1
|
Song Z, Fan C, Zhao J, Wang L, Duan D, Shen T, Li X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. BIOSENSORS 2023; 13:811. [PMID: 37622897 PMCID: PMC10452626 DOI: 10.3390/bios13080811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The modulation of numerous signaling pathways is orchestrated by redox regulation of cellular environments. Maintaining dynamic redox homeostasis is of utmost importance for human health, given the common occurrence of altered redox status in various pathological conditions. The cardinal component of the thioredoxin system, mammalian thioredoxin reductase (TrxR) plays a vital role in supporting various physiological functions; however, its malfunction, disrupting redox balance, is intimately associated with the pathogenesis of multiple diseases. Accordingly, the dynamic monitoring of TrxR of live organisms represents a powerful direction to facilitate the comprehensive understanding and exploration of the profound significance of redox biology in cellular processes. A number of classic assays have been developed for the determination of TrxR activity in biological samples, yet their application is constrained when exploring the real-time dynamics of TrxR activity in live organisms. Fluorescent probes offer several advantages for in situ imaging and the quantification of biological targets, such as non-destructiveness, real-time analysis, and high spatiotemporal resolution. These benefits facilitate the transition from a poise to a flux understanding of cellular targets, further advancing scientific studies in related fields. This review aims to introduce the progress in the development and application of TrxR fluorescent probes in the past years, and it mainly focuses on analyzing their reaction mechanisms, construction strategies, and potential drawbacks. Finally, this study discusses the critical challenges and issues encountered during the development of selective TrxR probes and proposes future directions for their advancement. We anticipate the comprehensive analysis of the present TrxR probes will offer some glitters of enlightenment, and we also expect that this review may shed light on the design and development of novel TrxR probes.
Collapse
Affiliation(s)
- Zilong Song
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Chengwu Fan
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| | - Lei Wang
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China;
| | - Tong Shen
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| |
Collapse
|
2
|
Wang J, Jin Y, Li M, Liu S, Lo KKW, Zhao Q. Time-Resolved Luminescent Sensing and Imaging for Enzyme Catalytic Activity Based on Responsive Probes. Chem Asian J 2022; 17:e202200429. [PMID: 35819359 DOI: 10.1002/asia.202200429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Enzymes, as a kind of biomacromolecules, play an important role in many physiological processes and relate directly to various diseases. Developing an efficient detection method for enzyme activity is important to achieve early diagnosis of enzyme-relevant diseases and high throughput screening of potential enzyme-relevant drugs. Time-resolved luminescence assay provide a high accuracy and signal-to-noise ratios detection methods for enzyme activity, which has been widely used in high throughput screening of enzyme-relevant drugs and diagnosis of enzyme-relevant diseases. Inspired by these advantages, various responsive probes based on metal complexes and metal-free organic compounds have been developed for time-resolved bioimaging and biosensing of enzyme activity owing to their long luminescence lifetimes, high quantum yields and photostability. In this review, we comprehensively reviewed metal complex- and metal-free organic compound-based responsive probes applied to detect enzyme activity through time-resolved imaging, including their design strategies and sensing principles. Current challenges and future prospects in this rapidly growing field are also discussed.
Collapse
Affiliation(s)
- Jiawei Wang
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Yibiao Jin
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Mingdang Li
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Shujuan Liu
- Nanjing University of Posts and Telecommunications, Institute of Advanced Materials, 9 Wenyuan Road, 210023, Nanjing, CHINA
| | - Kenneth Kam-Wing Lo
- City University of Hong Kong, Department of Chemistry, Tat Chee Avenue, Hong Kong, CHINA
| | - Qiang Zhao
- Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, CHINA
| |
Collapse
|
3
|
Göbel D, Rusch P, Duvinage D, Stauch T, Bigall NC, Nachtsheim BJ. Substitution Effect on 2-(Oxazolinyl)-phenols and 1,2,5-Chalcogenadiazole -Annulated Derivatives: Emission-Color-Tunable, Minimalistic Excited-State Intramolecular Proton Transfer (ESIPT)-Based Luminophores. J Org Chem 2021; 86:14333-14355. [PMID: 34581564 DOI: 10.1021/acs.joc.1c00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minimalistic 2-(oxazolinyl)-phenols substituted with different electron-donating and -withdrawing groups as well as 1,2,5-chalcogenadiazole-annulated derivatives thereof were synthesized and investigated in regard to their emission behavior in solution as well as in the solid state. Depending on the nature of the incorporated substituent and its position, emission efficiencies were increased or diminished, resulting in AIE or ACQ characteristics. Single-crystal analysis revealed J- and H-type packing motifs and a so-far undescribed isolation of ESIPT-based fluorophores in the keto form.
Collapse
Affiliation(s)
- Dominik Göbel
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Pascal Rusch
- Leibniz Universität Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3a, D-30167 Hannover, Germany.,Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), D-30167 Hannover, Germany
| | - Daniel Duvinage
- Institute for Inorganic and Crystallographic Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Tim Stauch
- Institute for Physical and Theoretical Chemistry, University of Bremen, Leobener Straße NW2, D-28359 Bremen, Germany.,Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, D-28359 Bremen, Germany.,MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
| | - Nadja-C Bigall
- Leibniz Universität Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3a, D-30167 Hannover, Germany.,Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), D-30167 Hannover, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
4
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
5
|
Cravcenco A, Ye C, Gräfenstein J, Börjesson K. Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor-Bridge-Acceptor Systems. J Phys Chem A 2020; 124:7219-7227. [PMID: 32786964 DOI: 10.1021/acs.jpca.0c05035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability to direct the flow of excitons enable molecular systems to perform highly advanced functions. Intramolecular energy transfer in donor-bridge-acceptor systems can occur by different mechanisms, and the ability to control the excited state energy pathways depends on the capacity to favor one process over another. Here, we show an anticorrelation between the rates of Förster and Dexter types of energy transfer in two isomeric donor-bridge-acceptor systems. Both dyads display intramolecular Förster triplet-to-singlet and Dexter triplet-to-triplet energy transfers. However, as the bridge-acceptor connection point changes, the rate of one energy transfer process increases at the same time as the other one decreases, allowing us to control the energy flow direction. This work shows how rational design can be used to tune excited state energy pathways in molecular dyads, which is of importance for advanced functions such as multiplicity conversion in future molecular materials.
Collapse
Affiliation(s)
- Alexei Cravcenco
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Chen Ye
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Jürgen Gräfenstein
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41296 Gothenburg, Sweden
| |
Collapse
|
6
|
Medeiros IR, Corrêa JR, Barbosa ALA, Krüger R, Balaguez RA, Lopes TO, de Oliveira HCB, Alves D, Neto BAD. Fluorescent Benzoselenadiazoles: Synthesis, Characterization, and Quantification of Intracellular Lipid Droplets and Multicellular Model Staining. J Org Chem 2020; 85:10561-10573. [PMID: 32806092 DOI: 10.1021/acs.joc.0c01031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we described the synthesis of 10 new fluorescent 2,1,3-benzoselenadiazole small-molecule derivatives and their chemical- and photocharacterizations. The new derivatives could, for the first time, be successfully applied as selective live cell imaging probes (at nanomolar concentrations) and stained lipid-based structures preferentially. Density functional theory (DFT) calculations were used to help in understanding the photophysical data and the intramolecular charge-transfer (ICT) processes of the synthesized dyes. Some derivatives showed impressive cellular responses, allowing them to be tested as probes in a complex multicellular model (i.e., Caenorhabditis elegans). When compared with the commercially available dye, the new fluorescent compounds showed far better results both at the cellular level and inside the live worm. Inside the multicellular complex model, the tested probes also showed selectivity, a feature not observed when the commercial dye was used to carry out the bioimaging experiments.
Collapse
Affiliation(s)
- Ingryd R Medeiros
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil
| | - José R Corrêa
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil
| | - Ana L A Barbosa
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil
| | - Roberta Krüger
- LASOL-CCQFA, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Renata A Balaguez
- LASOL-CCQFA, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Thiago O Lopes
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil
| | - Heibbe C B de Oliveira
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil.,Laboratório de Estrutura Eletrônica e Dinâmica Molecular (LEEDMOL), Instituto de Quı́mica, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | - Diego Alves
- LASOL-CCQFA, Federal University of Pelotas (UFPel), Pelotas, RS 96010-610, Brazil
| | - Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, University of Brası́lia (IQ-UnB), Campus Universita'rio Darcy Ribeiro, CEP, Brasília-DF 70904970, Brazil
| |
Collapse
|
7
|
Liu Y, Feng X, Yu Y, Zhao Q, Tang C, Zhang J. A review of bioselenol-specific fluorescent probes: Synthesis, properties, and imaging applications. Anal Chim Acta 2020; 1110:141-150. [PMID: 32278389 DOI: 10.1016/j.aca.2020.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 01/25/2023]
Abstract
Bioselenols are important substances for the maintenance of physiological balance and offer anticancer properties; however, their causal mechanisms and effectiveness have not been assessed. One way to explore their physiological functions is the in vivo detection of bioselenols at the molecular level, and one of the most efficient ways to do so is to use fluorescent probes. Various types of bioselenol-specific fluorescent probes have been synthesized and optimized using chemical simulations and by improving biothiol fluorescent probes. Here, we review recent advances in bioselenol-specific fluorescent probes for selenocysteine (Sec), thioredoxin reductase (TrxR), and hydrogen selenide (H2Se). In particular, the molecular design principles of different types of bioselenols, their corresponding sensing mechanisms, and imaging applications are summarized.
Collapse
Affiliation(s)
- Yuning Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanan Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Zhu Z, Tian D, Gao P, Wang K, Li Y, Shu X, Zhu J, Zhao Q. Cell-Penetrating Peptides Transport Noncovalently Linked Thermally Activated Delayed Fluorescence Nanoparticles for Time-Resolved Luminescence Imaging. J Am Chem Soc 2018; 140:17484-17491. [DOI: 10.1021/jacs.8b08438] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Pengli Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | | | | | | | | | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
9
|
Thiazole- and selenazole-comprising high-affinity inhibitors possess bright microsecond-scale photoluminescence in complex with protein kinase CK2. Bioorg Med Chem 2018; 26:5062-5068. [PMID: 30217463 DOI: 10.1016/j.bmc.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
Abstract
A previously disclosed protein kinase (PK) CK2-selective inhibitor 4-(2-amino-1,3-thiazol-5-yl)benzoic acid (ATB) and its selenium-containing counterpart (ASB) revealed remarkable room temperature phosphorescence when bound to the ATP pocket of the protein kinase CK2. Conjugation of these fragments with a mimic of CK2 substrate peptide resulted in bisubstrate inhibitors with increased affinity towards the kinase. Attachment of the fluorescent acceptor dye 5-TAMRA to the conjugates led to significant enhancement of intensity of long-lifetime (microsecond-scale) photoluminescence of both sulfur- and selenium-containing compounds. The developed photoluminescent probes make possible selective determination of the concentration of CK2 in cell lysates and characterization of CK2 inhibitors by means of time-gated measurement of photoluminescence.
Collapse
|
10
|
Binding assay for characterization of protein kinase inhibitors possessing sub-picomolar to sub-millimolar affinity. Anal Biochem 2017; 531:67-77. [DOI: 10.1016/j.ab.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023]
|
11
|
Vahter J, Viht K, Uri A, Enkvist E. Oligo-aspartic acid conjugates with benzo[c][2,6]naphthyridine-8-carboxylic acid scaffold as picomolar inhibitors of CK2. Bioorg Med Chem 2017; 25:2277-2284. [PMID: 28274673 DOI: 10.1016/j.bmc.2017.02.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 12/20/2022]
Abstract
Structurally diverse inhibitors of the protein kinase CK2 are required for regulation of this ubiquitous protein to establish biological roles of the enzyme which catalyzes the phosphorylation of a vast number of substrate proteins. In this article we disclose a series of new bisubstrate inhibitors of CK2 that are structurally represented by the oligo(l-Asp) peptide conjugates of benzo[c][2,6]naphthyridine-8-carboxylic acid. This fragment originated from CX-4945, the first in class inhibitor taken to clinical trials. The most potent conjugates possessed two-digit picomolar affinity and clear selectivity for CK2α in a panel of 140 protein kinases. Labeling of the inhibitors with a fluorescent dye yielded probes for a fluorescence anisotropy-based binding/displacement assay which can be used for analysis of CK2 and precise determination of affinity of the highly potent (tight-binding) CK2-targeting inhibitors.
Collapse
Affiliation(s)
- Jürgen Vahter
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Asko Uri
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia.
| |
Collapse
|
12
|
Ligi K, Enkvist E, Uri A. Deoxygenation Increases Photoluminescence Lifetime of Protein-Responsive Organic Probes with Triplet–Singlet Resonant Energy Transfer. J Phys Chem B 2016; 120:4945-54. [DOI: 10.1021/acs.jpcb.6b03342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kadri Ligi
- Institute of Chemistry, University of Tartu, 14a Ravila
Street, 50411 Tartu, Estonia
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, 14a Ravila
Street, 50411 Tartu, Estonia
| | - Asko Uri
- Institute of Chemistry, University of Tartu, 14a Ravila
Street, 50411 Tartu, Estonia
| |
Collapse
|
13
|
Viht K, Saaver S, Vahter J, Enkvist E, Lavogina D, Sinijärv H, Raidaru G, Guerra B, Issinger OG, Uri A. Acetoxymethyl Ester of Tetrabromobenzimidazole-Peptoid Conjugate for Inhibition of Protein Kinase CK2 in Living Cells. Bioconjug Chem 2015; 26:2324-35. [PMID: 26559659 DOI: 10.1021/acs.bioconjchem.5b00383] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CK2 is a ubiquitous serine/threonine protein kinase, which has the potential to catalyze the generation of a large proportion of the human phosphoproteome. Due to its role in numerous cellular functions and general anti-apoptotic activity, CK2 is an important target of research with therapeutic potential. This emphasizes the need for cell-permeable highly potent and selective inhibitors and photoluminescence probes of CK2 for investigating the protein phosphorylation networks in living cells. Previously, we had developed bisubstrate inhibitors for CK2 (CK2-targeted ARCs) that showed remarkable affinity (KD < 1 nM) and selectivity, but lacked proteolytic stability and plasma membrane permeability. In this report, the structures of CK2-targeted ARCs were modified for the application in live cells. Based on structure-activity studies, proteolytically stable achiral oligoanionic peptoid conjugates of 4,5,6,7-tetrabromo-1H-benzimidazole (TBBz) were constructed. Affinity of the conjugates toward CK2 reached subnanomolar range. Acetoxymethyl (AM) prodrug strategy was applied for loading TBBz-peptoid conjugates into living cells. The uptake of inhibitors was visualized by live cell imaging and the reduction of the phosphorylation levels of two CK2-related phosphosites, Cdc37 pSer13 and NFκB pSer529, was demonstrated by Western blot analysis.
Collapse
Affiliation(s)
- Kaido Viht
- Institute of Chemistry, University of Tartu , Ravila 14A, 50411 Tartu, Estonia
| | - Siiri Saaver
- Institute of Chemistry, University of Tartu , Ravila 14A, 50411 Tartu, Estonia
| | - Jürgen Vahter
- Institute of Chemistry, University of Tartu , Ravila 14A, 50411 Tartu, Estonia
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu , Ravila 14A, 50411 Tartu, Estonia
| | - Darja Lavogina
- Institute of Chemistry, University of Tartu , Ravila 14A, 50411 Tartu, Estonia
| | - Hedi Sinijärv
- Institute of Chemistry, University of Tartu , Ravila 14A, 50411 Tartu, Estonia
| | - Gerda Raidaru
- Institute of Chemistry, University of Tartu , Ravila 14A, 50411 Tartu, Estonia
| | - Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark
| | - Olaf-Georg Issinger
- Department of Biochemistry and Molecular Biology, University of Southern Denmark , Campusvej 55, DK-5230 Odense, Denmark.,KinaseDetect Aps , Skovvej 22, 6340 Kruså, Denmark
| | - Asko Uri
- Institute of Chemistry, University of Tartu , Ravila 14A, 50411 Tartu, Estonia
| |
Collapse
|
14
|
Mukherjee S, Thilagar P. Recent advances in purely organic phosphorescent materials. Chem Commun (Camb) 2015; 51:10988-1003. [DOI: 10.1039/c5cc03114a] [Citation(s) in RCA: 349] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A review of the recent advancement in the development of organic materials with efficient phosphorescent emission features is presented.
Collapse
Affiliation(s)
- Sanjoy Mukherjee
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore-560012
- India
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
15
|
Ekambaram R, Manoharan GB, Enkvist E, Ligi K, Knapp S, Uri A. PIM kinase-responsive microsecond-lifetime photoluminescent probes based on selenium-containing heteroaromatic tricycle. RSC Adv 2015. [DOI: 10.1039/c5ra20777k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microsecond-lifetime binding-responsive organic photoluminescent probes for PIM kinases were developed based on selenium-comprising heteroaromatic tricycle.
Collapse
Affiliation(s)
| | | | - Erki Enkvist
- University of Tartu
- Institute of Chemistry
- Tartu 50411
- Estonia
| | - Kadri Ligi
- University of Tartu
- Institute of Chemistry
- Tartu 50411
- Estonia
| | - Stefan Knapp
- University of Oxford
- Nuffield Department of Clinical Medicine
- Structural Genomics Consortium
- Oxford OX3 7DQ
- UK
| | - Asko Uri
- University of Tartu
- Institute of Chemistry
- Tartu 50411
- Estonia
| |
Collapse
|
16
|
Development of a high-throughput screening-compatible assay to identify inhibitors of the CK2α/CK2β interaction. Anal Biochem 2015; 468:4-14. [DOI: 10.1016/j.ab.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 01/10/2023]
|