1
|
Liang G, Montesdeoca N, Tang D, Wang B, Xiao H, Karges J, Shang K. Facile one-pot synthesis of Ir(III) Bodipy polymeric gemini nanoparticles for tumor selective NIR photoactivated anticancer therapy. Biomaterials 2024; 309:122618. [PMID: 38797122 DOI: 10.1016/j.biomaterials.2024.122618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Over the last decades, a variety of metal complexes have been developed as chemotherapeutic agents. Despite the promising therapeutic prospects, the vast majority of these compounds suffer from low solubility, poor pharmacological properties, and most importantly poor tumor accumulation. To circumvent these limitations, herein, the incorporation of cytotoxic Ir(III) complexes and a variety of photosensitizers into polymeric gemini nanoparticles that selectively accumulate in the tumorous tissue and could be activated by near-infrared (NIR) light to exert an anticancer effect is reported. Upon exposure to light, the photosensitizer is able to generate singlet oxygen, triggering the rapid dissociation of the nanostructure and the activation of the Ir prodrug, thereby initiating a cascade of mitochondrial targeting and damage that ultimately leads to cell apoptosis. While selectively accumulating into tumorous tissue, the nanoparticles achieve almost complete eradication of the cisplatin-resistant cervical carcinoma tumor in vivo upon exposure to NIR irradiation.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.
| | - Kun Shang
- Department of Nuclear Medicine, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
2
|
Welsh A, Matshitse R, Khan SF, Nyokong T, Prince S, Smith GS. Trinuclear ruthenium(II) polypyridyl complexes: Evaluation as photosensitizers for enhanced cervical cancer treatment. J Inorg Biochem 2024; 256:112545. [PMID: 38581803 DOI: 10.1016/j.jinorgbio.2024.112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/08/2024]
Abstract
Trinuclear ruthenium(II) polypyridyl complexes anchored to benzimidazole-triazine / trisamine scaffolds were investigated as photosensitizers for photodynamic therapy. The trinuclear complexes were noted to produce a significant amount of singlet oxygen in both DMF and aqueous media, are photostable and show appreciable emission quantum yields (ɸem). In our experimental setting, despite the moderate phototoxic activity in the HeLa cervical cancer cell line, the phototoxic indices (PI) of the trinuclear complexes are superior relative to the PIs of a clinically approved photosensitizer, Photofrin®, and the pro-drug 5-aminolevulinic acid (PI: >7 relative to PI: >1 and PI: 4.4 for 5-aminolevulinic acid and Photofrin®, respectively). Furthermore, the ruthenium complexes were noted to show appreciable long-term cytotoxicity upon light irradiation in HeLa cells in a concentration-dependent manner. Consequently, this long-term activity of the ruthenium(II) polypyridyl complexes embodies their ability to reduce the probability of the recurrence of cervical cancer. Taken together, this presents a strong motivation for the development of polymetallic complexes as anticancer agents.
Collapse
Affiliation(s)
- Athi Welsh
- Department of Chemistry, University of Cape Town, Rondebosch 7700, ,South Africa
| | - Refilwe Matshitse
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Saif F Khan
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory, 7925, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, University of Cape Town, Faculty of Health Science, Observatory, 7925, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, Rondebosch 7700, ,South Africa.
| |
Collapse
|
3
|
Mishra S, Patra S. Aqueous emissive cyclometalated iridium photoreductants: synthesis, computational analysis and the photocatalytic reduction of 4-nitrophenol. Dalton Trans 2024; 53:8214-8222. [PMID: 38618673 DOI: 10.1039/d4dt00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Herein, we present luminescent mononuclear iridium complexes [1]3+-[4]3+ using NEt3-appended C^N chelating benzimidazole (L1-L4) and semi-flexible phenanthroline-pyrazine-based (phpy) ligands exhibiting photocatalytic reduction of 4-nitrophenol (4-NP) in the presence of NEt3 in an aqueous medium. The formation of [1]3+-[4]3+ was confirmed by HRMS, 1H-1H COSY, and 13C and 19F NMR spectroscopy. The complex [4]3+ is water soluble, whereas the others ([1]3+-[3]3+) are partially soluble. The complexes are luminescent in both CH3CN and H2O media. The DFT study reveals that the HOMO of [1]3+ resides on the C^N chelating benzimidazole and iridium center. However, it moves to the pyrazine-pyridine of the phpy unit in the case of [2]3+-[4]3+. The LUMOs are localized on the phenanthroline unit of phpy for all the complexes. This suggests an important role of the fluorine atom on electron density distribution. Spin density analysis demonstrates that the emission bands of the complexes arise from 3MLLCT states. The complex [4]3+ displays promising photocatalytic activity towards 4-NP photoreduction, whereas complexes [1]3+-[3]3+ exhibit lower reactivity. The mechanistic study suggests that the reaction proceeds through an oxidative quenching pathway, where 4-NP is reduced by accepting an electron from excited [Ir(III)] and gets oxidized to Ir(IV), which comes back to its original Ir(III) state by accepting an electron from the sacrificial electron donor NEt3.
Collapse
Affiliation(s)
- Saumyaranjan Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha-752050, India.
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha-752050, India.
| |
Collapse
|
4
|
Welsh A, Serala K, Prince S, Smith GS. Selective Targeting of Regulated Rhabdomyosarcoma Cells by Trinuclear Ruthenium(II)-Arene Complexes. J Med Chem 2024; 67:6673-6686. [PMID: 38569098 PMCID: PMC11056987 DOI: 10.1021/acs.jmedchem.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
The use of benzimidazole-based trinuclear ruthenium(II)-arene complexes (1-3) to selectively target the rare cancer rhabdomyosarcoma is reported. Preliminary cytotoxic evaluations of the ruthenium complexes in an eight-cancer cell line panel revealed enhanced, selective cytotoxicity toward rhabdomyosarcoma cells (RMS). The trinuclear complex 1 was noted to show superior short- and long-term cytotoxicity in RMS cell lines and enhanced selectivity relative to cisplatin. Remarkably, 1 inhibits the migration of metastatic RMS cells and maintains superior activity in a 3D multicellular spheroid model in comparison to that of the clinically used cisplatin. Mechanistic insights reveal that 1 effectively induces genomic DNA damage, initiates autophagy, and prompts the intrinsic and extrinsic apoptotic pathways in RMS cells. To the best of our knowledge, 1 is the first trinuclear ruthenium(II) arene complex to selectively kill RMS cells in 2D and 3D cell cultures.
Collapse
Affiliation(s)
- Athi Welsh
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Karabo Serala
- Department
of Human Biology, Faculty of Health Science, University of Cape Town, Observatory, Cape Town 7935, South Africa
| | - Sharon Prince
- Department
of Human Biology, Faculty of Health Science, University of Cape Town, Observatory, Cape Town 7935, South Africa
| | - Gregory S. Smith
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
5
|
Das U, Paira P. Exploring the phototoxicity of GSH-resistant 2-(5,6-dichloro-1 H-benzo[ d]imidazol-2-yl)quinoline-based Ir(III)-PTA complexes in MDA-MB-231 cancer cells. Dalton Trans 2024; 53:6459-6471. [PMID: 38512047 DOI: 10.1039/d3dt04361d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Metal complexes play a crucial role in photo-activated chemotherapy (PACT), which has recently been used to treat specific disorders. Triple-negative breast cancer has an enormously high rate of relapse due to the existence and survival of cancer stem cells (CSCs) characterized by increased amounts of glutathione (GSH). Hence, designing a phototoxic molecule is an enticing area of research to combat triple-negative breast cancer (TNBC) via GSH depletion and DNA photocleavage. Herein, we focus on the application of PTA and non-PTA Ir(III) complexes for phototoxicity in the absence and presence of GSH against MDA-MB-231 TNBC cells. Between these two complexes, [Cp*IrIII(DD)PTA]·2Cl (DDIRP) exhibited better phototoxicity (IC50 ∼ 2.80 ± 0.52 μM) compared to the non-PTA complex [Cp*IrIII(DD)Cl]·Cl (DDIR) against TNBC cells because of the high GSH resistance power of the complex DDIRP. The significant potency of the complex DDIRP under photo irradiation in both normoxia and hypoxia conditions can be attributed to selective transportation, high cellular permeability and uptake towards the nucleus, GSH depletion by GSH-GSSG conversion, the ability of strong DNA binding including intercalation, and oxidative stress. The strong affinity to serum albumin, which serves as a carrier protein, aids in the transport of the complex to its target site while preventing glutathione (GSH) deactivation. Consequently, the complex DDIRP was developed as a suitable phototoxic complex in selective cancer therapy, ruling over the usual chemotherapeutic drug cisplatin and the PDT drug Photofrin. The ability of ROS generation under hypoxic conditions delivers this complex as a hypoxia-efficient selective metallodrug for the treatment of TNBC.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Getreuer P, Marretta L, Toyoglu E, Dömötör O, Hejl M, Prado-Roller A, Cseh K, Legin AA, Jakupec MA, Barone G, Terenzi A, Keppler BK, Kandioller W. Investigating the anticancer potential of 4-phenylthiazole derived Ru(II) and Os(II) metalacycles. Dalton Trans 2024; 53:5567-5579. [PMID: 38426897 DOI: 10.1039/d4dt00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this contribution we report the synthesis, characterization and in vitro anticancer activity of novel cyclometalated 4-phenylthiazole-derived ruthenium(II) (2a-e) and osmium(II) (3a-e) complexes. Formation and sufficient purity of the complexes were unambigiously confirmed by 1H-, 13C- and 2D-NMR techniques, X-ray diffractometry, HRMS and elemental analysis. The binding preferences of these cyclometalates to selected amino acids and to DNA models including G-quadruplex structures were analyzed. Additionally, their stability and behaviour in aqueous solutions was determined by UV-Vis spectroscopy. Their cellular accumulation, their ability of inducing apoptosis, as well as their interference in the cell cycle were studied in SW480 colon cancer cells. The anticancer potencies were investigated in three human cancer cell lines and revealed IC50 values in the low micromolar range, in contrast to the biologically inactive ligands.
Collapse
Affiliation(s)
- Paul Getreuer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Laura Marretta
- STEBICEF-Department, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Emine Toyoglu
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Orsolya Dömötör
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, 6720 Szeged, Hungary
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Alexander Prado-Roller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Anton A Legin
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Giampaolo Barone
- STEBICEF-Department, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Alessio Terenzi
- STEBICEF-Department, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| |
Collapse
|
7
|
Gonzalo-Navarro C, Zafon E, Organero JA, Jalón FA, Lima JC, Espino G, Rodríguez AM, Santos L, Moro AJ, Barrabés S, Castro J, Camacho-Aguayo J, Massaguer A, Manzano BR, Durá G. Ir(III) Half-Sandwich Photosensitizers with a π-Expansive Ligand for Efficient Anticancer Photodynamic Therapy. J Med Chem 2024; 67:1783-1811. [PMID: 38291666 PMCID: PMC10859961 DOI: 10.1021/acs.jmedchem.3c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
One approach to reduce the side effects of chemotherapy in cancer treatment is photodynamic therapy (PDT), which allows spatiotemporal control of the cytotoxicity. We have used the strategy of coordinating π-expansive ligands to increase the excited state lifetimes of Ir(III) half-sandwich complexes in order to facilitate the generation of 1O2. We have obtained derivatives of formulas [Cp*Ir(C∧N)Cl] and [Cp*Ir(C∧N)L]BF4 with different degrees of π-expansion in the C∧N ligands. Complexes with the more π-expansive ligand are very effective photosensitizers with phototoxic indexes PI > 2000. Furthermore, PI values of 63 were achieved with red light. Time-dependent density functional theory (TD-DFT) calculations nicely explain the effect of the π-expansion. The complexes produce reactive oxygen species (ROS) at the cellular level, causing mitochondrial membrane depolarization, cleavage of DNA, nicotinamide adenine dinucleotide (NADH) oxidation, as well as lysosomal damage. Consequently, cell death by apoptosis and secondary necrosis is activated. Thus, we describe the first class of half-sandwich iridium cyclometalated complexes active in PDT.
Collapse
Affiliation(s)
- Carlos Gonzalo-Navarro
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Elisenda Zafon
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Juan Angel Organero
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímicas and INAMOL, Universidad
de Castilla-La Mancha, 45071 Toledo, Spain
| | - Félix A. Jalón
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Joao Carlos Lima
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gustavo Espino
- Departamento
de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001 Burgos, Spain
| | - Ana María Rodríguez
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Escuela Técnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 3, 13071 Ciudad Real, Spain
| | - Lucía Santos
- Departamento
de Química Física, Facultad de Ciencias y Tecnologías
Químicas, Universidad de Castilla-La
Mancha, Avda. C. J. Cela,
s/n, 13071 Ciudad
Real, Spain
| | - Artur J. Moro
- LAQV-REQUIMTE,
Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sílvia Barrabés
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Jessica Castro
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Javier Camacho-Aguayo
- Analytical
Chemistry Department, Analytic Biosensors Group, Instituto de Nanociencia
y Nanomateriales de Aragon, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| | - Anna Massaguer
- Departament
de Biologia, Facultat de Ciències, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Blanca R. Manzano
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| | - Gema Durá
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-
IRICA, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. C. J. Cela, 10, 13071 Ciudad Real, Spain
| |
Collapse
|
8
|
Gadre S, M M, Chakraborty G, Rayrikar A, Paul S, Patra C, Patra M. Development of a Highly In Vivo Efficacious Dual Antitumor and Antiangiogenic Organoiridium Complex as a Potential Anti-Lung Cancer Agent. J Med Chem 2023; 66:13481-13500. [PMID: 37784224 DOI: 10.1021/acs.jmedchem.3c00704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
While the phenomenal clinical success of blockbuster platinum (Pt) drugs is highly encouraging, the inherent and acquired resistance and dose-limiting side effects severely limit their clinical application. To find a better alternative with translational potential, we synthesized a library of six organo-IrIII half-sandwich [(η5-CpX)Ir(N∧N)Cl]+-type complexes. In vitro screening identified two lead candidates [(η5-CpXPh)Ir(Ph2Phen)Cl]+ (5, CpXPh = tetramethyl-phenyl-cyclopentadienyl and Ph2Phen = 4,7-diphenyl-1,10-phenanthroline) and [(η5-CpXBiPh)Ir(Ph2Phen)Cl]+ (6, CpXBiPh = tetramethyl-biphenyl-cyclopentadienyl) with nanomolar IC50 values. Both 5 and 6 efficiently overcame Pt resistance and presented excellent cancer cell selectivity in vitro. Potent antiangiogenic properties of 6 were demonstrated in the zebrafish model. Satisfyingly, 6 and its nanoliposome Lipo-6 presented considerably higher in vivo antitumor efficacy as compared to cisplatin, as well as earlier reported IrIII half-sandwich complexes in mice bearing the A549 non-small lung cancer xenograft. In particular, complex 6 is the first example of this class that exerted dual in vivo antiangiogenic and antitumor properties.
Collapse
Affiliation(s)
- Shubhankar Gadre
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Manikandan M
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Gourav Chakraborty
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Subhadeep Paul
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, G G Agarkar Road, Pune, Maharashtra 411004, India
| | - Malay Patra
- Medicinal Chemistry and Cell Biology Laboratory, Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, Maharashtra 400005, India
| |
Collapse
|
9
|
Marco A, Vigueras G, Busto N, Cutillas N, Bautista D, Ruiz J. Novel valproate half-sandwich rhodium and iridium conjugates to fight against multidrug-resistant Gram-positive bacteria. Dalton Trans 2023; 52:13482-13486. [PMID: 37358044 DOI: 10.1039/d3dt01678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
New valproate Ir(III) and Rh(III) half-sandwich conjugates containing a C,N-phenylbenzimidazole chelated ligand have been synthesized and characterized. The valproic acid conjugation to organometallic fragments seems to switch on the antibacterial activity of the complexes towards Enterococcus faecium and Staphylococcus aureus Gram-positive bacteria.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain.
| | - Gloria Vigueras
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain.
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, E-09001, Burgos, Spain.
- Departamento de Ciencias de la Salud. Facultad de Ciencias de la Salud. Universidad de Burgos, Hospital Militar, Paseo de los Comendadores, s/n, 09001 Burgos, Spain
| | - Natalia Cutillas
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain.
| | | | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain.
| |
Collapse
|
10
|
Kumarasamy K, Devendhiran T, Marthandam Asokan S, Ramaswamy M, Lin MC, Chien WJ, Kumar Ramasamy S, Huang CY. Synthesis and structural characterization of C,N-benzimidazole based ruthenium(II) complex with in vitro anticancer activity. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Singh S, Navale GR, Agrawal S, Singh HK, Singla L, Sarkar D, Sarma M, Choudhury AR, Ghosh K. Design and synthesis of ruthenium complexes and their studies on the inhibition of amyloid β (1-42) peptide aggregation. Int J Biol Macromol 2023; 239:124197. [PMID: 36972817 DOI: 10.1016/j.ijbiomac.2023.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Misfolding and protein aggregation have been linked to numerous human neurodegenerative disorders such as Alzheimer's, prions, and Parkinson's. Due to their interesting photophysical properties, ruthenium (Ru) complexes have received considerable attention in studying protein aggregation. In this study, we synthesized the novel Ru complexes ([Ru(p-cymene)Cl(L-1)][PF6](Ru-1), and [Ru(p-cymene)Cl(L-2)][PF6](Ru-2)) and investigated their inhibitory activity against the bovine serum albumin (BSA) aggregation and the Aβ1-42 peptides amyloid formation. Several spectroscopic methods were used to characterize the complexes, and the molecular structure was determined by X-ray crystallography. Amyloid aggregation and inhibition activity were examined using the Thioflavin-T (ThT) assay, and secondary structures were analyzed by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). The cell viability assay was carried out on the neuroblastoma cell line, revealing that the Ru-2 complex showed better protective effects against Aβ1-42 peptide toxicity on neuro-2a cells than the Ru-1 complex. Molecular docking studies elucidate binding sites and interactions between the Ru-complexes and the Aβ1-42 fibrils. The experimental studies revealed that these complexes significantly inhibited BSA aggregation and Aβ1-42 amyloid fibril formation at 1:3 and 1:1 equimolar concentrations, respectively. Antioxidant assays demonstrated that these complexes act as antioxidants, protecting from amyloid-induced oxidative stress. Molecular docking studies with the monomeric Aβ1-42 (PDB: 1IYT) show hydrophobic interaction, and both complexes bind preferably in the central region of the peptide and coordinate with two binding sites of the peptide. Hence, we suggest that the Ru-based complexes could be applied as a potential agent in metallopharmaceutical research against Alzheimer's disease.
Collapse
Affiliation(s)
- Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Labhini Singla
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Anghuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
12
|
Gaware S, Chatterjee R, Dhayalan V, Dandela R. Metal-free One-pot Synthesis of 2-Substituted Benzimidazoles from N-Aryl Imines and TMSN3. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Gretarsdottir J, Lambert IH, Sturup S, Suman SG. In Vitro Characterization of a Threonine-Ligated Molybdenyl-Sulfide Cluster as a Putative Cyanide Poisoning Antidote; Intracellular Distribution, Effects on Organic Osmolyte Homeostasis, and Induction of Cell Death. ACS Pharmacol Transl Sci 2022; 5:907-918. [PMID: 36268119 PMCID: PMC9578141 DOI: 10.1021/acsptsci.2c00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Binuclear molybdenum sulfur complexes are effective for the catalytic conversion of cyanide into thiocyanate. The complexes themselves exhibit low toxicity and high aqueous solubility, which render them suitable as antidotes for cyanide poisoning. The binuclear molybdenum sulfur complex [(thr)Mo2O2(μ-S)2(S2)]- (thr - threonine) was subjected to biological studies to evaluate its cellular accumulation and mechanism of action. The cellular uptake and intracellular distribution in human alveolar (A549) cells, quantified by inductively coupled plasma mass spectrometry (ICP-MS) and cell fractionation methods, revealed the presence of the compound in cytosol, nucleus, and mitochondria. The complex exhibited limited binding to DNA, and using the expression of specific protein markers for cell fate indicated no effect on the expression of stress-sensitive channel components involved in cell volume regulation, weak inhibition of cell proliferation, no increase in apoptosis, and even a reduction in autophagy. The complex is anionic, and the sodium complex had higher solubility compared to the potassium. As the molybdenum complex possibly enters the mitochondria, it is considered as a promising remedy to limit mitochondrial cyanide poisoning following, e.g., smoke inhalation injuries.
Collapse
Affiliation(s)
| | - Ian H. Lambert
- Department
of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen Ø, Denmark
| | - Stefan Sturup
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Sigridur G. Suman
- Science
Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
15
|
Msimango N, Welsh A, Prince S, Smith GS. Synthesis and anticancer evaluation of trinuclear N^N quinolinyl-benzimidazole-based PGM complexes. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Raju S, Sheridan PE, Hauer AK, Garrett AE, McConnell DE, Thornton JA, Stokes SL, Emerson J. Cu-Catalyzed Chan-Evans-Lam Coupling reactions of 2-Nitroimidazole with Aryl boronic acids: An effort toward new bioactive agents against S. pneumoniae. Chem Biodivers 2022; 19:e202200327. [PMID: 35819995 PMCID: PMC10184775 DOI: 10.1002/cbdv.202200327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
The coupling of phenylboronic acids with poorly-activated imidazoles is studied as a model system to explore the use of copper-catalyzed Chan-Evans-Lam (CEL) coupling for targeted C-N bond forming reactions. Optimized CEL reaction conditions are reported for four phenanthroline-based ligand systems, where the ligand 4,5-diazafluoren-9-one (dafo, L2 ) with 1 molar equivalent of potassium carbonate yielded the highest reactivity. The substrate 2-Nitroimidazole (also known as azomycin) has documented antimicrobial activity against a range of microbes. Here N-arylation of 2-nitroimidazole with a range of aryl boronic acids has been successfully developed by copper(II)-catalyzed CEL reactions. Azomycin and a range of newly arylated azomycin derivatives were screened against S. pneumoniae , where 1-(4-(benzyloxy)phenyl)-2-nitro-1H-imidazole ( 3d ) was demonstrated to have a minimal inhibition concentration value of 3.3 μg/mL.
Collapse
Affiliation(s)
- Selvam Raju
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Laboratory, 39762, Mississippi State, UNITED STATES
| | - Patrick E Sheridan
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Alanna K Hauer
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Allyn E Garrett
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Danielle E McConnell
- Mississippi State University, Biological Sciences, Harned Hall, 39762, Mississippi State, UNITED STATES
| | - Justin A Thornton
- Mississippi State University, Biological Sciences, Harned Hall, 39762, Mississippi State, UNITED STATES
| | - Sean L Stokes
- Mississippi State University, Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Joseph Emerson
- Mississippi State University, Chemistry, 1115 Hand Laboratory, 310 President's circle, 39762, Mississippi State, UNITED STATES
| |
Collapse
|
17
|
Wang J, Zhang Y, Li Y, Li E, Ye W, Pan J. Dinuclear Organoruthenium Complex for Mitochondria-Targeted Near-Infrared Imaging and Anticancer Therapy to Overcome Platinum Resistance. Inorg Chem 2022; 61:8267-8282. [PMID: 35584546 DOI: 10.1021/acs.inorgchem.2c00714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
New mononuclear and dinuclear Ru(II) coordination compounds with the 2,7-bisbenzoimidazolyl-naphthyridine ligand have been synthesized and characterized by UV-vis, NMR, and MALDI-TOF. The molecular structures for Ru(II) compounds were determined by single-crystal X-ray diffraction. With the expansion of ligand π-conjugation and the increase in the complexed Ru number, the maximum emission wavelength red-shifted from 696 to 786 nm. The binding mode between complexes and DNA was predicted by molecular docking, which is intercalations and π-π stacking interactions with the surrounding bases. The intercalation mode of DNA binding was then determined by DNA titration and ethidium bromide (EB) displacement experiments. The antigrowth effects of complexes RuY, RuY1, and RuY2 were tested in HaCat (normal cells), HeLa (cervical cancer), A549 (lung cancer), and A549/DDP (cisplatin-resistant lung cancer) through the MTT assay. The dinuclear complex RuY2 was superior to mononuclear complexes and cisplatin in the cisplatin-resistant cell line. Confocal imaging proved that the subcellular localization of Ru(II) complexes was mitochondria; moreover, apoptosis was detected by flow cytometry. All three complexes showed a dose-dependent manner in all four cell lines. All Ru(II) complexes were found to have reactive oxygen species (ROS). The finding indicated that these Ru(II) complexes caused cell death by both DNA disruption and ROS. This study helps to explore the potential of the polynuclear Ru(II) complexes for the combination of NIR imaging and Pt-resistant cancer therapy.
Collapse
Affiliation(s)
- Jiaoyang Wang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yufei Zhang
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yifan Li
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Enbo Li
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Wenjing Ye
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.,National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan 430062, P. R. China
| | - Jie Pan
- Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
18
|
Khan RA, AlFawaz A, Farshori NN, Paul A, Jaafar MH, Alsalme A. Aminobenzimidazoles based (η
6
‐p‐cymene)Ruthenium (II) complexes as Nascent Anticancer Chemotherapeutics: Synthesis, Crystal Structure, DFT Studies, HSA Interactions, Molecular Docking, and Cytotoxicity. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| | - Amal AlFawaz
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| | - Nida N. Farshori
- Department of Pharmacognosy College of Pharmacy, King Saud University Riyadh KSA
| | - Anup Paul
- Centro de Quimica Estrutural, Instituto Superior Tecnio, Unversidade de Lisboa Lisboa Portugal
| | - Mohammed H. Jaafar
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| | - Ali Alsalme
- Department of Chemistry College of Science, King Saud University Riyadh KSA
| |
Collapse
|
19
|
Sohrabi M, Bikhof Torbati M, Lutz M, Meghdadi S, Farrokhpour H, Amiri A, Amirnasr M. Application of cyclometalated rhodium(III) complexes as therapeutic agents in biomedical and luminescent cellular imaging. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Navale G, Singh S, Agrawal S, Ghosh C, Roy Choudhury A, Roy P, Sarkar D, Ghosh K. DNA binding, antitubercular, antibacterial and anticancer studies of newly designed piano-stool ruthenium( ii) complexes. Dalton Trans 2022; 51:16371-16382. [DOI: 10.1039/d2dt02577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemotherapeutic potential of ruthenium(ii) complexes as DNA binding, antitubercular, antibacterial, and anticancer agents.
Collapse
Affiliation(s)
- Govinda Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Chandrachur Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| |
Collapse
|
21
|
Panchangam RL, Rao RN, Balamurali MM, Hingamire TB, Shanmugam D, Manickam V, Chanda K. Antitumor Effects of Ir(III)-2 H-Indazole Complexes for Triple Negative Breast Cancer. Inorg Chem 2021; 60:17593-17607. [PMID: 34767343 DOI: 10.1021/acs.inorgchem.1c02193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we have synthesized a series of novel C,N-cyclometalated 2H-indazole-ruthenium(II) and -iridium(III) complexes with varying substituents (H, CH3, isopropyl, and CF3) in the R4 position of the phenyl ring of the 2H-indazole chelating ligand. All of the complexes were characterized by 1H, 13C, high-resolution mass spectrometry, and elemental analysis. The methyl-substituted 2H-indazole-Ir(III) complex was further characterized by single-crystal X-ray analysis. The cytotoxic activity of new ruthenium(II) and iridium(III) compounds has been evaluated in a panel of triple negative breast cancer (TNBC) cell lines (MDA-MB-231 and MDA-MB-468) and colon cancer cell line HCT-116 to investigate their structure-activity relationships. Most of these new complexes have shown appreciable activity, comparable to or significantly better than that of cisplatin in TNBC cell lines. R4 substitution of the phenyl ring of the 2H-indazole ligand with methyl and isopropyl substituents showed increased potency in ruthenium(II) and iridium(III) complexes compared to that of their parent compounds in all cell lines. These novel transition metal-based complexes exhibited high specificity toward cancer cells by inducing alterations in the metabolism and proliferation of cancer cells. In general, iridium complexes are more active than the corresponding ruthenium complexes. The new Ir(III)-2H-indazole complex with an isopropyl substituent induced mitochondrial damage by generating large amounts of reactive oxygen species (ROS), which triggered mitochondrion-mediated apoptosis in TNBC cell line MDA-MB-468. Moreover, this complex also induced G2/M phase cell cycle arrest and inhibited cellular migration of TNBC cells. Our findings reveal the key roles of the novel C-N-cyclometalated 2H-indazole-Ir(III) complex to specifically induce toxicity in cancer cell lines through contributing effects of ROS-induced mitochondrial disruption along with chromosomal and mitochondrial DNA target inhibition.
Collapse
Affiliation(s)
- Rajeeva Lochana Panchangam
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Ramdas Nishanth Rao
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore 632014, India
| | - Musuvathi Motilal Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, India
| | - Tejashri B Hingamire
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Venkatraman Manickam
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
22
|
Welsh A, Mbaba M, Prince S, Smith GS. Synthesis, molecular modeling and preliminary anticancer evaluation of 2-ferrocenylbenzimidazole metallofragments. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Muley A, Karumban KS, Gupta P, Kumbhakar S, Giri B, Raut R, Misra A, Maji S. Synthesis, structure, spectral, redox properties and anti-cancer activity of Ruthenium(II) Arene complexes with substituted Triazole Ligands. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Gao J, Guo L, Wu Y, Cheng Y, Hu X, Liu J, Liu Z. 16-Electron Half-Sandwich Rhodium(III), Iridium(III), and Ruthenium(II) Complexes as Lysosome-Targeted Anticancer Agents. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jie Gao
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lihua Guo
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuting Wu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yihan Cheng
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xueyan Hu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jinfeng Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
25
|
Wang L, Huang C, Hu F, Cui W, Li Y, Li J, Zong J, Liu X, Yuan XA, Liu Z. Preparation and antitumor application of N-phenylcarbazole/triphenylamine-modified fluorescent half-sandwich iridium(III) Schiff base complexes. Dalton Trans 2021; 50:15888-15899. [PMID: 34709269 DOI: 10.1039/d1dt02959b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Four N-phenylcarbazole/triphenylamine-appended half-sandwich iridium(III) salicylaldehyde Schiff base complexes ([(η5-Cpx)Ir(O^N)Cl]) were prepared and characterized. The complexes exhibited similar antitumor activity to cisplatin and effectively inhibited the migration of tumor cells. Furthermore, the complexes showed favourable hydrolytic activity, while remaining relatively stable in the plasma environment, which facilitated the binding of serum proteins and transport through them. These complexes could decrease the mitochondrial membrane potential, catalyze the oxidation of nicotinamide adenine dinucleotide, induce an increase in intracellular reactive oxygen species (ROS), and eventually result in apoptosis. Aided by their suitable fluorescence property, laser confocal detection showed that the complexes followed an energy-dependent mechanism for their cellular uptake, effectively accumulating in the lysosome and leading to lysosomal damage. In summary, the half-sandwich iridium(III) salicylaldehyde Schiff base complexes could induce lysosomal damage, increase intracellular ROS, and lead to apoptosis, which contributed to their antitumor mechanism of oxidation.
Collapse
Affiliation(s)
- Liyan Wang
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Chenyang Huang
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Fenglian Hu
- Liuhang Middle School, Jining High-tech Zone, Jining 272173, China
| | - Wen Cui
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yiqing Li
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Jingwen Li
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Jiawen Zong
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xicheng Liu
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xiang-Ai Yuan
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Zhe Liu
- Institute of Antitumor Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
26
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Guo L, Hu X, Yang Y, An W, Gao J, Liu Q, Liu Z. Synthesis and biological evaluation of zwitterionic half-sandwich Rhodium(III) and Ruthenium(II) organometallic complexes. Bioorg Chem 2021; 116:105311. [PMID: 34474302 DOI: 10.1016/j.bioorg.2021.105311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Herein we present the synthesis and characterization of a panel of structurally related zwitterionic piano-stool rhodium(III) and ruthenium(II) complexes. The identities of these novel complexes have been determined by NMR spectroscopy, mass spectrometry, elemental analysis and single-crystal X-ray crystallography. The stability and fluorescence property of these zwitterionic complexes were also confirmed. Zwitterionic rhodium(III) complexes Rh1-Rh4 displayed potent cytotoxic activity against A549 and HeLa human cancer cells. On the contrary, zwitterionic ruthenium(II) complexes Ru1-Ru4 presented no obvious cytotoxic activity to the test cell lines. Moreover, the trend that the introduction of fluorinated substituent and phenyl ring in the η5-CpR ring and N,N-chelating ligand, respectively, could enhance the cytotoxicity of these zwitterionic rhodium(III) complexes, were observed. The exploration of mechanism using flow cytometry displayed that the cytotoxicity of these rhodium(III) complexes was associated with the perturbation of the cell cycle and the induction of cell apoptosis. Furthermore, microscopic analysis using confocal microscopy indicated that the representative rhodium(III) complex Rh4 entered A549 cells via energy-dependent pathway and predominantly accumulated in lysosomes, thus leading to the disruption of lysosomal integrity.
Collapse
Affiliation(s)
- Lihua Guo
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xueyan Hu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yanjing Yang
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Wenyu An
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Jie Gao
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Qin Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Zhe Liu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
28
|
Das U, Kar B, Pete S, Paira P. Ru(ii), Ir(iii), Re(i) and Rh(iii) based complexes as next generation anticancer metallopharmaceuticals. Dalton Trans 2021; 50:11259-11290. [PMID: 34342316 DOI: 10.1039/d1dt01326b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several anticancer drugs such as cisplatin, and its analogues, epirubicin, and doxorubicin are well known for their anticancer activity but the therapeutic value of these drugs comes with certain side effects and they cannot distinguish between normal and cancer cells. Thus, a major challenge for researchers around the world is to develop an anticancer drug with the least toxicity and more target specificity. With the successful reporting of NAMI-A and KP1019, a new path has emerged in the anticancer field. Recently, several Ru(ii) complexes have been reported for their anticancer activity due to their enhanced cellular uptake and selectivity towards cancer cells. Apart from the Ru(ii) complexes, a large amount of research has been carried out with Ir(iii), Re(i), and Rh(iii) based complexes, which exhibited promising anticancer activity. The present review reports various Ru(ii), Ir(iii), Re(i), and Rh(iii) based complexes for their anticancer activity based on their cytotoxicity profiles, biological targets and mechanism of action.
Collapse
Affiliation(s)
- Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | | | | | | |
Collapse
|
29
|
Synthesis, Characterization, and Anticancer Activity of Benzothiazole Aniline Derivatives and Their Platinum (II) Complexes as New Chemotherapy Agents. Pharmaceuticals (Basel) 2021; 14:ph14080832. [PMID: 34451928 PMCID: PMC8399196 DOI: 10.3390/ph14080832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 12/05/2022] Open
Abstract
We describe the synthesis, characterization, molecular modeling, and in vitro anticancer activity of three benzothiazole aniline (BTA) ligands and their corresponding platinum (II) complexes. We designed the compounds based on the selective antitumor properties of BTA, along with three types of metallic centers, aiming to take advantage of the distinctive and synergistic activity of the complexes to develop anticancer agents. The compounds were characterized using nuclear magnetic resonance spectrometry, Fourier transform infrared spectroscopy, mass spectrometry, elemental analysis, and tested for antiproliferative activity against multiple normal and cancerous cell lines. L1, L2, and L1Pt had better cytotoxicity in the liver, breast, lung, prostate, kidney, and brain cells than clinically used cisplatin. Especially, L1 and L1Pt demonstrated selective inhibitory activities against liver cancer cells. Therefore, these compounds can be a promising alternative to the present chemotherapy drugs.
Collapse
|
30
|
Mansour AM, Radacki K, Shehab OR. Sulfonate improves water solubility and cell selective toxicity and alters the lysozyme binding activity of half sandwich Rh(iii) complexes. Dalton Trans 2021; 50:10701-10706. [PMID: 34337627 DOI: 10.1039/d1dt00979f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of the propyl-sulfonic acid group at N1 of the coordinated 2-(2-pyridyl)benzimidazole ligand (L) in [RhCl(η5-C5Me5)L](CF3SO3) gives rise to a water-soluble complex, which can bind to the model protein lysozyme via non-covalent interactions. The complex shows selective moderate toxicity against Cryptococcus neoformans (MIC = 21.6-43.3 μM) and exhibits no cytotoxicity to healthy HEK293 cells.
Collapse
Affiliation(s)
- Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
31
|
Shao M, Liu X, Sun Y, Dou S, Chen Q, Yuan XA, Tian L, Liu Z. Preparation and the anticancer mechanism of configuration-controlled Fe(II)-Ir(III) heteronuclear metal complexes. Dalton Trans 2021; 49:12599-12609. [PMID: 32857087 DOI: 10.1039/d0dt02408b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A series of configuration-controlled Fe(ii)-Ir(iii) heteronuclear metal complexes, including ferrocene and half-sandwich like iridium(iii) complex units, have been designed and prepared. These complexes show better anticancer activity than cisplatin under the same conditions, especially cis-configurational ones. Laser confocal microscopy analysis confirms that the complexes follow a non-energy-dependent cellular uptake mechanism, accumulate in lysosomes (pearson co-localization coefficient: ∼0.7), lead to lysosomal damage, and eventually induce apoptosis. These complexes can reduce the mitochondrial membrane potential, disturb the cell circle, catalyze the oxidation of nicotinamide-adenine dinucleotide (NADH) and increase the levels of intracellular reactive oxygen species (ROS), following an anticancer mechanism of oxidation. In addition, the complexes could bind to serum protein, and transport through it. Above all, the Fe(ii)-Ir(iii) heteronuclear metal complexes hold promise as potential anticancer agents for further study.
Collapse
Affiliation(s)
- Mingxiao Shao
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xicheng Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Yiwei Sun
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Shuaihua Dou
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Qi Chen
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xiang-Ai Yuan
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Laijin Tian
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application, The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
32
|
Turgut E, Gungor O, Kirpik H, Kose A, Gungor SA, Kose M. Benzimidazole ligands with allyl, propargyl or allene groups, DNA binding properties, and molecular docking studies. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Enes Turgut
- Chemistry Department Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
| | - Ozge Gungor
- Chemistry Department Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
| | - Hilal Kirpik
- Chemistry Department Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
| | - Ayşegül Kose
- Bioengineering and Sciences Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
- Department of Property Protection and Safety, Elbistan Vocational School Istiklal University Kahramanmaras Turkey
| | - Seyit Ali Gungor
- Chemistry Department Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
| | - Muhammet Kose
- Chemistry Department Kahramanmaras Sutcu Imam University Kahramanmaras Turkey
| |
Collapse
|
33
|
Abstract
Platinum-based anticancer drugs are most likely the most successful group of bioinorganic compounds. Their apparent disadvantages have led to the development of anticancer compounds of other noble metals, resulting in several ruthenium-based drugs which have entered clinical trials on oncological patients. Besides ruthenium, numerous rhodium complexes have been recently reported as highly potent antiproliferative agents against various human cancer cells, making them potential alternatives to Pt- and Ru-based metallodrugs. In this review, half-sandwich Rh(III) complexes are overviewed. Many representatives show higher in vitro potency than and different mechanisms of action (MoA) from the conventional anticancer metallodrugs (cisplatin in most cases) or clinically studied Ru drug candidates. Furthermore, some of the reviewed Rh(III) arenyl complexes are also anticancer in vivo. Pioneer anticancer organorhodium compounds as well as the recent advances in the field are discussed properly, and adequate attention is paid to their anticancer activity, solution behaviour and various processes connected with their MoA. In summary, this work summarizes the types of compounds and the most important biological results obtained in the field of anticancer half-sandwich Rh complexes.
Collapse
|
34
|
Slimani I, Şahin-Bölükbaşı S, Ulu M, Evren E, Gürbüz N, Özdemir İ, Hamdi N, Özdemir İ. Rhodium( i) N-heterocyclic carbene complexes: synthesis and cytotoxic properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj00144b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of benzimidazolium salts and their [RhCl(NHC)(COD)] complexes were synthesized. All compounds were screened for in vitro cytotoxic activities against a panel of human cancer cells (HT-29 colon, Ishikawa endometrial, U-87 glioblastoma) using the MTT assay for 48 h incubation time.
Collapse
Affiliation(s)
- Ichraf Slimani
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09)
- Higher Institute of Environmental Sciences and Technology
- University of Carthage
- Hammam-Lif
- Tunisia
| | - Serap Şahin-Bölükbaşı
- Sivas Cumhuriyet University
- Faculty of Pharmacy
- Department of Biochemistry
- 58140 Sivas
- Turkey
| | - Mustafa Ulu
- Sivas Cumhuriyet University
- Faculty of Pharmacy
- Department of Biochemistry
- 58140 Sivas
- Turkey
| | - Enes Evren
- Inönü University
- Catalysis Research and Application Center
- 44280 Malatya
- Turkey
| | - Nevin Gürbüz
- Inönü University
- Catalysis Research and Application Center
- 44280 Malatya
- Turkey
- Inönü University
| | - İlknur Özdemir
- Inönü University
- Faculty of Science and Arts
- Department of Chemistry
- 44280 Malatya
- Turkey
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09)
- Higher Institute of Environmental Sciences and Technology
- University of Carthage
- Hammam-Lif
- Tunisia
| | - İsmail Özdemir
- Inönü University
- Catalysis Research and Application Center
- 44280 Malatya
- Turkey
- Inönü University
| |
Collapse
|
35
|
Volpi G, Rabezzana R. Imidazo[1,5- a]pyridine derivatives: useful, luminescent and versatile scaffolds for different applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj00322d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last few years, imidazo[1,5-a]pyridine nuclei and derivatives have attracted growing attention due to their unique chemical structure and versatility, optical behaviours, and biological properties.
Collapse
Affiliation(s)
- Giorgio Volpi
- Department of Chemistry
- University of Turin
- 7 - 10125 Turin
- Italy
| | | |
Collapse
|
36
|
Hassoon AA, Szorcsik A, Bogár F, Papp IZ, Fülöp L, Kele Z, Gajda T. The interaction of half-sandwich (η 5-Cp*)Rh(III) cation with histidine containing peptides and their ternary species with (N,N) bidentate ligands. J Inorg Biochem 2020; 216:111330. [PMID: 33360738 DOI: 10.1016/j.jinorgbio.2020.111330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Our goal was to explore the possible interactions of the potential metallodrug (η5-Cp*)Rh(III) complexes with histidine containing biomolecules (peptides/proteins) in order to understand the most important thermodynamic factors influencing the biospeciation and biotransformation of (η5-Cp*)Rh(III) complexes. To this end, here we report systematic solution thermodynamic and solution structural study on the interaction of (η5-Cp*)Rh(III) cation with histidine containing peptides and their constituents ((N-methyl)imidazole, GGA-OH, GGH-OH, histidine-amide, HGG-OH, GHG-NH2), based on extensive 1H NMR, ESI-MS and potentiometric investigations. The comparative evaluation of our data indicated that (η5-Cp*)Rh(III) cation is able to induce the deprotonation of amide nitrogen well below pH 7. Consequently, at physiological pH the peptides are coordinated to Rh(III) by tridentate manner, with the participation of amide nitrogen. At pH 7.4 the (η5-Cp*)Rh(III) binding affinity of peptides follow the order GGA-OH < < GGH-OH < < histidine-amide < HGG-OH < GHG-NH2, i.e. the observed binding strength essentially depends on the presence and position of histidine within the peptide sequence. We also performed computational study on the possible solution structures of complexes present at near physiological pH. At pH 7.4 all histidine containing peptides form ternary complexes with strongly coordinating (N,N) bidentate ligands (ethylenediamine or bipyridyl), in which the peptides are monodentately coordinated to Rh(III) through their imidazole N1‑nitrogens. In addition, the strongest chelators histidine-amide, HGG-OH and GHG-NH2 are also able to displace these powerful bidentate ligands from the coordination sphere of Rh(III).
Collapse
Affiliation(s)
- Azza A Hassoon
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Attila Szorcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Ferenc Bogár
- Institute of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ibolya Zita Papp
- Institute of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Lívia Fülöp
- Institute of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Zoltán Kele
- Institute of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Tamás Gajda
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
37
|
Santolaya J, Busto N, Martínez-Alonso M, Espino G, Grunenberg J, Barone G, García B. Experimental and theoretical characterization of the strong effects on DNA stability caused by half-sandwich Ru(II) and Ir(III) bearing thiabendazole complexes. J Biol Inorg Chem 2020; 25:1067-1083. [PMID: 32951085 DOI: 10.1007/s00775-020-01823-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022]
Abstract
The synthesis and characterization of two half-sandwich complexes of Ru(II) and Ir(III) with thiabendazole as ancillary ligand and their DNA binding ability were investigated using experimental and computational methods. 1H NMR and acid-base studies have shown that aquo-complexes are the reactive species. Kinetic studies show that both complexes bind covalently to DNA through the metal site and non covalently through the ancillary ligand. Thermal stability studies, viscosity, circular dichroism measurements and quantum chemical calculations have shown that the covalent binding causes breaking of the H-bonding between base pairs, bringing about DNA denaturation and compaction. Additionally, molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations shed light into the binding features of the Ru(II) and Ir(III) complexes and their respective enantiomers toward double-helical DNA, highlighting the important role played by the NˆN ancillary ligand once the complexes are covalently linked to DNA. Moreover, metal quantification in the nucleus of SW480 colon adenocarcinoma cells were carried out by inductively coupled plasma-mass spectrometry (ICP-MS), both complexes are more internalized than cisplatin after 4 h of exposition. However, in spite of the dramatic changes in the helicity of the DNA secondary structure induced by these complexes and their nuclear localization, antiproliferative studies have revealed that both, Ru(II) and Ir(III) complexes, cannot be considered cytotoxic. This unexpected behavior can be justified by the fast formation of aquo-complexes, which may react with components of the cell culture medium or the cytoplasm compartment in such a way that they may become deactivated before reaching DNA.
Collapse
Affiliation(s)
- Javier Santolaya
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.,Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Natalia Busto
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Marta Martínez-Alonso
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain.,Laboratory for Inorganic Chemical Biology, Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL University, CNRS, 75005, Paris, France
| | - Gustavo Espino
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Jörg Grunenberg
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, viale delle Scienze, Ed. 17, 90128, Palermo, Italy
| | - Begoña García
- Chemistry Department, University of Burgos, Pza. Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|
38
|
New yellow-emitting iridium(III) complexes containing 2-phenyl-2H-indazole-based ligands for high efficient OLEDs with EQE over 25%. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Martínez-Carmona M, Ho QP, Morand J, García A, Ortega E, Erthal LCS, Ruiz-Hernandez E, Santana MD, Ruiz J, Vallet-Regí M, Gun'ko YK. Amino-Functionalized Mesoporous Silica Nanoparticle-Encapsulated Octahedral Organoruthenium Complex as an Efficient Platform for Combatting Cancer. Inorg Chem 2020; 59:10275-10284. [PMID: 32628466 DOI: 10.1021/acs.inorgchem.0c01436] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the process of synthesis of a new drug, as important as the drug itself is the formulation used, because the same compound can present a very different efficacy depending on how it is administered. In this work, we demonstrate how the antitumor capacity of a new octahedral organoruthenium complex, [Ru(ppy-CHO)(phen)2][PF6] is affected by its encapsulation in different types of mesoporous silica nanoparticles. The interactions between the Ru complex and the silica matrix and how these interactions are affected at two different pHs (7.4 and 5.4, mimicking physiological and endolysosomal acidic conditions, respectively) have been studied. The encapsulation has also been shown to affect the induction of apoptosis and necrosis and progression of the cell cycle compared to the free drug. The encapsulation of the Ru complex in nanoparticles functionalized with amino groups produced very high anticancer activity in cancer cells in vitro, especially against U87 glioblastoma cells, favoring cellular internalization and significantly increasing the anticancer capacity of the initial non-encapsulated Ru complex.
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- School of Chemistry and CRANN, Trinity College, The University of Dublin (TCD), Dublin 2, Ireland
| | - Quy P Ho
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.,Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland
| | - Jérémy Morand
- School of Chemistry and CRANN, Trinity College, The University of Dublin (TCD), Dublin 2, Ireland
| | - Ana García
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Enrique Ortega
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Luiza C S Erthal
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.,Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland
| | - Eduardo Ruiz-Hernandez
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.,Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland
| | - M Dolores Santana
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - José Ruiz
- Departamento de Química Inorgánica, Universidad de Murcia, and Biomedical Research Institute of Murcia (IMIB-Arrixaca), E-30071 Murcia, Spain
| | - Maria Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040 Madrid, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Yurii K Gun'ko
- School of Chemistry and CRANN, Trinity College, The University of Dublin (TCD), Dublin 2, Ireland
| |
Collapse
|
40
|
Sonkar C, Malviya N, Ranjan R, Pakhira S, Mukhopadhyay S. Mechanistic Insight for Targeting Biomolecules by Ruthenium(II) NSAID Complexes. ACS APPLIED BIO MATERIALS 2020; 3:4600-4612. [DOI: 10.1021/acsabm.0c00501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chanchal Sonkar
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Novina Malviya
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Rishi Ranjan
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Srimanta Pakhira
- Discipline of Physics, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
- Discipline of Metallurgy Engineering and Materials Science (MEMS), School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Suman Mukhopadhyay
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
- Discipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
41
|
Liu X, Han Y, Ge X, Liu Z. Imidazole and Benzimidazole Modified Half-Sandwich Iridium III N-Heterocyclic Carbene Complexes: Synthesis, Anticancer Application, and Organelle Targeting. Front Chem 2020; 8:182. [PMID: 32257999 PMCID: PMC7090125 DOI: 10.3389/fchem.2020.00182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/27/2020] [Indexed: 01/03/2023] Open
Abstract
Herein, we report the synthesis, characterization and anticancer activity of a series of half-sandwich iridiumIII imidazole and benzimidazole N-heterocyclic carbene (NHC) anticancer complexes, and the general formula of which can be expressed as [(η5-Cpx)Ir(C∧N)Cl]Cl (Cpx: pentamethylcyclopentadienyl (Cp*) or biphenyl derivatives (Cpxbiph); C∧N: imidazole and benzimidazole NHC chelating ligands). Compared with cis-platin, these complexes showed interesting antitumor activity against A549 cells. Complexes could bind to bovine serum albumin (BSA) by means of static quenching mode, catalyze the oxidation of nicotinamide adenine dinucleotide (NADH) and increase the levels of reactive oxygen species (ROS). Meanwhile, these complexes could arrest the cell cycles of A549 cells and influence the mitochondrial membrane potential significantly. Due to the inherent luminescence property, laser confocal test show that complexes could enter cells followed an energy-dependent mechanism and effectively accumulate in lysosome (the value of Pearson's co-localization coefficient is 0.70 after 1 h), further destroy lysosome integrity and induce apoptosis.
Collapse
Affiliation(s)
- Xicheng Liu
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, Qufu Normal University, Qufu, China
| | - Yali Han
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, Qufu Normal University, Qufu, China
| | - Xingxing Ge
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, Qufu Normal University, Qufu, China
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Institute of Anticancer Agents Development and Theranostic Application, Qufu Normal University, Qufu, China
| |
Collapse
|
42
|
Chen S, Liu X, Huang J, Ge X, Wang Q, Yao M, Shao Y, Liu T, Yuan XA, Tian L, Liu Z. Triphenylamine/carbazole-modified ruthenium(ii) Schiff base compounds: synthesis, biological activity and organelle targeting. Dalton Trans 2020; 49:8774-8784. [DOI: 10.1039/d0dt01547d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
N-phenylcarbazole/triphenylamine modified Schiff base half-sandwich ruthenium(ii) compounds showed potential anticancer activity against A549 and HeLa cells.
Collapse
|
43
|
Novel 2-methylimidazolium salts: Synthesis, characterization, molecular docking, and carbonic anhydrase and acetylcholinesterase inhibitory properties. Bioorg Chem 2020; 94:103468. [DOI: 10.1016/j.bioorg.2019.103468] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
|
44
|
Askari B, Rudbari HA, Micale N, Schirmeister T, Maugeri A, Navarra M. Anticancer study of heterobimetallic platinum(II)-ruthenium(II) and platinum(II)-rhodium(III) complexes with bridging dithiooxamide ligand. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Lord RM, McGowan PC. Organometallic Iridium Arene Compounds: The Effects of C-Donor Ligands on Anticancer Activity. CHEM LETT 2019. [DOI: 10.1246/cl.190179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rianne M. Lord
- School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, U.K
| | | |
Collapse
|
46
|
Srivastava A, Sharma V, Prajapati A, Srivastava N, Naik R. Spectrophotometric Determination of Ruthenium Utilizing its Catalytic Activity on Oxidation of Hexacyanoferrate(II) by Periodate Ion in Water Samples. CHEMISTRY & CHEMICAL TECHNOLOGY 2019. [DOI: 10.23939/chcht13.03.275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv 2019; 9:3239-3278. [PMID: 35518979 PMCID: PMC9060267 DOI: 10.1039/c8ra07926a] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
The advent of the clinically approved drug cisplatin started a new era in the design of metallodrugs for cancer chemotherapy. However, to date, there has not been much success in this field due to the persistence of some side effects and multi-drug resistance of cancer cells. In recent years, there has been increasing interest in the design of metal chemotherapeutics using organometallic complexes due to their good stability and unique properties in comparison to normal coordination complexes. Their intermediate properties between that of traditional inorganic and organic materials provide researchers with a new platform for the development of more promising cancer therapeutics. Classical metal-based drugs exert their therapeutic potential by targeting only DNA, but in the case of organometallic complexes, their molecular target is quite distinct to avoid drug resistance by cancer cells. Some organometallic drugs act by targeting a protein or inhibition of enzymes such as thioredoxin reductase (TrRx), while some target mitochondria and endoplasmic reticulum. In this review, we mainly discuss organometallic complexes of Ru, Ti, Au, Fe and Os and their mechanisms of action and how new approaches improve their therapeutic potential towards various cancer phenotypes. Herein, we discuss the role of structure-reactivity relationships in enhancing the anticancer potential of drugs for the benefit of humans both in vitro and in vivo. Besides, we also include in vivo tumor models that mimic human physiology to accelerate the development of more efficient clinical organometallic chemotherapeutics.
Collapse
Affiliation(s)
- Mehvash Zaki
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| | - Suboot Hairat
- Department of Biotechnology, Wachemo University Hossana Ethiopia
| | - Elham S Aazam
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| |
Collapse
|
48
|
Rylands LI, Welsh A, Maepa K, Stringer T, Taylor D, Chibale K, Smith GS. Structure-activity relationship studies of antiplasmodial cyclometallated ruthenium(II), rhodium(III) and iridium(III) complexes of 2-phenylbenzimidazoles. Eur J Med Chem 2019; 161:11-21. [DOI: 10.1016/j.ejmech.2018.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022]
|
49
|
Khan TM, Gul NS, Lu X, Kumar R, Choudhary MI, Liang H, Chen ZF. Rhodium(iii) complexes with isoquinoline derivatives as potential anticancer agents: in vitro and in vivo activity studies. Dalton Trans 2019; 48:11469-11479. [DOI: 10.1039/c9dt01951k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two rhodium complexes Rh1 and Rh2 with isoquinoline derivatives were synthesized and characterized.
Collapse
Affiliation(s)
- Taj-Malook Khan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Noor Shad Gul
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Xing Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Rajesh Kumar
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Muhammad Iqbal Choudhary
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-74270
- Pakistan
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmacy
- Guangxi Normal University
- Guilin 541004
- China
| |
Collapse
|
50
|
Tabrizi L, Nguyen TLA, Dao DQ. Experimental and theoretical investigation of cyclometalated phenylpyridine iridium(iii) complex based on flavonol and ibuprofen ligands as potent antioxidant. RSC Adv 2019; 9:17220-17237. [PMID: 35519868 PMCID: PMC9064460 DOI: 10.1039/c9ra02726b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
An Ir(iii) complex was synthesized using mixed ligands of biological importance, namely ibuprofen, flavonol and 2-phenylpyridine. The compound was characterized by 1H-NMR, 13C-NMR and TOF-MS spectroscopies and elemental analysis. Structures of the complex and its ligands were also calculated by density functional theory using B3LYP/Lanl2dz//6-31G(d) level of theory. Analyses of electrostatic potential, natural population, and frontier orbitals of the molecules as well as the calculation of intrinsic thermochemical properties such as bond dissociation enthalpy, ionization potential, electron affinity and proton affinity in the gas phase and in solvents (water and pentylethanoate) give the first indication that the complex is a potential antioxidant. The latter even shows better antioxidant capacity than the parent ligands. The antioxidant properties of the complex and its ligands were experimentally evaluated by studying the free radical scavenging activity towards HO˙, NO˙, DPPH˙ and ABTS˙+ radicals. Further computational work on the antioxidant processes such as the single electron transfer, the proton loss, the formal hydrogen transfer (FHT) and the radical adduct formation reactions was conducted. Results show that the FHT reaction is the mechanism responsible for the radical scavenging activity of the complex towards HO˙, HOO˙, NO˙ and DPPH˙ radicals while ABTS˙+ seems to be scavenged by an electron-donating mechanism. The FHT was further determined as a hydrogen-atom transfer but not a proton-couple electron transfer mechanism. A cyclometalated phenylpyridine iridium(iii) complex based on flavonol and ibuprofen was designed and its antioxidant activity was evaluated via experimental and theoretical studies.![]()
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
| | - Thi Le Anh Nguyen
- Institute of Research and Development
- Duy Tan University
- Danang
- Vietnam
| | - Duy Quang Dao
- Institute of Research and Development
- Duy Tan University
- Danang
- Vietnam
| |
Collapse
|