1
|
Tang T, Luo J, Zhang D, Lu Y, Liao W, Zhang J. Innovative design and potential applications of covalent strategy in drug discovery. Eur J Med Chem 2025; 284:117202. [PMID: 39756145 DOI: 10.1016/j.ejmech.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Covalent inhibitors provide persistent inhibition while maintaining excellent selectivity and efficacy by creating stable covalent connections with specific amino acids in target proteins. This technique enables the precise inhibition of previously undruggable targets, lowering the frequency of administration and potentially bypassing drug resistance. Because of these advantages, covalent inhibitors have tremendous potential in treating cancer, inflammation, and infectious illnesses, making them extremely important in modern pharmacological research. Covalent inhibitors targeting EGFR, BTK, and KRAS (G12X), which overcome drug resistance and off-target, non-"medicinal" difficulties, as well as covalent inhibitors targeting SARS-CoV-2 Mpro, have paved the way for the development of new antiviral medicines. Furthermore, the use of covalent methods in drug discovery procedures, such as covalent PROTACs, covalent molecular gels, covalent probes, CoLDR, and Dual-targeted covalent inhibitors, preserves these tactics' inherent features while incorporating the advantages of covalent inhibitors. This synthesis opens up new therapeutic opportunities. This review comprehensively examines the use of covalent techniques in drug discovery, emphasizing their transformational potential for future drug development.
Collapse
Affiliation(s)
- Tianyong Tang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxiang Luo
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Mehta NV, Degani MS. The expanding repertoire of covalent warheads for drug discovery. Drug Discov Today 2023; 28:103799. [PMID: 37839776 DOI: 10.1016/j.drudis.2023.103799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The reactive functionalities of drugs that engage in covalent interactions with the enzyme/receptor residue in either a reversible or an irreversible manner are called 'warheads'. Covalent warheads that were previously neglected because of safety concerns have recently gained center stage as a result of their various advantages over noncovalent drugs, including increased selectivity, increased residence time, and higher potency. With the approval of several covalent inhibitors over the past decade, research in this area has accelerated. Various strategies are being continuously developed to tune the characteristics of warheads to improve their potency and mitigate toxicity. Here, we review research progress in warhead discovery over the past 5 years to provide valuable insights for future drug discovery.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
3
|
Racioppo B, Qiu N, Adibekian A. Serine Hydrolase Activity‐Based Probes for use in Chemical Proteomics. Isr J Chem 2023. [DOI: 10.1002/ijch.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Brittney Racioppo
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Nan Qiu
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Alexander Adibekian
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
| |
Collapse
|
4
|
Walker ME, Simpson JB, Redinbo MR. A structural metagenomics pipeline for examining the gut microbiome. Curr Opin Struct Biol 2022; 75:102416. [PMID: 35841748 PMCID: PMC10039758 DOI: 10.1016/j.sbi.2022.102416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Metagenomic sequencing data provide a rich resource from which to expand our understanding of differential protein functions involved in human health. Here, we outline a pipeline that combines microbial whole genome sequencing with protein structure data to yield a structural metagenomics-informed atlas of microbial enzyme families of interest. Visualizing metagenomics data through a structural lens facilitates downstream studies including targeted inhibition and probe-based proteomics to define at the molecular level how different enzyme orthologs impact in vivo function. Application of this pipeline to gut microbial enzymes like glucuronidases, TMA lyases, and bile salt hydrolases is expected to pinpoint their involvement in health and disease and may aid in the development of therapeutics that target specific enzymes within the microbiome.
Collapse
Affiliation(s)
- Morgan E Walker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua B Simpson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrated Program for Biological and Genome Sciences, And Departments of Biochemistry and Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Ferraro V, Sole R, Bortoluzzi M, Beghetto V, Castro J. Tris
‐isocyanide copper(I) complex enabling copper azide‐alkyne cycloaddition in neat conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Valentina Ferraro
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
| | - Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Bari Italy
| | - Valentina Beghetto
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Bari Italy
- Crossing srl Treviso Italy
| | - Jesús Castro
- Departamento de Química Inorgánica Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais Vigo Spain
| |
Collapse
|
6
|
Carvalho LAR, Almeida VT, Brito JA, Lum KM, Oliveira TF, Guedes RC, Gonçalves LM, Lucas SD, Cravatt BF, Archer M, Moreira R. 3-Oxo-β-sultam as a Sulfonylating Chemotype for Inhibition of Serine Hydrolases and Activity-Based Protein Profiling. ACS Chem Biol 2020; 15:878-883. [PMID: 32176480 DOI: 10.1021/acschembio.0c00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Oxo-β-sultams are four-membered ring ambident electrophiles that can react with nucleophiles either at the carbonyl carbon or at the sulfonyl sulfur atoms, and that have been reported to inhibit serine hydrolases via acylation of the active-site serine residue. We have developed a panel of 3-oxo-β-sultam inhibitors and show, through crystallographic data, that they are regioselective sulfonylating electrophiles, covalently binding to the catalytic serine of human and porcine elastases through the sulfur atom. Application of 3-oxo-β-sultam-derived activity-based probes in a human proteome revealed their potential to label disease-related serine hydrolases and proteasome subunits. Activity-based protein profiling applications of 3-oxo-β-sultams should open up new opportunities to investigate these classes of enzymes in complex proteomes and expand the toolbox of available sulfur-based covalent protein modifiers in chemical biology.
Collapse
Affiliation(s)
- Luís A. R. Carvalho
- Department of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Vanessa T. Almeida
- Biological Chemistry Division, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - José A. Brito
- Biological Chemistry Division, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Kenneth M. Lum
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tânia F. Oliveira
- Biological Chemistry Division, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Rita C. Guedes
- Department of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Lídia M. Gonçalves
- Department of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Susana D. Lucas
- Department of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Margarida Archer
- Biological Chemistry Division, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Rui Moreira
- Department of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
7
|
Ray S, Murkin AS. New Electrophiles and Strategies for Mechanism-Based and Targeted Covalent Inhibitor Design. Biochemistry 2019; 58:5234-5244. [PMID: 30990686 DOI: 10.1021/acs.biochem.9b00293] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Covalent inhibitors are experiencing a growing resurgence in drug design and are an increasingly useful tool in molecular biology. The ability to attach inhibitors to their targets by a covalent linkage offers pharmacodynamic and pharmacokinetic advantages, but this can also be a liability if undesired off-target reactions are not mitigated. The discovery of new electrophilic groups that react selectively with specific amino acid residues is therefore highly desirable in the design of targeted covalent inhibitors (TCIs). Additionally, the ability to control the reactivity through exploitation of the target enzyme's machinery, as in mechanism-based inhibitors (MBIs), greatly benefits from the discovery of new strategies. This Perspective showcases recent advances in electrophile development and their application in TCIs and MBIs, exhibiting high selectivity for their targets.
Collapse
Affiliation(s)
- Sneha Ray
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| | - Andrew S Murkin
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
8
|
Vasudevan A, Argiriadi MA, Baranczak A, Friedman MM, Gavrilyuk J, Hobson AD, Hulce JJ, Osman S, Wilson NS. Covalent binders in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:1-62. [PMID: 30879472 DOI: 10.1016/bs.pmch.2018.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent modulation of protein function can have multiple utilities including therapeutics, and probes to interrogate biology. While this field is still viewed with scepticism due to the potential for (idiosyncratic) toxicities, significant strides have been made in terms of understanding how to tune electrophilicity to selectively target specific residues. Progress has also been made in harnessing the potential of covalent binders to uncover novel biology and to provide an enhanced utility as payloads for Antibody Drug Conjugates. This perspective covers the tenets and applications of covalent binders.
Collapse
Affiliation(s)
| | | | | | | | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC, South San Francisco, CA, United States
| | | | | | - Sami Osman
- AbbVie Bioresearch Center, Worcester, MA, United States
| | | |
Collapse
|
9
|
Mukherjee H, Grimster NP. Beyond cysteine: recent developments in the area of targeted covalent inhibition. Curr Opin Chem Biol 2018; 44:30-38. [DOI: 10.1016/j.cbpa.2018.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
|
10
|
Grygorenko OO, Biitseva AV, Zhersh S. Amino sulfonic acids, peptidosulfonamides and other related compounds. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Affiliation(s)
- Sudarshan Debnath
- Department of Chemistry; Syamsundar College; 713424 Shyamsundar India
| | - Shovan Mondal
- Department of Chemistry; Syamsundar College; 713424 Shyamsundar India
| |
Collapse
|
12
|
Rassadin VA, Scholz M, Klochkova AA, de Meijere A, Sokolov VV. Synthesis of benzannelated sultams by intramolecular Pd-catalyzed arylation of tertiary sulfonamides. Beilstein J Org Chem 2017; 13:1932-1939. [PMID: 29062411 PMCID: PMC5629375 DOI: 10.3762/bjoc.13.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 01/28/2023] Open
Abstract
A new and efficient approach to five- and six-membered benzannelated sultams by intramolecular C-arylation of tertiary 1-(methoxycarbonyl)methanesulfonamides under palladium catalysis is described. In case of the α-toluenesulfonamide derivative, an unexpected formation of a 2,3-diarylindole was observed under the same conditions.
Collapse
Affiliation(s)
- Valentin A Rassadin
- St. Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Mirko Scholz
- St. Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Anastasiia A Klochkova
- St. Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| | - Armin de Meijere
- Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| | - Victor V Sokolov
- St. Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg 199034, Russia
| |
Collapse
|
13
|
Abstract
Understanding the molecular mechanisms of bacterial pathogenesis and virulence is of great importance from both an academic and clinical perspective, especially in view of an alarming increase in bacterial resistance to existing antibiotics and antibacterial agents. Use of small molecules to dissect the basis of these dynamic processes is a very attractive approach due to their ability for rapid spatiotemporal control of specific biochemical functions. Activity-based protein profiling (ABPP), employing small molecule probes to interrogate enzyme activities in complex proteomes, has emerged as a powerful tool to study bacterial pathogenesis. In this chapter, we present a set of ABPP methods to identify and analyze enzymes essential for growth, metabolism and virulence of different pathogens including S. aureus and L. monocytogenes using natural product-inspired activity-based probes.
Collapse
|
14
|
Blackburn J, Molyneux G, Pitard A, Rice CR, Page MI, Afshinjavid S, Javid FA, Coles SJ, Horton PN, Hemming K. Synthesis, conformation and antiproliferative activity of isothiazoloisoxazole 1,1-dioxides. Org Biomol Chem 2016; 14:2134-44. [DOI: 10.1039/c5ob02586a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Isothiazoles (I) reacted with 1,3-dipoles or NaN3 to give cycloadducts (II) or thiazete (III). Thiazete (III) rearranged to give 1,2,3-oxathiazoline (IV).
Collapse
|
15
|
Dadová J, Vrábel M, Adámik M, Brázdová M, Pohl R, Fojta M, Hocek M. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA–Protein Cross‐Linking. Chemistry 2015; 21:16091-102. [DOI: 10.1002/chem.201502209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Jitka Dadová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Milan Vrábel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Matej Adámik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Marie Brázdová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 61265 Brno (Czech Republic)
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno (Czech Republic)
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences & IOCB Research Center, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Prague 2 (Czech Republic)
| |
Collapse
|
16
|
Shannon DA, Weerapana E. Covalent protein modification: the current landscape of residue-specific electrophiles. Curr Opin Chem Biol 2015; 24:18-26. [DOI: 10.1016/j.cbpa.2014.10.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/11/2022]
|
17
|
Horváth P, Šebej P, Šolomek T, Klán P. Small-Molecule Fluorophores with Large Stokes Shifts: 9-Iminopyronin Analogues as Clickable Tags. J Org Chem 2014; 80:1299-311. [DOI: 10.1021/jo502213t] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Peter Horváth
- Department
of Chemistry and
RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Peter Šebej
- Department
of Chemistry and
RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Šolomek
- Department
of Chemistry and
RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Klán
- Department
of Chemistry and
RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|