1
|
Bahmanzadegan F, Pordsari MA, Ghaemi A. Improving the efficiency of 4A-zeolite synthesized from kaolin by amine functionalization for CO 2 capture. Sci Rep 2023; 13:12533. [PMID: 37532762 PMCID: PMC10397218 DOI: 10.1038/s41598-023-39859-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
This study focuses on optimizing the CO2 adsorption capacity of 4A-zeolite synthesized from kaolin by employing structural modifications through impregnation with tetraethylenepentamine (TEPA) and diethanolamine (DEA). Various analytical techniques were utilized to evaluate the effectiveness of these modifications. Design expert software and response surface methodology (RSM) was employed for data analysis and operational variable optimization, leading to improved CO2 adsorption performance of the modified zeolites. The adsorption capacity of the modified zeolites was assessed under different temperatures, pressures, and amine concentrations using a test device. The optimal adsorption capacity of 4A-DEA adsorbent is found to be 579.468 mg/g, with the optimal operational variables including a temperature of 25.270 °C, pressure of 8.870 bar, and amine concentration of 11.112 wt%. The analysis shows that the adsorption process involves both physisorption and chemisorption, and the best kinetic model is the fractional-factor model.
Collapse
Affiliation(s)
- Fatemeh Bahmanzadegan
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box: 16846-13114, Tehran, Iran
| | - Mahyar Ashourzadeh Pordsari
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box: 16846-13114, Tehran, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box: 16846-13114, Tehran, Iran.
| |
Collapse
|
2
|
Wilson I, Padamati SK, Bobitan AD, Porter MJ, Holt KB. Room-Temperature One-Pot Synthesis of pH-Responsive Pyridine-Functionalized Carbon Surfaces. ACS OMEGA 2023; 8:10796-10805. [PMID: 37008109 PMCID: PMC10061597 DOI: 10.1021/acsomega.2c06847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Carbon surfaces (glassy carbon, graphite, and boron-doped diamond) were functionalized with layers composed of linked pyridinium and pyridine moieties using simple electrochemical reduction of trifluoroacetylpyridinium. The pyridinium species was generated in situ in solution by the reaction of trifluoroacetic anhydride and pyridine precursors and underwent electrochemical reduction at -1.97 V vs Fc/Fc+, as determined by cyclic voltammetry. The pyridine/pyridinium films were electrodeposited at room temperature, on a timescale of minutes, and were characterized using X-ray photoelectron spectroscopy. The as-prepared films have a net positive charge in aqueous solution at pH 9 and below due to the pyridinium content, confirmed by the electrochemical response of differently charged redox molecules at the functionalized surfaces. The positive charge can be enhanced further through protonation of the neutral pyridine component by controlling the solution pH. Moreover, the nitrogen-acetyl bond can be cleaved through base treatment to purposefully increase the neutral pyridine proportion of the film. This results in a surface that can be "switched" from functionally near neutral to a positive charge by treatment in basic and acidic solutions, respectively, through manipulation of the protonation state of the pyridine. The functionalization process demonstrated here is readily achievable at a fast timescale at room temperature and hence can allow for rapid screening of surface properties. Such functionalized surfaces present a means to test in isolation the specific catalytic performance of pyridinic groups toward key processes such as oxygen and CO2 reduction.
Collapse
|
3
|
Karimi M, Shirzad M, Silva JAC, Rodrigues AE. Carbon dioxide separation and capture by adsorption: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-44. [PMID: 37362013 PMCID: PMC10018639 DOI: 10.1007/s10311-023-01589-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/28/2023] [Indexed: 06/02/2023]
Abstract
Rising adverse impact of climate change caused by anthropogenic activities is calling for advanced methods to reduce carbon dioxide emissions. Here, we review adsorption technologies for carbon dioxide capture with focus on materials, techniques, and processes, additive manufacturing, direct air capture, machine learning, life cycle assessment, commercialization and scale-up.
Collapse
Affiliation(s)
- Mohsen Karimi
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Mohammad Shirzad
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José A. C. Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alírio E. Rodrigues
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Recent Advances in Biomass Based Activated Carbon for Carbon Dioxide Capture - A Review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Adsorption of Carbon Dioxide with Ni-MOF-74 and MWCNT Incorporated Poly Acrylonitrile Nanofibers. NANOMATERIALS 2022; 12:nano12030412. [PMID: 35159757 PMCID: PMC8839861 DOI: 10.3390/nano12030412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 12/10/2022]
Abstract
Among the new adsorbent forms, nanofiber structures have attracted extra attention because of features such as high surface area, controllable properties, and fast kinetics. The objective of this study is to produce the polyacrylonitrile (PAN) electrospun nanofibers loaded with Ni-MOF-74/MWCNT to obtain maximum CO2 adsorption. The prepared PAN/MWCNT/MOF nanofiber based on the Box–Behnken design (BBD) model suggests the CO2 adsorption of about 1.68 mmol/g (at 25 °C and 7 bar) includes 14.61 w/v%, 1.43 w/w%, and 11.9 w/w% for PAN, MWCNT, and MOF, respectively. The results showed the effective CO2 adsorption of about 1.65 ± 0.03 mmol/g (BET = 65 m2/g, pore volume = 0.08 cm3/g), which proves the logical outcomes of the chosen model. The prepared PAN/MWCNT/MOF nanofiber was characterized using different analyzes such as SEM, TEM, TG, XRD, FTIR, and N2 adsorption–desorption isotherms. More MOF mass loading on the nanofiber surface via secondary growth method resulted in 2.83 mmol/g (BET = 353 m2/g, pore volume = 0.22 cm3/g, 43% MOF mass loading) and 4.35 mmol/g (BET = 493 m2/g, pore volume = 0.27 cm3/g, 65% MOF mass loading) CO2 adsorption at 7 bar for the first and second growth cycles, respectively. This indicates that secondary growth is more effective in the MOF loading amount and, consequently, adsorption capacity compared to the MOF loading during electrospinning.
Collapse
|
6
|
Henle EA, Gantzler N, Thallapally PK, Fern XZ, Simon CM. PoreMatMod.jl: Julia Package for in Silico Postsynthetic Modification of Crystal Structure Models. J Chem Inf Model 2022; 62:423-432. [PMID: 35029112 DOI: 10.1021/acs.jcim.1c01219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PoreMatMod.jl is a free, open-source, user-friendly, and documented Julia package for modifying crystal structure models of porous materials such as metal-organic frameworks (MOFs). PoreMatMod.jl functions as a find-and-replace algorithm on crystal structures by leveraging (i) Ullmann's algorithm to search for subgraphs of the crystal structure graph that are isomorphic to the graph of a query fragment and (ii) the orthogonal Procrustes algorithm to align a replacement fragment with a targeted substructure of the crystal structure for installation. The prominent application of PoreMatMod.jl is to generate libraries of hypothetical structures for virtual screenings. For example, one can install functional groups on the linkers of a parent MOF, mimicking postsynthetic modification. Other applications of PoreMatMod.jl to modify crystal structure models include introducing defects with precision and correcting artifacts of X-ray structure determination (adding missing hydrogen atoms, resolving disorder, and removing guest molecules). The find-and-replace operations implemented by PoreMatMod.jl can be applied broadly to diverse atomistic systems for various in silico structural modification tasks.
Collapse
Affiliation(s)
- E Adrian Henle
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Nickolas Gantzler
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Xiaoli Z Fern
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cory M Simon
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
7
|
Li Z, Wang L, Qin L, Lai C, Wang Z, Zhou M, Xiao L, Liu S, Zhang M. Recent advances in the application of water-stable metal-organic frameworks: Adsorption and photocatalytic reduction of heavy metal in water. CHEMOSPHERE 2021; 285:131432. [PMID: 34273693 DOI: 10.1016/j.chemosphere.2021.131432] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 05/24/2023]
Abstract
Heavy metals pollution in water is a global environmental issue, which has threatened the human health and environment. Thus, it is important to remove them under practical water environment. In recent years, metal-organic frameworks (MOFs) with water-stable properties have attracted wide interest with regard to the capture of hazardous heavy metal ions in water. In this review, the synthesis strategy and postsynthesis modification preparation methods are first summarized for water-stable MOFs (WMOFs), and then the recent advances on the adsorption and photocatalytic reduction of heavy metal ions in water by WMOFs are reviewed. In contrast to the conventional adsorption materials, WMOFs not only have excellent adsorption properties, but also lead to photocatalytic reduction of heavy metal ions. WMOFs have coupling and synergistic effects on the adsorption and photocatalysis of heavy metal ions in water, which make it more effective in treating single pollutants or different pollutants. In addition, by introducing appropriate functional groups into MOFs or synthesizing MOF-based composites, the stability and ability to remove heavy metal ions of MOFs can be effectively enhanced. Although WMOFs and WMOF-based composites have made great progress in removing heavy metal ions from water, they still face many problems and challenges, and their application potential needs to be further improved in future research. Finally, this review aims at promoting the development and practical application of heavy metal ions removal in water by WMOFs.
Collapse
Affiliation(s)
- Zhongwu Li
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Lei Wang
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Zhihong Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mi Zhou
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Linhui Xiao
- College of Geographic Science, Hunan Normal University, Changsha, Hunan, 410081, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
8
|
Abstract
Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.
Collapse
Affiliation(s)
- Joel M Kolle
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Mohammadreza Fayaz
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Abdelhamid Sayari
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
9
|
Novel Systems and Membrane Technologies for Carbon Capture. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1155/2021/6642906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Due to the global menace caused by carbon emissions from environmental, anthropogenic, and industrial processes, it has become expedient to consider the use of systems, with high trapping potentials for these carbon-based compounds. Several prior studies have considered the use of amines, activated carbon, and other solid adsorbents. Advances in carbon capture research have led to the use of ionic liquids, enzyme-based systems, microbial filters, membranes, and metal-organic frameworks in capturing CO2. Therefore, it is common knowledge that some of these systems have their lapses, which then informs the need to prioritize and optimize their synthetic routes for optimum efficiency. Some authors have also argued about the need to consider the use of hybrid systems, which offer several characteristics that in turn give synergistic effects/properties that are better compared to those of the individual components that make up the composites. For instance, some membranes are hydrophobic in nature, which makes them unsuitable for carbon capture operations; hence, it is necessary to consider modifying properties such as thermal stability, chemical stability, permeability, nature of the raw/starting material, thickness, durability, and surface area which can enhance the performance of these systems. In this review, previous and recent advances in carbon capture systems and sequestration technologies are discussed, while some recommendations and future prospects in innovative technologies are also highlighted.
Collapse
|
10
|
Gandara-Loe J, Pastor-Perez L, Bobadilla LF, Odriozola JA, Reina TR. Understanding the opportunities of metal–organic frameworks (MOFs) for CO2 capture and gas-phase CO2 conversion processes: a comprehensive overview. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00034a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid increase in the concentration of atmospheric carbon dioxide is one of the most pressing problems facing our planet.
Collapse
Affiliation(s)
- J. Gandara-Loe
- Department of Inorganic Chemistry
- University of Seville
- Seville
- Spain
| | - L. Pastor-Perez
- Department of Inorganic Chemistry
- University of Seville
- Seville
- Spain
- Chemical & Process Engineering Department
| | - L. F. Bobadilla
- Department of Inorganic Chemistry
- University of Seville
- Seville
- Spain
| | - J. A. Odriozola
- Department of Inorganic Chemistry
- University of Seville
- Seville
- Spain
- Chemical & Process Engineering Department
| | - T. R. Reina
- Department of Inorganic Chemistry
- University of Seville
- Seville
- Spain
- Chemical & Process Engineering Department
| |
Collapse
|
11
|
CO2 adsorption at low pressure over polymers-loaded mesoporous metal organic framework PCN-777: effect of basic site and porosity on adsorption. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Chuah CY, Li W, Yang Y, Bae TH. Evaluation of porous adsorbents for CO2 capture under humid conditions: The importance of recyclability. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Ghanbari T, Abnisa F, Wan Daud WMA. A review on production of metal organic frameworks (MOF) for CO 2 adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135090. [PMID: 31863992 DOI: 10.1016/j.scitotenv.2019.135090] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
The environment sustenance and preservation of global climate are known as the crucial issues of the world today. Currently, the crisis of global warming due to CO2 emission has turned into a paramount concern. To address such a concern, diverse CO2 capture and sequestration techniques (CCS) have been introduced so far. In line with this, Metal Organic Frameworks (MOFs) have been considered as the newest and most promising material for CO2 adsorption and separation. Due to their outstanding properties, this new class of porous materials a have exhibited a conspicuous potential for gas separation technologies especially for CO2 storage and separation. Thus, the present review paper is aimed to discuss the adsorption properties of CO2 on the MOFs based on the adsorption mechanisms and the design of the MOF structures. In addition, the main challenge associated with using this prominent porous material has been mentioned.
Collapse
Affiliation(s)
- Taravat Ghanbari
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Faisal Abnisa
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Wan Mohd Ashri Wan Daud
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Xie L, Xu M, Liu X, Zhao M, Li J. Hydrophobic Metal-Organic Frameworks: Assessment, Construction, and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901758. [PMID: 32099755 PMCID: PMC7029650 DOI: 10.1002/advs.201901758] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/18/2019] [Indexed: 05/28/2023]
Abstract
Tens of thousands of metal-organic frameworks (MOFs) have been developed in the past two decades, and only ≈100 of them have been demonstrated as porous and hydrophobic. These hydrophobic MOFs feature not only a rich structural variety, highly crystalline frameworks, and uniform micropores, but also a low affinity toward water and superior hydrolytic stability, which make them promising adsorbents for diverse applications, including humid CO2 capture, alcohol/water separation, pollutant removal from air or water, substrate-selective catalysis, energy storage, anticorrosion, and self-cleaning. Herein, the recent research advancements in hydrophobic MOFs are presented. The existing techniques for qualitatively or quantitatively assessing the hydrophobicity of MOFs are first introduced. The reported experimental methods for the preparation of hydrophobic MOFs are then categorized. The concept that hydrophobic MOFs normally synthesized from predesigned organic ligands can also be prepared by the postsynthetic modification of the internal pore surface and/or external crystal surface of hydrophilic or less hydrophobic MOFs is highlighted. Finally, an overview of the recent studies on hydrophobic MOFs for various applications is provided and suggests the high versatility of this unique class of materials for practical use as either adsorbents or nanomaterials.
Collapse
Affiliation(s)
- Lin‐Hua Xie
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Ming‐Ming Xu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Xiao‐Min Liu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Min‐Jian Zhao
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Jian‐Rong Li
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| |
Collapse
|
15
|
Liu J, Zheng J, Barpaga D, Sabale S, Arey B, Derewinski MA, McGrail BP, Motkuri RK. A Tunable Bimetallic MOF‐74 for Adsorption Chiller Applications. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Liu
- Pacific Northwest National Laboratory 99352 Richland WA USA
| | - Jian Zheng
- Pacific Northwest National Laboratory 99352 Richland WA USA
| | | | - Sandip Sabale
- Pacific Northwest National Laboratory 99352 Richland WA USA
- P.G. Department of Chemistry Jaysingpur College 416101 Jaysingpur Maharashtra India
| | - Bruce Arey
- Environmental Molecular Sciences Laboratory (EMSL) Pacific Northwest National Laboratory 99352 Richland WA USA
| | | | | | | |
Collapse
|
16
|
Qin L, Sun ZY, Cheng K, Liu SW, Pang JX, Xia LM, Chen WH, Cheng Z, Chen JX. Zwitterionic Manganese and Gadolinium Metal-Organic Frameworks as Efficient Contrast Agents for in Vivo Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41378-41386. [PMID: 29144731 DOI: 10.1021/acsami.7b09608] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two water-stable three-dimensional Mn- and Gd-based metal-organic frameworks (MOFs), {[Mn2(Cmdcp)2(H2O)2]·H2O}n (1) and {[Gd(Cmdcp)(H2O)3](NO3)·3H2O}n (2, H3CmdcpBr = N-(4-carboxy benzyl)-(3,5-dicarboxyl)pyridinium bromide), have been prepared and analyzed. In vitro magnetic resonance imaging indicated that MOFs 1 and 2 possess relaxivity r1 values of 17.50 and 13.46 mM-1·S-1, respectively, which are superior to that of the control Gd-DTPA (r1 = 4.87 mM-1·S-1, DTPA = diethylene triamine pentaacetate). MOFs 1 and 2 also possessed good biocompatibility and low cytotoxicity against a model cell line. In vivo magnetic resonance images of treated Kunming mice indicated that kidneys showed remarkably positive signal enhancement after 15 min with intravenous administration of MOF 1 and the hyperintensity of both kidneys persisted for about 240 min with no obvious tissue damage. MOF 1 is therefore promising in vivo probes for imaging intravascular diseases and renal dysfunction.
Collapse
Affiliation(s)
- Liang Qin
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
- School of Chemistry and Chemical Engineering, Zhaoqing University , Zhaoqing 526061, China
| | - Zi-Yan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , 1095 Jiefang Avenue, Wuhan 430030, China
- Department of Radiology, School of Medicine, Stanford University , 1201 Welch Road, Lucas Center, Stanford, California 94305-5484, United States
| | - Kai Cheng
- Department of Radiology, School of Medicine, Stanford University , 1201 Welch Road, Lucas Center, Stanford, California 94305-5484, United States
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Jian-Xin Pang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Li-Ming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , 1095 Jiefang Avenue, Wuhan 430030, China
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Zhen Cheng
- Department of Radiology, School of Medicine, Stanford University , 1201 Welch Road, Lucas Center, Stanford, California 94305-5484, United States
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| |
Collapse
|
17
|
Li X, Xue Q, Chang X, Zhu L, Ling C, Zheng H. Effects of Sulfur Doping and Humidity on CO 2 Capture by Graphite Split Pore: A Theoretical Study. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8336-8343. [PMID: 28215069 DOI: 10.1021/acsami.6b14281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
By use of grand canonical Monte Carlo calculations, we study the effects of sulfur doping and humidity on the performance of graphite split pore as an adsorbent for CO2 capture. It is demonstrated that S doping can greatly enhance pure CO2 uptake by graphite split pore. For example, S-graphite split pore with 33.12% sulfur shows a 39.85% rise in pure CO2 uptake (51.001 mmol/mol) compared with pristine graphite split pore at 300 K and 1 bar. More importantly, it is found that S-graphite split pore can still maintain much higher CO2 uptake than that by pristine graphite split pore in the presence of water. Especially, uptake by 33.12% sulfur-doped S-graphite split pore is 51.963 mmol of CO2/mol in the presence of water, which is 44.34% higher than that by pristine graphite split pore at 300 K and 1 bar. In addition, CO2/N2 selectivity of S-graphite split pore increases with increasing S content, resulting from stronger interactions between CO2 and S-graphite split pore. Moreover, by use of density functional theory calculations, we demonstrate that S doping can enhance adsorption energy between CO2 molecules and S-graphene surface at different humidities and furthermore enhance CO2 uptake by S-graphite split pore. Our results indicate that S-graphite split pore is a promising adsorbent material for humid CO2 capture.
Collapse
Affiliation(s)
- Xiaofang Li
- State Key Laboratory of Heavy Oil Processing and College of Science, China University of Petroleum , Qingdao 266555, Shandong, People's Republic of China
| | - Qingzhong Xue
- State Key Laboratory of Heavy Oil Processing and College of Science, China University of Petroleum , Qingdao 266555, Shandong, People's Republic of China
| | - Xiao Chang
- State Key Laboratory of Heavy Oil Processing and College of Science, China University of Petroleum , Qingdao 266555, Shandong, People's Republic of China
| | - Lei Zhu
- State Key Laboratory of Heavy Oil Processing and College of Science, China University of Petroleum , Qingdao 266555, Shandong, People's Republic of China
| | - Cuicui Ling
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720, United States
| | - Haixia Zheng
- State Key Laboratory of Heavy Oil Processing and College of Science, China University of Petroleum , Qingdao 266555, Shandong, People's Republic of China
| |
Collapse
|
18
|
Interconvertible structural transformations between two Zn(II) interpenetrating coordination polymers. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Dasgupta S, Divekar S, Aarti, Spjelkavik AI, Didriksen T, Nanoti A, Blom R. Adsorption properties and performance of CPO-27-Ni/alginate spheres during multicycle pressure-vacuum-swing adsorption (PVSA) CO2 capture in the presence of moisture. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.06.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Gadipelli S, Guo ZX. Tuning of ZIF-Derived Carbon with High Activity, Nitrogen Functionality, and Yield - A Case for Superior CO2 Capture. CHEMSUSCHEM 2015; 8:2123-32. [PMID: 25917928 PMCID: PMC4515097 DOI: 10.1002/cssc.201403402] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/06/2015] [Indexed: 05/11/2023]
Abstract
A highly effective and facile synthesis route is developed to create and tailor metal-decorated and nitrogen-functionalized active microporous carbon materials from ZIF-8. Clear metal- and pyrrolic-N-induced enhancements of the cyclic CO2 uptake capacities and binding energies are achieved, particularly at a much lower carbonization temperature of 700 °C than those often reported (1000 °C). The high-temperature carbonization can enhance the porosity but only at the expense of considerable losses of sample yield and metal and N functional sites. The findings are comparatively discussed with carbons derived from metal-organic frameworks (MOFs) reported previously. Furthermore, the porosity of the MOF-derived carbon is critically dependent on the structure of the precursor MOF and the crystal growth. The current strategy offers a new and effective route for the creation and tuning of highly active and functionalized carbon structures in high yields and with low energy consumption.
Collapse
Affiliation(s)
- Srinivas Gadipelli
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (UK).
| | - Zheng Xiao Guo
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ (UK).
| |
Collapse
|
21
|
Mason JA, McDonald TM, Bae TH, Bachman JE, Sumida K, Dutton JJ, Kaye SS, Long JR. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J Am Chem Soc 2015; 137:4787-803. [PMID: 25844924 DOI: 10.1021/jacs.5b00838] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the large number of metal-organic frameworks that have been studied in the context of post-combustion carbon capture, adsorption equilibria of gas mixtures including CO2, N2, and H2O, which are the three biggest components of the flue gas emanating from a coal- or natural gas-fired power plant, have never been reported. Here, we disclose the design and validation of a high-throughput multicomponent adsorption instrument that can measure equilibrium adsorption isotherms for mixtures of gases at conditions that are representative of an actual flue gas from a power plant. This instrument is used to study 15 different metal-organic frameworks, zeolites, mesoporous silicas, and activated carbons representative of the broad range of solid adsorbents that have received attention for CO2 capture. While the multicomponent results presented in this work provide many interesting fundamental insights, only adsorbents functionalized with alkylamines are shown to have any significant CO2 capacity in the presence of N2 and H2O at equilibrium partial pressures similar to those expected in a carbon capture process. Most significantly, the amine-appended metal organic framework mmen-Mg2(dobpdc) (mmen = N,N'-dimethylethylenediamine, dobpdc (4-) = 4,4'-dioxido-3,3'-biphenyldicarboxylate) exhibits a record CO2 capacity of 4.2 ± 0.2 mmol/g (16 wt %) at 0.1 bar and 40 °C in the presence of a high partial pressure of H2O.
Collapse
Affiliation(s)
- Jarad A Mason
- †Department of Chemistry, University of California, Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas M McDonald
- †Department of Chemistry, University of California, Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tae-Hyun Bae
- †Department of Chemistry, University of California, Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jonathan E Bachman
- †Department of Chemistry, University of California, Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenji Sumida
- †Department of Chemistry, University of California, Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Justin J Dutton
- ‡Wildcat Discovery Technologies Inc., San Diego, California 92121, United States
| | - Steven S Kaye
- ‡Wildcat Discovery Technologies Inc., San Diego, California 92121, United States
| | - Jeffrey R Long
- †Department of Chemistry, University of California, Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
22
|
Sim J, Yim H, Ko N, Choi SB, Oh Y, Park HJ, Park S, Kim J. Gas adsorption properties of highly porous metal–organic frameworks containing functionalized naphthalene dicarboxylate linkers. Dalton Trans 2014; 43:18017-24. [DOI: 10.1039/c4dt02300e] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Magdysyuk OV, Adams F, Liermann HP, Spanopoulos I, Trikalitis PN, Hirscher M, Morris RE, Duncan MJ, McCormick LJ, Dinnebier RE. Understanding the adsorption mechanism of noble gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and ZIF-8. Phys Chem Chem Phys 2014; 16:23908-14. [DOI: 10.1039/c4cp03298e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Yuan MH, Wang L, Yang RT. Glow discharge plasma-assisted template removal of SBA-15 at ambient temperature for high surface area, high silanol density, and enhanced CO₂ adsorption capacity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8124-8130. [PMID: 24945746 DOI: 10.1021/la501794z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glow discharge plasma was successfully applied for effective removal of the organic template P-123 from SBA-15 ordered mesoporous silica at near-room-temperature (below 50 °C) and in a short operation time (2 h). The as-made SBA-15 treated with glow discharge exhibited a larger surface area of 1025 m(2) g(-1) with larger pores and microspore volume as compared with that of conventional calcination (550 °C and 5 h, 827 m(2) g(-1)). In addition to less structural shrinkage, the plasma-prepared SBA-15 showed significantly increased silanol density from 5.4 to 6.6-7.6 mmol g(-1), which led directly to higher amine loading from 1.8 to 3.0 mmol g(-1). Consequently, the plasma-treated sample showed 77% more CO2 capacity and 60% higher CO2/N2 selectivity than the conventionally treated sample at 0.15 bar and 25 °C. The advantage of using glow discharge plasma for low-temperature template removal for achieving enhanced performance for CO2 adsorption is clearly demonstrated.
Collapse
Affiliation(s)
- Min-Hao Yuan
- Department of Chemical Engineering, University of Michigan , 3074 H. H. Dow, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|