
- Group of Applied Physics, University of Geneva, Chemin de Pinchat 22, Genève 4, CH-1211, Switzerland
| | - Damei Ke
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, Genève 4, CH-1211, Switzerland
| | - Boris Korzh
- Group of Applied Physics, University of Geneva, Chemin de Pinchat 22, Genève 4, CH-1211, Switzerland
| | - Jordan Bouilloux
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, Genève 4, CH-1211, Switzerland
| | - Norbert Lange
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, Genève 4, CH-1211, Switzerland
| | - Hugo Zbinden
- Group of Applied Physics, University of Geneva, Chemin de Pinchat 22, Genève 4, CH-1211, Switzerland
| |
Collapse
|
39
|
Lu J, Zhou F, Li L, Zhang Z, Meng F, Zhou N, Zhu X. Novel cyclic azobenzene-containing vesicles: photo/reductant responsiveness and potential applications in colon disease treatment. RSC Adv 2016. [DOI: 10.1039/c6ra12751g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The vesicles formed by an amphiphilic copolymer with cyclic azobenzene pendants revealed higher drug loading content and better photo/reductant responsiveness than an analogue of the amphiphilic copolymer with linear azobenzene units.
Collapse
Affiliation(s)
- Jinjie Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Feng Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Lishan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Fenghua Meng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
40
|
Zhang J, Liu HW, Hu XX, Li J, Liang LH, Zhang XB, Tan W. Efficient Two-Photon Fluorescent Probe for Nitroreductase Detection and Hypoxia Imaging in Tumor Cells and Tissues. Anal Chem 2015; 87:11832-9. [PMID: 26514276 DOI: 10.1021/acs.analchem.5b03336] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia plays an important role in tumor progression, and the development of efficient methods for monitoring hypoxic degree in living systems is of great biomedical importance. In the solid tumors, the nitroreductase level is directly corresponded with the hypoxic status. Many one-photon excited fluorescent probes have been developed for hypoxia imaging in tumor cells via the detection of nitroreductase level. However, two-photon excited probes are more suitable for bioimaging. In this work, a two-photon probe 1 for nitroreductase detection and hypoxic status monitoring in living tumor cells and tissues was reported for the first time. The detection is based on the fact that the nitro-group of probe 1 could be selectively reduced to an amino-group by nitroreductase in the presence of reduced NADH, following by a 1,6-rearrangement-elimination to release the fluorophore, resulting in the enhancement of fluorescence. The probe exhibited both one-photon and two-photon excited remarkable fluorescence enhancement (∼70-fold) for nitroreductase, which afforded a high sensitivity for nitroreductase, with a detection limit of 20 ng/mL observed. Moreover, the applications of the probe for fluorescent bioimaging of hypoxia in living cells and two-photon bioimaging in tissues were carried out, with tissue-imaging depths of 70-160 μm observed, which demonstrates its practical application in complex biosystems.
Collapse
Affiliation(s)
- Jing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Jin Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Li-Hui Liang
- Hunan Provincial People's Hospital , Changsha, 410002, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha 410082, China
| |
Collapse
|
41
|
Chevalier A, Piao W, Hanaoka K, Nagano T, Renard PY, Romieu A. Azobenzene-caged sulforhodamine dyes: a novel class of 'turn-on' reactive probes for hypoxic tumor cell imaging. Methods Appl Fluoresc 2015; 3:044004. [PMID: 29148517 DOI: 10.1088/2050-6120/3/4/044004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New sulforhodamine-based fluorescent 'turn-on' probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble 'azobenzene-caged' fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three 'smart' probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).
Collapse
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, COBRA UMR 6014 & FR 3038; Univ. Rouen; INSA Rouen; CNRS, IRCOF, 1, Rue Tesnières, 76821 Mont-Saint-Aignan cedex, France
| | | | | | | | | | | |
Collapse
|
42
|
Sun L, Li G, Chen X, Chen Y, Jin C, Ji L, Chao H. Azo-Based Iridium(III) Complexes as Multicolor Phosphorescent Probes to Detect Hypoxia in 3D Multicellular Tumor Spheroids. Sci Rep 2015; 5:14837. [PMID: 26423609 PMCID: PMC4589790 DOI: 10.1038/srep14837] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022] Open
Abstract
Hypoxia is an important characteristic of malignant solid tumors and is considered as a possible causative factor for serious resistance to chemo- and radiotherapy. The exploration of novel fluorescent probes capable of detecting hypoxia in solid tumors will aid tumor diagnosis and treatment. In this study, we reported the design and synthesis of a series of "off-on" phosphorescence probes for hypoxia detection in adherent and three-dimensional multicellular spheroid models. All of the iridium(III) complexes incorporate an azo group as an azo-reductase reactive moiety to detect hypoxia. Reduction of non-phosphorescent probes Ir1-Ir8 by reductases under hypoxic conditions resulted in the generation of highly phosphorescent corresponding amines for detection of hypoxic regions. Moreover, these probes can penetrate into 3D multicellular spheroids over 100 μm and image the hypoxic regions. Most importantly, these probes display a high selectivity for the detection of hypoxia in 2D cells and 3D multicellular spheroids.
Collapse
Affiliation(s)
- Lingli Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guanying Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiang Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
43
|
Chevalier A, Renard PY, Romieu A. Azo-Sulforhodamine Dyes: A Novel Class of Broad Spectrum Dark Quenchers. Org Lett 2014; 16:3946-9. [DOI: 10.1021/ol501753b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, COBRA UMR 6014 & FR 3038, UNIV Rouen, INSA Rouen, CNRS, IRCOF, 1 Rue Tesnières, 76821 Mont-Saint-Aignan Cedex, France
| | - Pierre-Yves Renard
- Normandie Université, COBRA UMR 6014 & FR 3038, UNIV Rouen, INSA Rouen, CNRS, IRCOF, 1 Rue Tesnières, 76821 Mont-Saint-Aignan Cedex, France
| | - Anthony Romieu
- Institut
de Chimie Moléculaire de l’Université de Bourgogne,
UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon, France
- Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France
| |
Collapse
|
44
|
Chevalier A, Renard PY, Romieu A. Straightforward Access to Water-Soluble Unsymmetrical Sulfoxanthene Dyes: Application to the Preparation of Far-Red Fluorescent Dyes with Large Stokes’ Shifts. Chemistry 2014; 20:8330-7. [DOI: 10.1002/chem.201402306] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Indexed: 12/11/2022]
|