1
|
Bahrami F, Zhao Y. Rational Design and Synthesis of an Artificial Enzyme for S N2 Reactions through Micellar Imprinting. Org Lett 2024; 26:73-77. [PMID: 38135651 PMCID: PMC11097202 DOI: 10.1021/acs.orglett.3c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The rational design of catalysts with enzyme-like properties is an elusive goal of chemists despite tremendous interest. Molecular imprinting inside surfactant micelles, followed by postmodification, creates a tailored active site in a water-soluble polymeric "artificial enzyme" for the benzylation of 4-nitrophenol. The reaction happens under neutral conditions with excellent substrate selectivity. Similar to many enzymes, electrostatics play vital roles in catalysis and can be tuned through different bases introduced into the active site.
Collapse
Affiliation(s)
- Foroogh Bahrami
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
2
|
An efficient bioinspired functional micellar nanoreactor for dephosphorylation reactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Conjugation of 4-(dimethylamino)pyridine to primary amines in aqueous buffer solutions using an N-hydroxysuccinimide ester reagent. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Bose I, Fa S, Zhao Y. Tunable Artificial Enzyme-Cofactor Complex for Selective Hydrolysis of Acetals. J Org Chem 2021; 86:1701-1711. [PMID: 33397107 PMCID: PMC8170846 DOI: 10.1021/acs.joc.0c02519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enzymes frequently use unimpressive functional groups such as weak carboxylic acids for efficient, highly selective catalysis including hydrolysis of acetals and even amides. Much stronger acids generally have to be used for such purposes in synthetic systems. We report here a method to position an acidic group near the acetal oxygen of 2-(4-nitrophenyl)-1,3-dioxolane bound by an artificial enzyme. The hydrolytic activity of the resulting artificial enzyme-cofactor complex was tuned by the number and depth of the active site as well as the hydrophobicity and acidity of the cofactor. The selectivity of the complex was controlled by the size and shape of the active site and enabled less reactive acetals to be hydrolyzed over more reactive ones.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| | - Shixin Fa
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| |
Collapse
|
5
|
Affiliation(s)
- Michael Schwarze
- Technische Universität Berlin Department of Chemistry, TC8 Straße des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
6
|
Bose I, Zhao Y. pH-Controlled Nanoparticle Catalysts for Highly Selective Tandem Henry Reaction from Mixtures. ACS Catal 2020; 10:13973-13977. [PMID: 34094653 DOI: 10.1021/acscatal.0c03468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nature has a remarkable ability to perform selective transformation of complex biological mixtures into desired products using enzymatic catalysts. We report the preparation of nanoparticle catalysts through molecular imprinting within cross-linked micelles. These catalysts were highly selective for their targeted substrates and could selectively hydrolyze less reactive acetals over more reactive ones even under basic conditions. Their catalytic activity and selectivity were tunable through rational postmodification of the active site. These properties enabled the nanoparticle catalysts to produce the desired β-nitro alcohol from a four-component acetal mixture in a tandem deprotection/Henry reaction that required incompatible acidic and basic catalysts in the two steps.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
7
|
Li X, Zhao Y. Synthetic glycosidases for the precise hydrolysis of oligosaccharides and polysaccharides. Chem Sci 2020; 12:374-383. [PMID: 34163603 PMCID: PMC8178952 DOI: 10.1039/d0sc05338d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Glycosidases are an important class of enzymes for performing the selective hydrolysis of glycans. Although glycans can be hydrolyzed in principle by acidic water, hydrolysis with high selectivity using nonenzymatic catalysts is an unachieved goal. Molecular imprinting in cross-linked micelles afforded water-soluble polymeric nanoparticles with a sugar-binding boroxole in the imprinted site. Post-modification installed an acidic group near the oxygen of the targeted glycosidic bond, with the acidity and distance of the acid varied systematically. The resulting synthetic glycosidase hydrolyzed oligosaccharides and polysaccharides in a highly controlled fashion simply in hot water. These catalysts not only broke down amylose with similar selectivities to those of natural enzymes, but they also could be designed to possess selectivity not available with biocatalysts. Substrate selectivity was mainly determined by the sugar residues bound within the active site, including their spatial orientations. Separation of the product was accomplished through in situ dialysis, and the catalysts left behind could be used multiple times with no signs of degradation. This work illustrates a general method to construct synthetic glycosidases from readily available building blocks via self-assembly, covalent capture, and post-modification. In addition, controlled, precise, one-step hydrolysis is an attractive way to prepare complex glycans from naturally available carbohydrate sources.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA
| |
Collapse
|
8
|
Vargas EL, Velázquez JA, Rodrigo E, Reinecke H, Rodríguez-Hernández J, Fernández-Mayoralas A, Gallardo A, Cid MB. p Ka Modulation of Pyrrolidine-Based Catalytic Polymers Used for the Preparation of Glycosyl Hydrazides at Physiological pH and Temperature. ACS APPLIED BIO MATERIALS 2020; 3:1955-1967. [PMID: 35025318 DOI: 10.1021/acsabm.9b01123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inspired by the ability of enzymes to use the surrounding hydrophobic and/or polarizable groups to modulate the pKa of a given amino acid, we designed a series of soluble polymers able to decrease the basicity of pyrrolidine (from 11.2 to 8.6 pKa units), which clearly increases its aminocatalytic activity at physiological pH in C═N bond formation reactions via ion iminium activation. Other parameters such as charge density, hydrophobic/hydrophilic balance, and aggregation state have been studied as important factors in the catalytic activity of the polymers for a given substrate. To demonstrate the utility of our approach, an optimal pyrrolidine-based catalytic polymer has been used for the formation of C-N bonds between hydrazides and free sugars as the model system for the preparation of glycoconjugates.
Collapse
Affiliation(s)
- Emily L Vargas
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - J Antonio Velázquez
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - Eduardo Rodrigo
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - Helmut Reinecke
- Instituto de Ciencia y Tecnologı́a de Polı́meros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Instituto de Ciencia y Tecnologı́a de Polı́meros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Alberto Gallardo
- Instituto de Ciencia y Tecnologı́a de Polı́meros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Belén Cid
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
9
|
Yao Y, Xu D, Zhu Y, Dai X, Yu Y, Luo J, Zhang S. Dandelion flower-like micelles. Chem Sci 2019; 11:757-762. [PMID: 34123049 PMCID: PMC8146335 DOI: 10.1039/c9sc05741b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/23/2019] [Indexed: 11/21/2022] Open
Abstract
Dandelion flower-like micelles (DFMs) were prepared by self-assembly of polycaprolactone (PCL) functionalized surface cross-linked micelles (SCMs). Upon reductive stimuli, the SCMs can be released from the DFMs by non-Brownian motion at an average speed of 19.09 μm s-1. Similar to the property of dandelion flowers dispersing their seeds over a long distance, the DFMs demonstrated enhanced multicellular tumor spheroid (MTS) penetration, a useful property in the treatment of many diseases including cancer, infection-of-biofilm diseases and ocular problems.
Collapse
Affiliation(s)
- Yongchao Yao
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Deqiu Xu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 China
- Sichuan Guojian Inspection Co., Ltd. 646000 Luzhou Sichuan China
| | - Yuhong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xin Dai
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yunlong Yu
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Jianbin Luo
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University Chengdu 610041 China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
10
|
|
11
|
Hu L, Zhao Y. A Bait‐and‐Switch Method for the Construction of Artificial Esterases for Substrate‐Selective Hydrolysis. Chemistry 2019; 25:7702-7710. [DOI: 10.1002/chem.201900560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lan Hu
- Department of ChemistryIowa State University Ames IA 50011-3111 USA
| | - Yan Zhao
- Department of ChemistryIowa State University Ames IA 50011-3111 USA
| |
Collapse
|
12
|
Gayen K, Basu K, Bairagi D, Castelletto V, Hamley IW, Banerjee A. Amino-Acid-Based Metallo-Hydrogel That Acts Like an Esterase. ACS APPLIED BIO MATERIALS 2018; 1:1717-1724. [DOI: 10.1021/acsabm.8b00513] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kousik Gayen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kingshuk Basu
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Dipayan Bairagi
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whitenights, Reading RG6, 6AD, United Kingdom
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whitenights, Reading RG6, 6AD, United Kingdom
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
13
|
Hu L, Zhao Y. Molecularly imprinted artificial esterases with highly specific active sites and precisely installed catalytic groups. Org Biomol Chem 2018; 16:5580-5584. [PMID: 30051894 DOI: 10.1039/c8ob01584h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A difficult challenge in synthetic enzymes is the creation of substrate-selective active sites with accurately positioned catalytic groups. Covalent molecular imprinting in cross-linked micelles afforded such active sites in protein-sized, water-soluble nanoparticle catalysts. Our method allowed a systematic tuning of the distance of the catalytic group to the bound substrate. The catalysts displayed enzyme-like kinetics and easily distinguished substrates with subtle structural differences.
Collapse
Affiliation(s)
- Lan Hu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | | |
Collapse
|
14
|
Lee LC, Xing X, Zhao Y. Environmental Engineering of Pd Nanoparticle Catalysts for Catalytic Hydrogenation of CO 2 and Bicarbonate. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38436-38444. [PMID: 29028299 DOI: 10.1021/acsami.7b10591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The extraordinary catalytic properties of enzymes are derived not only from their catalytic groups but also the unique properties of the active site. Tuning the microenvironment of synthetic catalysts is expected to enhance their performance if effective strategies can be developed. Interfacially cross-linked reverse micelles were prepared from three different cross-linkable surfactants. Pd nanoparticles were deposited in the core of the micelle for the catalytic hydrogenation of bicarbonate and CO2. The catalytic performance was found to depend heavily on the nature of the headgroup of the surfactant. Quaternary ammonium-based surfactants through ion exchange could bring bicarbonate to the catalytic center, whereas tertiary amine-based surfactants worked particularly well in CO2 hydrogenation, with turnover numbers an order of magnitude higher than that of commercially available Pd/C. The amines were proposed to bring CO2 to the proximity of the catalysts through reversible formation of carbamate, in the nanospace of the hydrophilic core of the cross-linked reverse micelle. In the bicarbonate reduction, additional improvement of the catalysts was achieved through localized sol-gel synthesis that introduced metal oxide near the catalytic metal.
Collapse
Affiliation(s)
- Li-Chen Lee
- Department of Chemistry, Iowa State University , Ames, Iowa 50011-3111, United States
| | - Xiaoyu Xing
- Department of Chemistry, Iowa State University , Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University , Ames, Iowa 50011-3111, United States
| |
Collapse
|
15
|
Hu L, Zhao Y. Cross‐Linked Micelles with Enzyme‐Like Active Sites for Biomimetic Hydrolysis of Activated Esters. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lan Hu
- Department of Chemistry Iowa State University Ames Iowa 50011‐3111 USA
| | - Yan Zhao
- Department of Chemistry Iowa State University Ames Iowa 50011‐3111 USA
| |
Collapse
|
16
|
Zhao Y. Surface-Cross-Linked Micelles as Multifunctionalized Organic Nanoparticles for Controlled Release, Light Harvesting, and Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5703-13. [PMID: 27181610 PMCID: PMC4907858 DOI: 10.1021/acs.langmuir.6b01162] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/05/2016] [Indexed: 05/30/2023]
Abstract
Surfactant micelles are dynamic entities with a rapid exchange of monomers. By "clicking" tripropargylammonium-containing surfactants with diazide cross-linkers, we obtained surface-cross-linked micelles (SCMs) that could be multifunctionalized for different applications. They triggered membrane fusion through tunable electrostatic interactions with lipid bilayers. Antenna chromophores could be installed on them to create artificial light-harvesting complexes with efficient energy migration among tens to hundreds of chromophores. When cleavable cross-linkers were used, the SCMs could break apart in response to redox or pH signals, ejecting entrapped contents quickly as a result of built-in electrostatic stress. They served as caged surfactants whose surface activity was turned on by environmental stimuli. They crossed cell membranes readily. Encapsulated fluorophores showed enhanced photophysical properties including improved quantum yields and greatly expanded Stokes shifts. Catalytic groups could be installed on the surface or in the interior, covalently attached or physically entrapped. As enzyme mimics, the SCMs enabled rational engineering of the microenvironment around the catalysts to afford activity and selectivity not possible with conventional catalysts.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
17
|
Chadha G, Yang QZ, Zhao Y. Self-assembled light-harvesting supercomplexes from fluorescent surface-cross-linked micelles. Chem Commun (Camb) 2016; 51:12939-42. [PMID: 26185803 DOI: 10.1039/c5cc04377h] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fluorescent nanoparticles made of cross-linked dansylated surfactants allowed efficient donor-donor energy migration within and beyond the nanoparticles when the nanoparticles aggregated in the presence of oppositely charged energy acceptors. The light-harvesting system enabled a single acceptor to quench the emission of over 500 donor chromophores.
Collapse
Affiliation(s)
- Geetika Chadha
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | | | | |
Collapse
|
18
|
Singh N, Conte MP, Ulijn RV, Miravet JF, Escuder B. Insight into the esterase like activity demonstrated by an imidazole appended self-assembling hydrogelator. Chem Commun (Camb) 2016; 51:13213-6. [PMID: 26194473 DOI: 10.1039/c5cc04281j] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A low molecular weight hydrogelator with a covalently appended imidazole moiety is reported. Capable of percolating water in the pH range of 6 to 8, it proves to be an efficient catalyst upon self-assembly, showing Michaelis-Menten type kinetics. Activities at different pH values correlated with dramatic structural changes were observed. It can hydrolyse p-nitrophenyl acetate (pNPA) as well as inactivated esters, and L and D-phenylalanine methyl esters. The enhanced activity can be related to the conglomeration of catalytic groups upon aggregation resulting in their close proximity and the formation of hydrophobic pockets.
Collapse
Affiliation(s)
- Nishant Singh
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain.
| | | | | | | | | |
Collapse
|
19
|
Awino JK, Zhao Y. Polymeric Nanoparticle Receptors as Synthetic Antibodies for Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). ACS Biomater Sci Eng 2015; 1:425-430. [DOI: 10.1021/acsbiomaterials.5b00042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph K. Awino
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
20
|
Arivalagan PR, Zhao Y. Interfacial catalysis of aldol reactions by prolinamide surfactants in reverse micelles. Org Biomol Chem 2015; 13:770-5. [DOI: 10.1039/c4ob02074j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aggregation of prolinamide surfactants in nonpolar solvents enhanced their catalytic activity and gave unusual substrate selectivity in aldol condensations.
Collapse
Affiliation(s)
| | - Yan Zhao
- Department of Chemistry
- Iowa State University
- Ames
- USA
| |
Collapse
|
21
|
Lee LC, Xiao C, Huang W, Zhao Y. Palladium–gold bimetallic nanoparticle catalysts prepared by “controlled release” from metal-loaded interfacially cross-linked reverse micelles. NEW J CHEM 2015. [DOI: 10.1039/c4nj01905a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bimetallic Pd–Au nanoparticles prepared by a novel method were active catalysts for green oxidation of alcohol in water.
Collapse
Affiliation(s)
- Li-Chen Lee
- Department of Chemistry
- Iowa State University
- Ames
- USA
| | | | - Wenyu Huang
- Department of Chemistry
- Iowa State University
- Ames
- USA
| | - Yan Zhao
- Department of Chemistry
- Iowa State University
- Ames
- USA
| |
Collapse
|
22
|
Awino JK, Zhao Y. Water-Soluble Molecularly Imprinted Nanoparticles (MINPs) with Tailored, Functionalized, Modifiable Binding Pockets. Chemistry 2014; 21:655-61. [DOI: 10.1002/chem.201404919] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/10/2022]
|
23
|
Awino JK, Zhao Y. Water-Soluble Molecularly Imprinted Nanoparticles (MINPs) with Tailored, Functionalized, Modifiable Binding Pockets. Chemistry 2014; 21:3831-3831. [PMID: 25376391 DOI: 10.1002/chem.404919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/10/2022]
Abstract
Construction of receptors with binding sites of specific size, shape, and functional groups is important to both chemistry and biology. Covalent imprinting of a photocleavable template within surface-core doubly cross-linked micelles yielded carboxylic acid-containing hydrophobic pockets within the water-soluble molecularly imprinted nanoparticles. The functionalized binding pockets were characterized by their binding of amine- and acid-functionalized guests under different pH values. The nanoparticles, on average, contained one binding site per particle and displayed highly selective binding among structural analogues. The binding sites could be modified further by covalent chemistry to modulate their binding properties.
Collapse
Affiliation(s)
- Joseph K Awino
- Department of Chemistry, Iowa State University, Ames, IA 50011-3111 (USA), Fax: (+1) 515-294-0105
| | | |
Collapse
|
24
|
Awino JK, Zhao Y. Molecularly imprinted nanoparticles as tailor-made sensors for small fluorescent molecules. Chem Commun (Camb) 2014; 50:5752-5. [DOI: 10.1039/c4cc01516a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|