1
|
Chaudhary K, Agrahari B, Biswas B, Chatterjee N, Chaudhary A, Kumar A, Sonker H, Dewan S, Saxena D, Akhir A, Malhotra N, Chopra S, Misra S, Matheswaran S, Singh RG. Pyridine-2,6-Dicarboxamide Proligands and their Cu(II)/Zn(II) Complexes Targeting Staphylococcus Aureus for the Attenuation of In Vivo Dental Biofilm. Adv Healthc Mater 2024; 13:e2400378. [PMID: 38621382 DOI: 10.1002/adhm.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/07/2024] [Indexed: 04/17/2024]
Abstract
In the pursuit to combat stubborn bacterial infections, particularly those stemming from gram-positive bacteria, this study is an attempt to craft a precision-driven platform characterized by unparalleled selectivity, specificity, and synergistic antimicrobial mechanisms. Leveraging remarkable potential of metalloantibiotics in antimicrobial applications, herein, this work rationally designs, synthesizes, and characterizes a new library of Pyridine-2,6-dicarboxamide ligands and their corresponding transition metal Cu(II)/Zn(II) complexes. The lead compound L11 demonstrates robust antibacterial properties against Staphylococcus aureus (Minimum Inhibitory Concentration (MIC) = 2-16 µg mL-1), methicillin and vancomycin-resistant S. aureus (MIC = 2-4 µg mL-1) and exhibit superior antibacterial activity when compared to FDA-approved vancomycin, the drug of last resort. Additionally, the compound exhibits notable antimicrobial efficacy against resistant enterococcus strains (MIC = 2-8 µg mL-1). To unravel mechanistic profile, advanced imaging techniques including SEM and AFM are harnessed, collectively suggesting a mechanistic pathway involving cell wall disruption. Live/dead fluorescence studies further confirm efficacy of L11 and its complexes against S. aureus membranes. This translational exploration extends to a rat model, indicating promising in vivo therapeutic potential. Thus, this comprehensive research initiative has capabilities to transcends the confines of this laboratory, heralding a pivotal step toward combatting antibiotic-resistant pathogens and advancing the frontiers of metalloantibiotics-based therapy with a profound clinical implication.
Collapse
Affiliation(s)
| | | | - Bhumika Biswas
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | - Niranjan Chatterjee
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | | | | | | | - Sayari Dewan
- Department of Chemistry, IIT, Kanpur, 208016, India
| | - Deepanshi Saxena
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Abdul Akhir
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nidhi Malhotra
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Budh Nagar, 201314, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Santosh Misra
- Department of Biological Sciences and Bioengineering, IIT, Kanpur, 208016, India
| | | | | |
Collapse
|
2
|
Saha P, Rafe MR. Cyclodextrin: A prospective nanocarrier for the delivery of antibacterial agents against bacteria that are resistant to antibiotics. Heliyon 2023; 9:e19287. [PMID: 37662769 PMCID: PMC10472013 DOI: 10.1016/j.heliyon.2023.e19287] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Supramolecular chemistry introduces us to the macrocyclic host cyclodextrin, which has a hydrophobic cavity. The hydrophobic cavity has a higher affinity for hydrophobic guest molecules and forms host-guest complexation with non-covalent interaction. Three significant cyclodextrin kinds are α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. The most often utilized is β-cyclodextrin (β-CD). An effective weapon against bacteria that are resistant to antibiotics is cyclodextrin. Several different kinds of cyclodextrin nanocarriers (β-CD, HP-β-CD, Meth-β-CD, cationic CD, sugar-grafted CD) are utilized to enhance the solubility, stability, dissolution, absorption, bioavailability, and permeability of the antibiotics. Cyclodextrin also improves the effectiveness of antibiotics, antimicrobial peptides, metallic nanoparticles, and photodynamic therapy (PDT). Again, cyclodextrin nanocarriers offer slow-release properties for sustained-release formulations where steady-state plasma antibiotic concentration is needed for an extended time. A novel strategy to combat bacterial resistance is a stimulus (pH, ROS)-responsive antibiotics released from cyclodextrin carrier. Once again, cyclodextrin traps autoinducer (AI), a crucial part of bacterial quorum sensing, and reduces virulence factors, including biofilm formation. Cyclodextrin helps to minimize MIC in particular bacterial strains, keep antibiotic concentrations above MIC in the infection site and minimize the possibility of antibiotic and biofilm resistance. Sessile bacteria trapped in biofilms are more resistant to antibiotic therapy than bacteria in a planktonic form. Cyclodextrin also involves delivering antibiotics to biofilm and resistant bacteria to combat bacterial resistance.
Collapse
Affiliation(s)
- Pranoy Saha
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Rajdoula Rafe
- Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
3
|
Yamamura H, Hagiwara T, Hayashi Y, Osawa K, Kato H, Katsu T, Masuda K, Sumino A, Yamashita H, Jinno R, Abe M, Miyagawa A. Antibacterial Activity of Membrane-Permeabilizing Bactericidal Cyclodextrin Derivatives. ACS OMEGA 2021; 6:31831-31842. [PMID: 34870006 PMCID: PMC8638021 DOI: 10.1021/acsomega.1c04541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/29/2021] [Indexed: 05/08/2023]
Abstract
Antimicrobial peptides that act by disrupting bacterial membranes are attractive agents for treating drug-resistant bacteria. This study investigates a membrane-disrupting peptide mimic made of a cyclic oligosaccharide cyclodextrin scaffold that can be chemically polyfunctionalized. An antibacterial functional group on the peptide was simplified to an alkylamino group that combines cationic and hydrophobic moieties, the former to interact with the anionic bacterial membrane and the latter with the membrane interior. The cyclodextrins equipped with eight alkylamino groups on the molecules using a poly-click reaction exhibited antibacterial activity against Gram-positive and Gram-negative bacteria, including drug-resistant pathogens such as carbapenem-resistant Enterobacteriaceae. Several lines of evidence showed that these agents disrupt bacterial membranes, leading to rapid bacterial cell death. The resulting membrane perturbation was directly visualized using high-speed atomic force microscopy imaging. In Gram-negative bacteria, the membrane-permeabilizing action of these derivatives allowed the entry of co-treated traditional antibiotics, which were then active against these bacteria.
Collapse
Affiliation(s)
- Hatsuo Yamamura
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuya Hagiwara
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuma Hayashi
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kayo Osawa
- Department
of Medical Technology, Faculty of Health Sciences, Kobe Tokiwa University, Nagata-ku, Kobe 653-0838, Japan
| | - Hisato Kato
- Graduate
School of Clinical Pharmacy, Shujitsu University, Naka-ku, Okayama 703-8516, Japan
| | - Takashi Katsu
- Graduate
School of Clinical Pharmacy, Shujitsu University, Naka-ku, Okayama 703-8516, Japan
| | - Kazufumi Masuda
- Graduate
School of Clinical Pharmacy, Shujitsu University, Naka-ku, Okayama 703-8516, Japan
| | - Ayumi Sumino
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakumamachi, Kanazawa 920-1192, Japan
- Institute
for Frontier Science Initiative, Kanazawa
University, Kakumamachi, Kanazawa 920-1192, Japan
| | - Hayato Yamashita
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Jinno
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayuki Abe
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Atsushi Miyagawa
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
4
|
Júnior EH, Gonçalves AG, Noseda MD, Duarte MER, Murakami FS, Ducatti DRB. Semi-synthesis of N-alkyl-kappa-carrageenan derivatives and evaluation of their antibacterial activity. Carbohydr Res 2021; 499:108234. [PMID: 33450478 DOI: 10.1016/j.carres.2021.108234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
In this article, we describe the semi-synthesis of N-alkyl-kappa-carrageenan derivatives and their antibacterial activity against Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 8739), and Pseudomonas aeruginosa (ATCC 9027). Kappa-carrageenan was submitted to partial acid hydrolysis promoting the selective cleavage of α-glycosidic bonds involving 3,6-anhydro-α-D-Galp units, giving rise to reducing low-molecular weight polysaccharide fragments, which were reacted with alkylamines of varying chain lengths by reductive amination. The carrageenan derivatives were characterized by HPSEC-MALLS-RID and 1D and 2D 1H and 13C NMR spectroscopy. The antibacterial activity of N-alkyl-kappa-carrageenan derivatives was compared with N-alkyl-(1-deoxylactitol-1-yl)-amines using a microdilution test, which indicated that inhibitory activity was dependent on the degree of substitution by hydrophobic groups at the polysaccharide structure. Comparing the effect of different N-alkyl chains, those with longer chains showed higher activity.
Collapse
Affiliation(s)
- Edson Hipólito Júnior
- Programa de Pós-Graduação Em Ciências-Bioquímica, Universidade Federal Do Paraná, Centro Politécnico, Curitiba, Brazil
| | - Alan G Gonçalves
- Departamento de Farmácia, Universidade Federal Do Paraná, Av. Lothário Meissner, 3400, Jardim Botânico, Curitiba, Brazil
| | - Miguel D Noseda
- Programa de Pós-Graduação Em Ciências-Bioquímica, Universidade Federal Do Paraná, Centro Politécnico, Curitiba, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Centro Politécnico, CEP 81-531-990, PO Box 19046, Curitiba, Brazil
| | - Maria Eugênia R Duarte
- Programa de Pós-Graduação Em Ciências-Bioquímica, Universidade Federal Do Paraná, Centro Politécnico, Curitiba, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Centro Politécnico, CEP 81-531-990, PO Box 19046, Curitiba, Brazil
| | - Fábio S Murakami
- Departamento de Farmácia, Universidade Federal Do Paraná, Av. Lothário Meissner, 3400, Jardim Botânico, Curitiba, Brazil
| | - Diogo R B Ducatti
- Programa de Pós-Graduação Em Ciências-Bioquímica, Universidade Federal Do Paraná, Centro Politécnico, Curitiba, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Centro Politécnico, CEP 81-531-990, PO Box 19046, Curitiba, Brazil.
| |
Collapse
|
5
|
Yamamura H, Isshiki K, Fujita Y, Kato H, Katsu T, Masuda K, Osawa K, Miyagawa A. Gramicidin S-inspired antimicrobial cyclodextrin to disrupt gram-negative and gram-positive bacterial membranes. MEDCHEMCOMM 2019; 10:1432-1437. [PMID: 31803397 PMCID: PMC6836745 DOI: 10.1039/c9md00229d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022]
Abstract
A membrane-active antimicrobial peptide gramicidin S-like amphiphilic structure was prepared from cyclodextrin. The mimic was a cyclic oligomer composed of 6-amino-modified glucose 2,3-di-O-propanoates and it exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria, together with no resistance development and low haemolytic activity against red blood cells.
Collapse
Affiliation(s)
- Hatsuo Yamamura
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku , Nagoya 466-8555 , Japan .
| | - Kana Isshiki
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku , Nagoya 466-8555 , Japan .
| | - Yusuke Fujita
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku , Nagoya 466-8555 , Japan .
| | - Hisato Kato
- School of Pharmacy , Shujitsu University , 1-6-1 Nishigawara, Naka-ku, Okayama-shi , Okayama 703-8516 , Japan
| | - Takashi Katsu
- School of Pharmacy , Shujitsu University , 1-6-1 Nishigawara, Naka-ku, Okayama-shi , Okayama 703-8516 , Japan
| | - Kazufumi Masuda
- Graduate School of Clinical Pharmacy , Shujitsu University , 1-6-1 Nishigawara, Naka-ku, Okayama-shi , Okayama 703-8516 , Japan
| | - Kayo Osawa
- Department of Biophysics , Kobe University , Graduate School of Health Sciences , 7-10-2 Tomogaoka, Suma-ku , Kobe 654-0142 , Japan
| | - Atsushi Miyagawa
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku , Nagoya 466-8555 , Japan .
| |
Collapse
|
6
|
Yamamura H, Nonaka M, Okuno S, Mitsuhashi R, Kato H, Katsu T, Masuda K, Tanimoto K, Tomita H, Miyagawa A. Membrane-active antimicrobial poly(amino-modified alkyl) β-cyclodextrins synthesized via click reactions. MEDCHEMCOMM 2018; 9:509-518. [PMID: 30108941 DOI: 10.1039/c7md00592j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/17/2018] [Indexed: 11/21/2022]
Abstract
The emergence of drug-resistant bacteria has led to the high demand for new antibiotics. In this report, we investigated membrane-active antimicrobial β-cyclodextrins. These contain seven amino-modified alkyl groups on a molecule, which act as functional moieties to permeabilize bacterial cell membranes. The polyfunctionalization of cyclodextrins was achieved through a click reaction assisted by microwave irradiation. A survey using derivatives with systematically varied functionalities clarified the unique correlation of the antimicrobial activity of these compounds with their molecular structure and hydrophobicity/hydrophilicity balances. The optimum hydrophobicity for the compounds being membrane-active was specific to bacterial strains and animal cells; this led to specific compounds having selective toxicity against bacteria including multidrug-resistant pathogens. The results demonstrate that cyclodextrin is a versatile molecular scaffold for rationally designed structures and can be used for the development of new antibiotics.
Collapse
Affiliation(s)
- Hatsuo Yamamura
- Life and Applied Chemistry , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan . .,Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan
| | - Miho Nonaka
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan
| | - Shingo Okuno
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan
| | - Ryogo Mitsuhashi
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan
| | - Hisato Kato
- School of Pharmacy , Shujitsu University , 1-6-1 Nishigawara , Naka-ku , Okayama-shi , Okayama 703-8516 , Japan
| | - Takashi Katsu
- School of Pharmacy , Shujitsu University , 1-6-1 Nishigawara , Naka-ku , Okayama-shi , Okayama 703-8516 , Japan
| | - Kazufumi Masuda
- Graduate School of Clinical Pharmacy , Shujitsu University , 1-6-1 Nishigawara , Naka-ku , Okayama-shi , Okayama 703-8516 , Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance , Graduate School of Medicine , Gunma University , 3-39-22 Showa-machi , Maebashi , Gunma 371-8511 , Japan
| | - Haruyoshi Tomita
- Department of Bacteriology and Laboratory of Bacterial Drug Resistance , Graduate School of Medicine , Gunma University , 3-39-22 Showa-machi , Maebashi , Gunma 371-8511 , Japan
| | - Atsushi Miyagawa
- Life and Applied Chemistry , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan . .,Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan
| |
Collapse
|
7
|
Agnes M, Thanassoulas A, Stavropoulos P, Nounesis G, Miliotis G, Miriagou V, Athanasiou E, Benkovics G, Malanga M, Yannakopoulou K. Designed positively charged cyclodextrin hosts with enhanced binding of penicillins as carriers for the delivery of antibiotics: The case of oxacillin. Int J Pharm 2017; 531:480-491. [DOI: 10.1016/j.ijpharm.2017.04.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/26/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023]
|
8
|
Yamamura H, Mabuchi T, Ishida T, Miyagawa A. Syntheses and structure-membrane active antimicrobial activity relationship of alkylamino-modified glucose, maltooligosaccharide, and amylose. Chem Biol Drug Des 2017; 90:1012-1018. [DOI: 10.1111/cbdd.12989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/22/2017] [Accepted: 03/20/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Hatsuo Yamamura
- Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
- Materials Science and Engineering; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
| | - Takahiro Mabuchi
- Materials Science and Engineering; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
| | - Tomoki Ishida
- Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
| | - Atsushi Miyagawa
- Life and Applied Chemistry; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
- Materials Science and Engineering; Graduate School of Engineering; Nagoya Institute of Technology; Nagoya Japan
| |
Collapse
|
9
|
Yamamura H. Chemical Modification of Cyclodextrin and Amylose by Click Reaction and Its Application to the Synthesis of Poly-alkylamine-Modified Antibacterial Sugars. Chem Pharm Bull (Tokyo) 2017; 65:312-317. [PMID: 28381669 DOI: 10.1248/cpb.c16-00739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclodextrin (CD) can be chemically modified into desired and sophisticated functional molecules. However, poly-modification often produces complicated mixtures, resulting in a low yield of the desired product. As the most promising procedure to solve such problems and to achieve poly-modification of the CD molecule, we present here the Huisgen 1,3-dipolar cycloaddition, known as a click reaction. This review will describe the results of our microwave-assisted click reaction for the poly-modification of CD and amylose molecules, and its application to the study of synthetic membrane active antibacterial derivatives.
Collapse
Affiliation(s)
- Hatsuo Yamamura
- Life Science and Applied Chemistry, Graduate School of Engineering,
Nagoya Institute of Technology
| |
Collapse
|
10
|
Hui TW, Cui JF, Wong MK. Modular synthesis of propargylamine modified cyclodextrins by a gold(iii)-catalyzed three-component coupling reaction. RSC Adv 2017. [DOI: 10.1039/c7ra00249a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A modular approach for the synthesis of propargylamine modified β-cyclodextrins has been developed through a gold(iii)-catalyzed three-component coupling reaction.
Collapse
Affiliation(s)
- Tsz-Wai Hui
- The Hong Kong Polytechnic University Shenzhen Research Institute
- Shenzhen
- PR China
- State Key Laboratory of Chirosciences
- Department of Applied Biology and Chemical Technology
| | - Jian-Fang Cui
- The Hong Kong Polytechnic University Shenzhen Research Institute
- Shenzhen
- PR China
- State Key Laboratory of Chirosciences
- Department of Applied Biology and Chemical Technology
| | - Man-Kin Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute
- Shenzhen
- PR China
- State Key Laboratory of Chirosciences
- Department of Applied Biology and Chemical Technology
| |
Collapse
|
11
|
Yamamura H, Miyagawa A, Sugiyama H, Murata K, Mabuti T, Mitsuhashi R, Hagiwara T, Nonaka M, Tanimoto K, Tomita H. Rule of Hydrophobicity/Hydrophilicity Balance in Membrane-Disrupting Antimicrobial Activity of Polyalkylamino Cyclodextrins Synthesized via Click Chemistry. ChemistrySelect 2016. [DOI: 10.1002/slct.201500017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hatsuo Yamamura
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Atsushi Miyagawa
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Hiroki Sugiyama
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Kensuke Murata
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Takahiro Mabuti
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Ryogo Mitsuhashi
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Tatsuya Hagiwara
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Miho Nonaka
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance; Graduate School of Medicine; Gunma University; 3-39-22 Showa-machi, Maebashi Gunma 371-8511 Japan
| | - Haruyoshi Tomita
- Department of Bacteriology and Laboratory of Bacterial Drug Resistance; Graduate School of Medicine; Gunma University; 3-39-22 Showa-machi, Maebashi Gunma 371-8511 Japan
| |
Collapse
|
12
|
Cravotto G, Caporaso M, Jicsinszky L, Martina K. Enabling technologies and green processes in cyclodextrin chemistry. Beilstein J Org Chem 2016; 12:278-94. [PMID: 26977187 PMCID: PMC4778522 DOI: 10.3762/bjoc.12.30] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/29/2016] [Indexed: 01/05/2023] Open
Abstract
The design of efficient synthetic green strategies for the selective modification of cyclodextrins (CDs) is still a challenging task. Outstanding results have been achieved in recent years by means of so-called enabling technologies, such as microwaves, ultrasound and ball mills, that have become irreplaceable tools in the synthesis of CD derivatives. Several examples of sonochemical selective modification of native α-, β- and γ-CDs have been reported including heterogeneous phase Pd- and Cu-catalysed hydrogenations and couplings. Microwave irradiation has emerged as the technique of choice for the production of highly substituted CD derivatives, CD grafted materials and polymers. Mechanochemical methods have successfully furnished greener, solvent-free syntheses and efficient complexation, while flow microreactors may well improve the repeatability and optimization of critical synthetic protocols.
Collapse
Affiliation(s)
- Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Marina Caporaso
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Laszlo Jicsinszky
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS - Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| |
Collapse
|