1
|
Jiang F, Wang Z, Cong Z. Tuning the peroxidase activity of artificial P450 peroxygenase by engineering redox-sensitive residues. Faraday Discuss 2024; 252:52-68. [PMID: 38836616 DOI: 10.1039/d4fd00008k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Cytochrome P450 monooxygenases (P450s) are well recognized as versatile bio-oxidation catalysts. However, the catalytic functions of P450s are highly dependent on NAD(P)H and redox partner proteins. Our group has recently reported the use of a dual-functional small molecule (DFSM) for generating peroxygenase activity of P450BM3, a long-chain fatty acid hydroxylase from Bacillus megaterium. The DFSM-facilitated P450BM3 peroxygenase system exhibited excellent peroxygenation activity and regio-/enantioselectivity for various organic substrates, such as styrenes, thioanisole, small alkanes, and alkylbenzenes. Very recently, we demonstrated that the DFSM-facilitated P450BM3 peroxygenase could be switched to a peroxidase by engineering the redox-sensitive tyrosine residues in P450BM3. Given the great potential of P450 peroxidase for C-H oxyfunctionalization, we herein report scrutiny of the effect of mutating redox-sensitive residues on peroxidase activity by deeply screening all redox-sensitive residues of P450BM3, namely methionines, tryptophans, cysteines, and phenylalanines. As a result, six beneficial mutations at positions M212, F81, M112, F173, M177, and F77 were screened out from 78 constructed mutants, and significantly enhanced the peroxidase activity of P450BM3 in the presence of Im-C6-Phe, a typical DFSM molecule. Further combination of the beneficial mutations resulted in a more than 100-fold improvement in peroxidase activity compared with that of the combined parent enzyme and DFSM, comparable to or better than most natural peroxidases. In addition, mutations of redox-sensitive residues even dramatically increased, by more than 300-fold, the peroxidase activity of the starting F87A enzyme in the absence of the DFSM, despite the far lower apparent catalytic turnover number compared with the DFSM-P450 system. This study provides new insights and a potential strategy for regulating the catalytic promiscuity of P450 enzymes for multiple functional oxidations.
Collapse
Affiliation(s)
- Fengjie Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
2
|
Grandi E, Feyza Özgen F, Schmidt S, Poelarends GJ. Enzymatic Oxy- and Amino-Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angew Chem Int Ed Engl 2023; 62:e202309012. [PMID: 37639631 DOI: 10.1002/anie.202309012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Biocatalytic cascades are a powerful tool for building complex molecules containing oxygen and nitrogen functionalities. Moreover, the combination of multiple enzymes in one pot offers the possibility to minimize downstream processing and waste production. In this review, we illustrate various recent efforts in the development of multi-step syntheses involving C-O and C-N bond-forming enzymes to produce high value-added compounds, such as pharmaceuticals and polymer precursors. Both in vitro and in vivo examples are discussed, revealing the respective advantages and drawbacks. The use of engineered enzymes to boost the cascades outcome is also addressed and current co-substrate and cofactor recycling strategies are presented, highlighting the importance of atom economy. Finally, tools to overcome current challenges for multi-enzymatic oxy- and amino-functionalization reactions are discussed, including flow systems with immobilized biocatalysts and cascades in confined nanomaterials.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Fatma Feyza Özgen
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
3
|
Gee AR, Stone ISJ, Stockdale TP, Pukala TL, De Voss JJ, Bell SG. Efficient biocatalytic C-H bond oxidation: an engineered heme-thiolate peroxygenase from a thermostable cytochrome P450. Chem Commun (Camb) 2023; 59:13486-13489. [PMID: 37881007 DOI: 10.1039/d3cc04626e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A highly sought after reaction in chemical synthesis is the activation of unactivated carbon-hydrogen bonds. We demonstrate the hydroxylation of fatty acids using an engineered thermostable archaeal cytochrome P450 enzyme. By replacing a seven amino acid section of the I-helix, the nicotinamide cofactor-dependent monooxygenase was converted into a hydrogen peroxide using peroxygenase, enabling the efficient biocatalytic oxidation of C-H bonds at room temperature to 90 °C.
Collapse
Affiliation(s)
- Alecia R Gee
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Isobella S J Stone
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Tegan P Stockdale
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Tara L Pukala
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Stephen G Bell
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
4
|
Zhao P, Kong F, Jiang Y, Qin X, Tian X, Cong Z. Enabling Peroxygenase Activity in Cytochrome P450 Monooxygenases by Engineering Hydrogen Peroxide Tunnels. J Am Chem Soc 2023; 145:5506-5511. [PMID: 36790023 DOI: 10.1021/jacs.3c00195] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Given prominent physicochemical similarities between H2O2 and water, we report a new strategy for promoting the peroxygenase activity of P450 enzymes by engineering their water tunnels to facilitate H2O2 access to the heme center buried therein. Specifically, the H2O2-driven activities of two native NADH-dependent P450 enzymes (CYP199A4 and CYP153AM.aq) increase significantly (by >183-fold and >15-fold, respectively). Additionally, the amount of H2O2 required for an artificial P450 peroxygenase facilitated by a dual-functional small molecule to obtain the desired product is reduced by 95%-97.5% (with ∼95% coupling efficiency). Structural analysis suggests that mutating the residue at the bottleneck of the water tunnel may open a second pathway for H2O2 to flow to the heme center (in addition to the natural substrate tunnel). This study highlights a promising, generalizable strategy whereby P450 monooxygenases can be modified to adopt peroxygenase activity through H2O2 tunnel engineering, thus broadening the application scope of P450s in synthetic chemistry and synthetic biology.
Collapse
Affiliation(s)
- Panxia Zhao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanhui Kong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiaoxia Tian
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shandong Energy Institute, Qingdao, Shandong 266101, China.,Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| |
Collapse
|
5
|
Pogrányi B, Mielke T, Díaz‐Rodríguez A, Cartwright J, Unsworth WP, Grogan G. Preparative-Scale Biocatalytic Oxygenation of N-Heterocycles with a Lyophilized Peroxygenase Catalyst. Angew Chem Int Ed Engl 2023; 62:e202214759. [PMID: 36453718 PMCID: PMC10107140 DOI: 10.1002/anie.202214759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
A lyophilized preparation of an unspecific peroxygenase variant from Agrocybe aegerita (rAaeUPO-PaDa-I-H) is a highly effective catalyst for the oxygenation of a diverse range of N-heterocyclic compounds. Scalable biocatalytic oxygenations (27 preparative examples, ca. 100 mg scale) have been developed across a wide range of substrates, including alkyl pyridines, bicyclic N-heterocycles and indoles. H2 O2 is the only stoichiometric oxidant needed, without auxiliary electron transport proteins, which is key to the practicality of the method. Reaction outcomes can be altered depending on whether hydrogen peroxide was delivered by syringe pump or through in situ generation using an alcohol oxidase from Pichia pastoris (PpAOX) and methanol as a co-substrate. Good synthetic yields (up to 84 %), regioselectivity and enantioselectivity (up to 99 % ee) were observed in some cases, highlighting the promise of UPOs as practical, versatile and scalable oxygenation biocatalysts.
Collapse
Affiliation(s)
- Balázs Pogrányi
- Department of ChemistryUniversity of YorkHeslington YorkYO10 5DDUK
| | - Tamara Mielke
- Department of ChemistryUniversity of YorkHeslington YorkYO10 5DDUK
| | - Alba Díaz‐Rodríguez
- GSK Medicines Research CentreGunnels Wood RoadStevenageHertfordshire, SG1 2NYUK
| | - Jared Cartwright
- Department of BiologyUniversity of YorkHeslington YorkYO10 5DDUK
| | | | - Gideon Grogan
- Department of ChemistryUniversity of YorkHeslington YorkYO10 5DDUK
| |
Collapse
|
6
|
Robinson WXQ, Mielke T, Melling B, Cuetos A, Parkin A, Unsworth WP, Cartwright J, Grogan G. Comparing the Catalytic and Structural Characteristics of a 'Short' Unspecific Peroxygenase (UPO) Expressed in Pichia pastoris and Escherichia coli. Chembiochem 2023; 24:e202200558. [PMID: 36374006 PMCID: PMC10098773 DOI: 10.1002/cbic.202200558] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Unspecific peroxygenases (UPOs) have emerged as valuable tools for the oxygenation of non-activated carbon atoms, as they exhibit high turnovers, good stability and depend only on hydrogen peroxide as the external oxidant for activity. However, the isolation of UPOs from their natural fungal sources remains a barrier to wider application. We have cloned the gene encoding an 'artificial' peroxygenase (artUPO), close in sequence to the 'short' UPO from Marasmius rotula (MroUPO), and expressed it in both the yeast Pichia pastoris and E. coli to compare the catalytic and structural characteristics of the enzymes produced in each system. Catalytic efficiency for the UPO substrate 5-nitro-1,3-benzodioxole (NBD) was largely the same for both enzymes, and the structures also revealed few differences apart from the expected glycosylation of the yeast enzyme. However, the glycosylated enzyme displayed greater stability, as determined by nano differential scanning fluorimetry (nano-DSF) measurements. Interestingly, while artUPO hydroxylated ethylbenzene derivatives to give the (R)-alcohols, also given by a variant of the 'long' UPO from Agrocybe aegerita (AaeUPO), it gave the opposite (S)-series of sulfoxide products from a range of sulfide substrates, broadening the scope for application of the enzymes. The structures of artUPO reveal substantial differences to that of AaeUPO, and provide a platform for investigating the distinctive activity of this and related'short' UPOs.
Collapse
Affiliation(s)
- Wendy X. Q. Robinson
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Tamara Mielke
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Benjamin Melling
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Anibal Cuetos
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Alison Parkin
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - William P. Unsworth
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | - Gideon Grogan
- York Structural Biology LaboratoryDepartment of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
7
|
Wang Q, Jiang X, Gao Y, Yin L, Wei X, Guo K, Gao X, Wang L, Zhang C. Studies on Biosynthesis of Chiral Sulfoxides by Using P450 119 Peroxygenase and Its Mutants. ChemistrySelect 2022. [DOI: 10.1002/slct.202204031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qin Wang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
- Dazhou Vocational College of Chinese Medicine Luojiang Town, Tongchuan District Dazhou 635000 China
| | - Xin‐Meng Jiang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Yan‐Ping Gao
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Li‐Ping Yin
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Xiao‐Yao Wei
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Kai Guo
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Xiao‐Wei Gao
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Li Wang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
- Department of Nuclear Medicine The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Chun Zhang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| |
Collapse
|
8
|
Charlton SN, Hayes MA. Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem 2022; 17:e202200115. [PMID: 35385205 PMCID: PMC9323455 DOI: 10.1002/cmdc.202200115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/12/2022]
Abstract
C-H oxyfunctionalisation remains a distinct challenge for synthetic organic chemists. Oxygenases and peroxygenases (grouped here as "oxygenating biocatalysts") catalyse the oxidation of a substrate with molecular oxygen or hydrogen peroxide as oxidant. The application of oxygenating biocatalysts in organic synthesis has dramatically increased over the last decade, producing complex compounds with potential uses in the pharmaceutical industry. This review will focus on hydroxyl functionalisation using oxygenating biocatalysts as a tool for drug discovery and development. Established oxygenating biocatalysts, such as cytochrome P450s and flavin-dependent monooxygenases, have widely been adopted for this purpose, but can suffer from low activity, instability or limited substrate scope. Therefore, emerging oxygenating biocatalysts which offer an alternative will also be covered, as well as considering the ways in which these hydroxylation biotransformations can be applied in drug discovery and development, such as late-stage functionalisation (LSF) and in biocatalytic cascades.
Collapse
Affiliation(s)
- Sacha N. Charlton
- School of ChemistryUniversity of Bristol, Cantock's CloseBristolBS8 1TSUK
| | - Martin A. Hayes
- Compound Synthesis and ManagementDiscovery SciencesBiopharmaceuticals R&DAstraZenecaGothenburgSweden
| |
Collapse
|
9
|
Wied P, Carraro F, Bolivar JM, Doonan CJ, Falcaro P, Nidetzky B. Combining a Genetically Engineered Oxidase with Hydrogen-Bonded Organic Frameworks (HOFs) for Highly Efficient Biocomposites. Angew Chem Int Ed Engl 2022; 61:e202117345. [PMID: 35038217 PMCID: PMC9305891 DOI: 10.1002/anie.202117345] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Enzymes incorporated into hydrogen-bonded organic frameworks (HOFs) via bottom-up synthesis are promising biocomposites for applications in catalysis and sensing. Here, we explored synthetic incorporation of d-amino acid oxidase (DAAO) with the metal-free tetraamidine/tetracarboxylate-based BioHOF-1 in water. N-terminal enzyme fusion with the positively charged module Zbasic2 strongly boosted the loading (2.5-fold; ≈500 mg enzyme gmaterial-1 ) and the specific activity (6.5-fold; 23 U mg-1 ). The DAAO@BioHOF-1 composites showed superior activity with respect to every reported carrier for the same enzyme and excellent stability during catalyst recycling. Further, extension to other enzymes, including cytochrome P450 BM3 (used in the production of high-value oxyfunctionalized compounds), points to the versatility of genetic engineering as a strategy for the preparation of biohybrid systems with unprecedented properties.
Collapse
Affiliation(s)
- Peter Wied
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Francesco Carraro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Juan M. Bolivar
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
| | - Christian J. Doonan
- Department of ChemistryThe University of AdelaideAdelaideSouth Australia 5005Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 9/Z28010GrazAustria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyPetersgasse 12/18010GrazAustria
| |
Collapse
|
10
|
Kadosh Y, Ben-Eliyahu Y, Bochlin Y, Ezuz L, Iflah Y, Halevy S, Kozuch S, Korin E, Bettelheim A. A bilayer coating as an oxygen-transfer cascade for the electrochemical ambient conversion of methane to oxygenates. Chem Commun (Camb) 2022; 58:3154-3157. [PMID: 35166738 DOI: 10.1039/d1cc05720k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidation of methane at ambient conditions to useful oxygenates at a bilayer-coated electrode is demonstrated. The composition of the coating, a Mn porphyrin mediator layer on top of a N(OH)2/NiOOH one, allows a cascade of oxygen transfer events upon applying a potential. It is shown, using (spectro)electrochemical techniques, density functional theory computations and product analytical methods, that formate and methanol accompanied by CO2 suppression can be observed at a certain potential range. This can lead to further development of similar oxygen/electron transfer cascades for possible use in devices for energy conversion and fuel/product generation.
Collapse
Affiliation(s)
- Yanir Kadosh
- Chemical Engineering Department, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel.
| | | | - Yair Bochlin
- Chemical Engineering Department, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel.
| | - Lior Ezuz
- Chemical Engineering Department, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel.
| | - Yacov Iflah
- Chemistry Department, Nuclear Research Centre-Negev, Be'er Sheva, 84190, Israel
| | - Shuli Halevy
- Chemistry Department, Nuclear Research Centre-Negev, Be'er Sheva, 84190, Israel
| | - Sebastian Kozuch
- Chemistry Department, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | - Eli Korin
- Chemical Engineering Department, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel.
| | - Armand Bettelheim
- Chemical Engineering Department, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel.
| |
Collapse
|
11
|
Fessner ND, Weber H, Glieder A. Regiospecific 7-hydroxylation of ten-carbon monoterpenes by detoxifying CYP5035S7 monooxygenase of the white-rot fungus Polyporus arcularius. Biochem Biophys Res Commun 2022; 595:35-40. [DOI: 10.1016/j.bbrc.2022.01.072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
|
12
|
Pereira MS, de Araújo SS, Nagem RAP, Richard JP, Brandão TAS. The role of remote flavin adenine dinucleotide pieces in the oxidative decarboxylation catalyzed by salicylate hydroxylase. Bioorg Chem 2022; 119:105561. [PMID: 34965488 PMCID: PMC8824312 DOI: 10.1016/j.bioorg.2021.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023]
Abstract
Salicylate hydroxylase (NahG) has a single redox site in which FAD is reduced by NADH, the O2 is activated by the reduced flavin, and salicylate undergoes an oxidative decarboxylation by a C(4a)-hydroperoxyflavin intermediate to give catechol. We report experimental results that show the contribution of individual pieces of the FAD cofactor to the observed enzymatic activity for turnover of the whole cofactor. A comparison of the kinetic parameters and products for the NahG-catalyzed reactions of FMN and riboflavin cofactor fragments reveal that the adenosine monophosphate (AMP) and ribitol phosphate pieces of FAD act to anchor the flavin to the enzyme and to direct the partitioning of the C(4a)-hydroperoxyflavin reaction intermediate towards hydroxylation of salicylate. The addition of AMP or ribitol phosphate pieces to solutions of the truncated flavins results in a partial restoration of the enzymatic activity lost upon truncation of FAD, and the pieces direct the reaction of the C(4a)-hydroperoxyflavin intermediate towards hydroxylation of salicylate.
Collapse
Affiliation(s)
- Mozart S. Pereira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Simara S. de Araújo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Ronaldo A. P. Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000,CORRESPONDING AUTHOR: ;
| | - Tiago A. S. Brandão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.,CORRESPONDING AUTHOR: ;
| |
Collapse
|
13
|
Wied P, Carraro F, Bolivar JM, Doonan CJ, Falcaro P, Nidetzky B. Combining Genetically Engineered Oxidase with Hydrogen Bonded Organic Framework (HOF) for Highly Efficient Biocomposites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Peter Wied
- Graz University of Technology: Technische Universitat Graz Biotechnology and Biochemical Engineering AUSTRIA
| | - Francesco Carraro
- Graz University of Technology: Technische Universitat Graz Physical Chemistry AUSTRIA
| | - Juan M. Bolivar
- Complutense University of Madrid: Universidad Complutense de Madrid Biochemical Engineering SPAIN
| | - Christian J. Doonan
- University of Adelaide Press: The University of Adelaide Chemistry AUSTRALIA
| | - Paolo Falcaro
- Graz University of Technology: Technische Universitat Graz Physical Chemistry AUSTRIA
| | - Bernd Nidetzky
- Biotechnology and Biochemical Engineering Graz University of Technology Petersgasse 12 8010 Graz AUSTRIA
| |
Collapse
|
14
|
Harlington AC, Shearwin KE, Bell SG, Whelan F. Efficient O-demethylation of lignin monoaromatics using the peroxygenase activity of cytochrome P450 enzymes. Chem Commun (Camb) 2022; 58:13321-13324. [DOI: 10.1039/d2cc04698a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Selective O-demethylation of the lignin monoaromatics, syringol and guaiacol, using the peroxygenase activity of two distinct cytochrome P450 enzymes.
Collapse
Affiliation(s)
- Alix C. Harlington
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Keith E. Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Fiona Whelan
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
15
|
Rotilio L, Swoboda A, Ebner K, Rinnofner C, Glieder A, Kroutil W, Mattevi A. Structural and biochemical studies enlighten the unspecific peroxygenase from Hypoxylon sp. EC38 as an efficient oxidative biocatalyst. ACS Catal 2021; 11:11511-11525. [PMID: 34540338 DOI: 10.1021/acscatal.1c03065] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unspecific peroxygenases (UPO) are glycosylated fungal enzymes that can selectively oxidize C-H bonds. UPOs employ hydrogen peroxide as oxygen donor and reductant. With such an easy-to-handle co-substrate and without the need of a reducing agent, UPOs are emerging as convenient oxidative biocatalysts. Here, an unspecific peroxygenase from Hypoxylon sp. EC38 (HspUPO) was identified in an activity-based screen of six putative peroxygenase enzymes that were heterologously expressed in Pichia pastoris. The enzyme was found to tolerate selected organic solvents such as acetonitrile and acetone. HspUPO is a versatile catalyst performing various reactions, such as the oxidation of prim- and sec-alcohols, epoxidations and hydroxylations. Semi-preparative biotransformations were demonstrated for the non-enantioselective oxidation of racemic 1-phenylethanol rac -1b (TON = 13000), giving the product with 88% isolated yield, and the oxidation of indole 6a to give indigo 6b (TON = 2800) with 98% isolated yield. HspUPO features a compact and rigid three-dimensional conformation that wraps around the heme and defines a funnel-shaped tunnel that leads to the heme iron from the protein surface. The tunnel extends along a distance of about 12 Å with a fairly constant diameter in its innermost segment. Its surface comprises both hydrophobic and hydrophilic groups for dealing with small-to-medium size substrates of variable polarities. The structural investigation of several protein-ligand complexes revealed that the active site of HspUPO is accessible to molecules of varying bulkiness and polarity with minimal or no conformational changes, explaining the relatively broad substrate scope of the enzyme. With its convenient expression system, robust operational properties, relatively small size, well-defined structural features, and diverse reaction scope, HspUPO is an exploitable candidate for peroxygenase-based biocatalysis.
Collapse
Affiliation(s)
- Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Alexander Swoboda
- Austrian Centre of Industrial Biotechnology, c/o Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Katharina Ebner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Claudia Rinnofner
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Austrian Centre of Industrial Biotechnology, c/o Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Gaz, BioTechMed Graz, Heinrichstraße 28, 8010 Graz, Austria
- Field of Excellence BioHealth-University of Graz, 8010 Graz, Austria
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
16
|
Two (Chemo)-Enzymatic Cascades for the Production of Opposite Enantiomers of Chiral Azidoalcohols. Catalysts 2021. [DOI: 10.3390/catal11080982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multi-step cascade reactions have gained increasing attention in the biocatalysis field in recent years. In particular, multi-enzymatic cascades can achieve high molecular complexity without workup of reaction intermediates thanks to the enzymes’ intrinsic selectivity; and where enzymes fall short, organo- or metal catalysts can further expand the range of possible synthetic routes. Here, we present two enantiocomplementary (chemo)-enzymatic cascades composed of either a styrene monooxygenase (StyAB) or the Shi epoxidation catalyst for enantioselective alkene epoxidation in the first step, coupled with a halohydrin dehalogenase (HHDH)-catalysed regioselective epoxide ring opening in the second step for the synthesis of chiral aliphatic non-terminal azidoalcohols. Through the controlled formation of two new stereocenters, corresponding azidoalcohol products could be obtained with high regioselectivity and excellent enantioselectivity (99% ee) in the StyAB-HHDH cascade, while product enantiomeric excesses in the Shi-HHDH cascade ranged between 56 and 61%.
Collapse
|
17
|
Zhang X, Jiang Y, Chen Q, Dong S, Feng Y, Cong Z, Shaik S, Wang B. H-Bonding Networks Dictate the Molecular Mechanism of H2O2 Activation by P450. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407 Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
18
|
Ma N, Fang W, Liu C, Qin X, Wang X, Jin L, Wang B, Cong Z. Switching an Artificial P450 Peroxygenase into Peroxidase via Mechanism-Guided Protein Engineering. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhan Fang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Xiling Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Longyi Jin
- Department of Chemistry, College of Science, Yanbian University, Yanji, Jilin 133002, China
| | - Binju Wang
- Department of Chemistry, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Chakrabarty S, Wang Y, Perkins JC, Narayan ARH. Scalable biocatalytic C-H oxyfunctionalization reactions. Chem Soc Rev 2020; 49:8137-8155. [PMID: 32701110 PMCID: PMC8177087 DOI: 10.1039/d0cs00440e] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalytic C-H oxyfunctionalization reactions have garnered significant attention in recent years with their ability to streamline synthetic routes toward complex molecules. Consequently, there have been significant strides in the design and development of catalysts that enable diversification through C-H functionalization reactions. Enzymatic C-H oxygenation reactions are often complementary to small molecule based synthetic approaches, providing a powerful tool when deployable on preparative-scale. This review highlights key advances in scalable biocatalytic C-H oxyfunctionalization reactions developed within the past decade.
Collapse
Affiliation(s)
- Suman Chakrabarty
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
20
|
Hu Y, Xu W, Hui C, Xu J, Huang M, Lin X, Wu Q. The mutagenesis of a single site for enhancing or reversing the enantio- or regiopreference of cyclohexanone monooxygenases. Chem Commun (Camb) 2020; 56:9356-9359. [PMID: 32672300 DOI: 10.1039/d0cc03721d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mutagenesis of a "second sphere" switch residue of CHMOAcineto could control its enantio- and regiopreference. Replacing phenylalanine (F) at position 277 of CHMOAcineto into larger tryptophan (W) enabled a significant enhancement of enantio- or regioselectivity toward structurally diverse substrates, moreover, a complete reversal of enantio- or regiopreference was realized by mutating F277 into a range of smaller amino acids (A/C/D/E/G/H/I/K/L/M/N/P/Q/R/S/T/V).
Collapse
Affiliation(s)
- Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Preissler J, Reeve HA, Zhu T, Nicholson J, Urata K, Lauterbach L, Wong LL, Vincent KA, Lenz O. Dihydrogen‐Driven NADPH Recycling in Imine Reduction and P450‐Catalyzed Oxidations Mediated by an Engineered O
2
‐Tolerant Hydrogenase. ChemCatChem 2020. [DOI: 10.1002/cctc.202000763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Janina Preissler
- Institute of Chemistry, Biophysical Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Holly A. Reeve
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Tianze Zhu
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Jake Nicholson
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Kouji Urata
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Lars Lauterbach
- Institute of Chemistry, Biophysical Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Luet L. Wong
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Kylie A. Vincent
- Department of Chemistry University of Oxford Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Oliver Lenz
- Institute of Chemistry, Biophysical Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
22
|
Biocatalyzed Redox Processes Employing Green Reaction Media. Molecules 2020; 25:molecules25133016. [PMID: 32630322 PMCID: PMC7411633 DOI: 10.3390/molecules25133016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023] Open
Abstract
The application of biocatalysts to perform reductive/oxidative chemical processes has attracted great interest in recent years, due to their environmentally friendly conditions combined with high selectivities. In some circumstances, the aqueous buffer medium normally employed in biocatalytic procedures is not the best option to develop these processes, due to solubility and/or inhibition issues, requiring biocatalyzed redox procedures to circumvent these drawbacks, by developing novel green non-conventional media, including the use of biobased solvents, reactions conducted in neat conditions and the application of neoteric solvents such as deep eutectic solvents.
Collapse
|
23
|
Li RJ, Zhang Z, Acevedo-Rocha CG, Zhao J, Li A. Biosynthesis of organic molecules via artificial cascade reactions based on cytochrome P450 monooxygenases. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Wang JB, Huang Q, Peng W, Wu P, Yu D, Chen B, Wang B, Reetz MT. P450-BM3-Catalyzed Sulfoxidation versus Hydroxylation: A Common or Two Different Catalytically Active Species? J Am Chem Soc 2020; 142:2068-2073. [PMID: 31927987 PMCID: PMC7307895 DOI: 10.1021/jacs.9b13061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 12/15/2022]
Abstract
While the mechanism of the P450-catalyzed oxidative hydroxylation of organic compounds has been studied in detail for many years, less is known about sulfoxidation. Depending upon the structure of the respective substrate, heme-Fe═O (Cpd I), heme-Fe(III)-OOH (Cpd 0), and heme-Fe(III)-H2O2 (protonated Cpd 0) have been proposed as reactive intermediates. In the present study, we consider the transformation of isosteric substrates via sulfoxidation and oxidative hydroxylation, respectively, catalyzed by regio- and enantioselective mutants of P450-BM3 which were constructed by directed evolution. 1-Thiochromanone and 1-tetralone were used as the isosteric substrates because, unlike previous studies involving fully flexible compounds such as thia-fatty acids and fatty acids, respectively, these compounds are rigid and cannot occur in a multitude of different conformations and binding modes in the large P450-BM3 binding pocket. The experimental results comprising activity and regio- and enantioselectivity, flanked by molecular dynamics computations within a time scale of 300 ns and QM/MM calculations of transition-state energies, unequivocally show that heme-Fe═O (Cpd I) is the common catalytically active intermediate in both sulfoxidation and oxidative hydroxylation.
Collapse
Affiliation(s)
- Jian-bo Wang
- Key Laboratory
of Phytochemistry R&D of Hunan Province, College of Chemistry
and Chemical Engineering and Key Laboratory of Chemical Biology and Traditional
Chinese Medicine Research (Ministry of Education), College of Chemistry
and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Qun Huang
- Key Laboratory
of Phytochemistry R&D of Hunan Province, College of Chemistry
and Chemical Engineering and Key Laboratory of Chemical Biology and Traditional
Chinese Medicine Research (Ministry of Education), College of Chemistry
and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Peng
- State Key
Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 360015, P. R. China
| | - Peng Wu
- State Key
Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 360015, P. R. China
| | - Da Yu
- Key Laboratory
of Phytochemistry R&D of Hunan Province, College of Chemistry
and Chemical Engineering and Key Laboratory of Chemical Biology and Traditional
Chinese Medicine Research (Ministry of Education), College of Chemistry
and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory
of Phytochemistry R&D of Hunan Province, College of Chemistry
and Chemical Engineering and Key Laboratory of Chemical Biology and Traditional
Chinese Medicine Research (Ministry of Education), College of Chemistry
and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key
Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 360015, P. R. China
| | - Manfred T. Reetz
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
| |
Collapse
|
25
|
Jiang Y, Wang C, Ma N, Chen J, Liu C, Wang F, Xu J, Cong Z. Regioselective aromatic O-demethylation with an artificial P450BM3 peroxygenase system. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00241k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly regioselective O-demethylation of aromatic ethers related to the bioconversion of lignin was achieved by the H2O2-dependent engineered P450BM3 enzymes with assistance of a dual-functional small molecule (DFSM) for the first time.
Collapse
Affiliation(s)
- Yihui Jiang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Chunlan Wang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries
- Ministry of Agriculture and Rural Affairs
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences
- Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology
- Qingdao 266071
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences
- Qingdao
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
26
|
Solé J, Brummund J, Caminal G, Álvaro G, Schürmann M, Guillén M. Enzymatic Synthesis of Trimethyl-ε-caprolactone: Process Intensification and Demonstration on a 100 L Scale. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jordi Solé
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Jan Brummund
- InnoSyn B.V., Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Gloria Caminal
- Institut de Química Avançada de Catalunya (IQAC), 08034 Barcelona, Spain
| | - Gregorio Álvaro
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | | | - Marina Guillén
- Bioprocess Engineering and Applied Biocatalysis Group, Department of Chemical Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
27
|
Yadav P, Khare SK, Sharma S. Kinetics of epoxidation by a
Musa paradisiaca
chloroperoxidase. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pratibha Yadav
- Centre for Rural Development and TechnologyIndian Institute of Technology Delhi New Delhi India
| | - Sunil K. Khare
- Department of ChemistryIndian Institute of Technology Delhi New Delhi India
| | - Satyawati Sharma
- Centre for Rural Development and TechnologyIndian Institute of Technology Delhi New Delhi India
| |
Collapse
|
28
|
Seel CJ, Gulder T. Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes. Chembiochem 2019; 20:1871-1897. [PMID: 30864191 DOI: 10.1002/cbic.201800806] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Indexed: 12/11/2022]
Abstract
Enzymes catalyze a plethora of highly specific transformations under mild and environmentally benign reaction conditions. Their fascinating performances attest to high synthetic potential that is often hampered by operational obstacles such as in vitro cofactor supply and regeneration. Exploiting light and combining it with biocatalysis not only helps in overcoming these drawbacks, but the fruitful liaison of these two fields of "green chemistry" also offers opportunities to unlock new synthetic reactivities. In this review we provide an overview of the wide variety of photo-biocatalysis, ranging from the photochemical delivery of electrons required in redox biocatalysis and photochemical cofactor and reagent (re)generation to direct photoactivation of enzymes enabling reactions unknown in nature. We highlight synthetically relevant transformations such as asymmetric reactions facilitated by the combination of light as energy source and enzymes' catalytic power.
Collapse
Affiliation(s)
- Catharina J Seel
- Department of Chemistry and Catalysis Research Center (CRC), Technical University Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Tanja Gulder
- Department of Chemistry and Catalysis Research Center (CRC), Technical University Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
29
|
Chen J, Kong F, Ma N, Zhao P, Liu C, Wang X, Cong Z. Peroxide-Driven Hydroxylation of Small Alkanes Catalyzed by an Artificial P450BM3 Peroxygenase System. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02507] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanhui Kong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Panxia Zhao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanfei Liu
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiling Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Ütkür FÖ, Schmid A, Bühler B. Anaerobic C-H Oxyfunctionalization: Coupling of Nitrate Reduction and Quinoline Hydroxylation in Recombinant Pseudomonas putida. Biotechnol J 2019; 14:e1800615. [PMID: 31144783 DOI: 10.1002/biot.201800615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/20/2019] [Indexed: 11/09/2022]
Abstract
Whole-cell biocatalysis for C-H oxyfunctionalization depends on and is often limited by O2 mass transfer. In contrast to oxygenases, molybdenum hydroxylases use water instead of O2 as an oxygen donor and thus have the potential to relieve O2 mass transfer limitations. Molybdenum hydroxylases may even allow anaerobic oxyfunctionalization when coupled to anaerobic respiration. To evaluate this option, the coupling of quinoline hydroxylation to denitrification is tested under anaerobic conditions employing Pseudomonas putida (P. putida) 86, capable of aerobic growth on quinoline. P. putida 86 reduces both nitrate and nitrite, but at low rates, which does not enable significant growth and quinoline hydroxylation. Introduction of the nitrate reductase from Pseudomonas aeruginosa enables considerable specific quinoline hydroxylation activity (6.9 U gCDW -1 ) under anaerobic conditions with nitrate as an electron acceptor and 2-hydroxyquinoline as the sole product (further metabolization depends on O2 ). Hydroxylation-derived electrons are efficiently directed to nitrate, accounting for 38% of the respiratory activity. This study shows that molybdenum hydroxylase-based whole-cell biocatalysts enable completely anaerobic carbon oxyfunctionalization when coupled to alternative respiration schemes such as nitrate respiration.
Collapse
Affiliation(s)
- Fatma Özde Ütkür
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund, 44227, Germany
| | - Andreas Schmid
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund, 44227, Germany.,Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund, 44227, Germany.,Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
31
|
Catalytic mechanism for the conversion of salicylate into catechol by the flavin-dependent monooxygenase salicylate hydroxylase. Int J Biol Macromol 2019; 129:588-600. [DOI: 10.1016/j.ijbiomac.2019.01.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 11/17/2022]
|
32
|
Abstract
The aromatic N-oxides have received increased attention over the last few years due to their potential application in medicine, agriculture and organic chemistry. As a green alternative in their synthesis, the biocatalytic method employing whole cells of Escherichia coli bearing phenol monooxygenase like protein PmlABCDEF (from here on – PML monooxygenase) has been introduced. In this work, site-directed mutagenesis was used to study the contributions of active site neighboring residues I106, A113, G109, F181, F200, F209 to the regiospecificity of N-oxidation. Based on chromogenic indole oxidation screening, a collection of PML mutants with altered catalytic properties was created. Among the tested mutants, the A113G variant acquired the most distinguishable N-oxidations capacity. This new variant of PML was able to produce dioxides (quinoxaline-1,4-dioxide, 2,5-dimethylpyrazine-1,4-dioxide) and specific mono-N-oxides (2,3,5-trimethylpyrazine-1-oxide) that were unachievable using the wild type PML. This mutant also featured reshaped regioselectivity as N-oxidation shifted towards quinazoline-1-oxide compared to quinazoline-3-oxide that is produced by the wild type PML.
Collapse
|
33
|
Yu D, Wang JB, Reetz MT. Exploiting Designed Oxidase-Peroxygenase Mutual Benefit System for Asymmetric Cascade Reactions. J Am Chem Soc 2019; 141:5655-5658. [PMID: 30920820 PMCID: PMC6727617 DOI: 10.1021/jacs.9b01939] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
A unique P450 monooxygenase–peroxygenase
mutual benefit
system was designed as the core element in the construction of a biocatalytic
cascade reaction sequence leading from 3-phenyl propionic acid to
(R)-phenyl glycol. In this system, P450 monooxygenase
(P450-BM3) and P450 peroxygenase (OleTJE) not only function
as catalysts for the crucial initial reactions, they also ensure an
internal in situ H2O2 recycle mechanism that
avoids its accumulation and thus prevents possible toxic effects.
By directed evolution of P450-BM3 as the catalyst in the enantioselective
epoxidation of the styrene-intermediate, formed from 3-phenyl propionic
acid, and the epoxide hydrolase ANEH for final hydrolytic ring opening,
(R)-phenyl glycol and 9 derivatives thereof were
synthesized from the respective carboxylic acids in one-pot processes
with high enantioselectivity.
Collapse
Affiliation(s)
- Da Yu
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering , Hunan Normal University , 410081 Changsha , People's Republic of China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering , Hunan Normal University , 410081 Changsha , People's Republic of China
| | - Jian-Bo Wang
- Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering , Hunan Normal University , 410081 Changsha , People's Republic of China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering , Hunan Normal University , 410081 Changsha , People's Republic of China
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Muelheim an der Ruhr , Germany.,Fachbereich Chemie, Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , 35032 Marburg , Germany
| |
Collapse
|
34
|
Xu J, Wang C, Cong Z. Strategies for Substrate-Regulated P450 Catalysis: From Substrate Engineering to Co-catalysis. Chemistry 2019; 25:6853-6863. [PMID: 30698852 DOI: 10.1002/chem.201806383] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/29/2019] [Indexed: 01/13/2023]
Abstract
Cytochrome P450 enzymes (P450s) catalyze the monooxygenation of various organic substrates. These enzymes are fascinating and promising biocatalysts for synthetic applications. Despite the impressive abilities of P450s in the oxidation of C-H bonds, their practical applications are restricted by intrinsic drawbacks, such as poor stability, low turnover rates, the need for expensive cofactors (e.g., NAD(P)H), and the narrow scope of useful non-native substrates. These issues may be overcome through the general strategy of protein engineering, which focuses on the improvement of the catalysts themselves. Alternatively, several emerging strategies have been developed that regulate the P450 catalytic process from the viewpoint of the substrate. These strategies include substrate engineering, decoy molecule, and dual-functional small-molecule co-catalysis. Substrate engineering focuses on improving the substrate acceptance and reaction selectivity by means of an anchoring group. The latter two strategies utilize co-substrate-like small molecules that either are proposed to reform the active site, thereby switching the substrate specificity, or directly participate in the catalytic process, thereby creating new catalytic peroxygenation capabilities towards non-native substrates. For at least 10 years, these approaches have played unique roles in solving the problems highlighted above, either alone or in conjunction with protein engineering. Herein, we review three strategies for substrate regulation in the P450-catalyzed oxidation of non-native substrates. Furthermore, we address remaining challenges and potential solutions associated with these approaches.
Collapse
Affiliation(s)
- Jiakun Xu
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of, Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Chunlan Wang
- Key Laboratory of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of, Fishery Sciences, Qingdao, Shandong, 266071, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of, Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| |
Collapse
|
35
|
Wu S, Zhou Y, Li Z. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem Commun (Camb) 2019; 55:883-896. [PMID: 30566124 DOI: 10.1039/c8cc07828a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alkenes are excellent starting materials for organic synthesis due to the versatile reactivity of C[double bond, length as m-dash]C bonds and the easy availability of many unfunctionalised alkenes. Direct regio- and/or enantioselective conversion of alkenes into functionalised (chiral) compounds has enormous potential for industrial applications, and thus has attracted the attention of researchers for extensive development using chemo-catalysis over the past few years. On the other hand, many enzymes have also been employed for conversion of alkenes in a highly selective and much greener manner to offer valuable products. Herein, we review recent advances in seven well-known types of biocatalytic conversion of alkenes. Remarkably, recent mechanism-guided directed evolution and enzyme cascades have enabled the development of seven novel types of single-step and one-pot multi-step functionalisation of alkenes, some of which are even unattainable via chemo-catalysis. These new reactions are particularly highlighted in this feature article. Overall, we present an ever-expanding enzyme toolbox for various alkene functionalisations inspiring further research in this fast-developing theme.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| | | | | |
Collapse
|
36
|
Yu H, Zhao Q, Wei Z, Wu Z, Li Q, Han S, Wei Y. Iron-catalyzed oxidative functionalization of C(sp3)–H bonds under bromide-synergized mild conditions. Chem Commun (Camb) 2019; 55:7840-7843. [DOI: 10.1039/c9cc03939b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bromide-synergized iron catalysis which can effectively catalyze the oxidative functionalization of various C–H bonds with high yield and good selectivity.
Collapse
Affiliation(s)
- Han Yu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education
| | - Qixin Zhao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Zheyu Wei
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Zhikang Wu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Qi Li
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Sheng Han
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| |
Collapse
|
37
|
Coccia F, Tonucci L, Del Boccio P, Caporali S, Hollmann F, d'Alessandro N. Stereoselective Double Reduction of 3-Methyl-2-cyclohexenone, by Use of Palladium and Platinum Nanoparticles, in Tandem with Alcohol Dehydrogenase. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E853. [PMID: 30347698 PMCID: PMC6215098 DOI: 10.3390/nano8100853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 11/25/2022]
Abstract
The combination of metal nanoparticles (Pd or Pt NPs) with NAD-dependent thermostable alcohol dehydrogenase (TADH) resulted in the one-flask catalytic double reduction of 3-methyl-2-cyclohexenone to 3-(1S,3S)-methylcyclohexanol. In this article, some assumptions about the interactions between a chemocatalyst and a biocatalyst have been proposed. It was demonstrated that the size of the NPs was the critical parameter for the mutual inhibition: the bigger the NPs, the more harmful for the enzyme they were, even if the NPs themselves were only moderately inactivated. Conversely, the smaller the NPs, the more minimal the TADH denaturation, although they were dramatically inhibited. Resuming, the chemocatalysts were very sensitive to deactivation, which was not related to the amount of enzyme used, while the inhibition of the biocatalyst can be strongly reduced by minimizing the NPs/TADH ratio used to catalyze the reaction. Among some methods to avoid direct binding of NPs with TADH, we found that using large Pd NPs and protecting their surfaces with a silica shell, the overall yield of 3-(1S,3S)-methylcyclohexanol was maximized (36%).
Collapse
Affiliation(s)
- Francesca Coccia
- Department of Engineering and Geology (INGEO), G. d'Annunzio University of Chieti-Pescara, Viale Pindaro 42, I-66100 Chieti Scalo, Italy.
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands.
| | - Lucia Tonucci
- Department of Philosophical, Educational and Economic Sciences, G. d'Annunzio University of Chieti-Pescara, Via dei Vestini 31, I-66100 Chieti Scalo, Italy.
| | - Piero Del Boccio
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, Via dei Vestini 31, I-66100 Chieti Scalo, Italy.
| | - Stefano Caporali
- Department of Chemistry, University of Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy.
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands.
| | - Nicola d'Alessandro
- Department of Engineering and Geology (INGEO), G. d'Annunzio University of Chieti-Pescara, Viale Pindaro 42, I-66100 Chieti Scalo, Italy.
| |
Collapse
|
38
|
Robinson RM, Klancher CA, Rodriguez PJ, Sobrado P. Flavin oxidation in flavin-dependent N-monooxygenases. Protein Sci 2018; 28:90-99. [PMID: 30098072 DOI: 10.1002/pro.3487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Siderophore A (SidA) from Aspergillus fumigatus is a flavin-containing monooxygenase that hydroxylates ornithine (Orn) at the amino group of the side chain. Lysine (Lys) also binds to the active site of SidA; however, hydroxylation is not efficient and H2 O2 is the main product. The effect of pH on steady-state kinetic parameters was measured and the results were consistent with Orn binding with the side chain amino group in the neutral form. From the pH dependence on flavin oxidation in the absence of Orn, a pKa value >9 was determined and assigned to the FAD-N5 atom. In the presence of Orn, the pH dependence displayed a pKa value of 6.7 ±0.1 and of 7.70 ±0.10 in the presence of Lys. Q102 interacts with NADPH and, upon mutation to alanine, leads to destabilization of the C4a-hydroperoxyflavin (FADOOH ). Flavin oxidation with Q102A showed a pKa value of ~8.0. The data are consistent with the pKa of the FAD N5-atom being modulated to a value >9 in the absence of Orn, which aids in the stabilization of FADOOH . Changes in the FAD-N5 environment lead to a decrease in the pKa value, which facilitates elimination of H2 O2 or H2 O. These findings are supported by solvent kinetic isotope effect experiments, which show that proton transfer from the FAD N5-atom is rate limiting in the absence of a substrate, however, is significantly less rate limiting in the presence of Orn and or Lys.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| | - Catherine A Klancher
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| | - Pedro J Rodriguez
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| |
Collapse
|
39
|
Chen Z, Chen J, Ma N, Zhou H, Cong Z. Selective hydroxylation of naphthalene using the H2O2-dependent engineered P450BM3 driven by dual-functional small molecules. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s108842461850061x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We herein report the H2O2-dependent selective hydroxylation of naphthalene catalyzed by engineered P450BM3 with the assistance of dual-functional small molecules (DFSMs). The mutation at position 268 significantly improved the hydroxylation activity of P450BM3, which is quite different from those engineered P450BM3 peroxygenases and NADPH-dependent P450BM3 mutants previously reported, implicating the unique role of the residue at position 268. This study provides a potential approach to develop the practical hydroxylation biocatalyst of P450s for aromatic hydrocarbons using the DFSM-facilitated P450BM3-H2O2 system.
Collapse
Affiliation(s)
- Zhifeng Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
- Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Jie Chen
- Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nana Ma
- Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, China
| | - Zhiqi Cong
- Shandong Provincial Key Laboratory of Synthetic Biology, and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| |
Collapse
|
40
|
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D. Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. BIOLOGY 2018; 7:biology7030042. [PMID: 30072664 PMCID: PMC6165268 DOI: 10.3390/biology7030042] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Abstract
Flavoprotein monooxygenases create valuable compounds that are of high interest for the chemical, pharmaceutical, and agrochemical industries, among others. Monooxygenases that use flavin as cofactor are either single- or two-component systems. Here we summarize the current knowledge about two-component flavin adenine dinucleotide (FAD)-dependent monooxygenases and describe their biotechnological relevance. Two-component FAD-dependent monooxygenases catalyze hydroxylation, epoxidation, and halogenation reactions and are physiologically involved in amino acid metabolism, mineralization of aromatic compounds, and biosynthesis of secondary metabolites. The monooxygenase component of these enzymes is strictly dependent on reduced FAD, which is supplied by the reductase component. More and more representatives of two-component FAD-dependent monooxygenases have been discovered and characterized in recent years, which has resulted in the identification of novel physiological roles, functional properties, and a variety of biocatalytic opportunities.
Collapse
Affiliation(s)
- Thomas Heine
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - George Gassner
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Karl-Heinz van Pée
- Allgemeine Biochemie, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Dirk Tischler
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany.
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany.
| |
Collapse
|
41
|
Zhou Y, Wu S, Mao J, Li Z. Bioproduction of Benzylamine from Renewable Feedstocks via a Nine-Step Artificial Enzyme Cascade and Engineered Metabolic Pathways. CHEMSUSCHEM 2018; 11:2221-2228. [PMID: 29766662 DOI: 10.1002/cssc.201800709] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Production of chemicals from renewable feedstocks has been an important task for sustainable chemical industry. Although microbial fermentation has been widely employed to produce many biochemicals, it is still very challenging to access non-natural chemicals. Two methods (biotransformation and fermentation) have been developed for the first bio-derived synthesis of benzylamine, a commodity non-natural amine with broad applications. Firstly, a nine-step artificial enzyme cascade was designed by biocatalytic retrosynthetic analysis and engineered in recombinant E. coli LZ243. Biotransformation of l-phenylalanine (60 mm) with the E. coli cells produced benzylamine (42 mm) in 70 % conversion. Importantly, the cascade biotransformation was scaled up to 100 mL and benzylamine was successfully isolated in 57 % yield. Secondly, an artificial biosynthesis pathway to benzylamine from glucose was developed by combining the nine-step cascade with an enhanced l-phenylalanine synthesis pathway in cells. Fermentation with E. coli LZ249 gave benzylamine in 4.3 mm concentration from glucose. In addition, one-pot syntheses of several useful benzylamines from the easily available styrenes were achieved, representing a new type of alkene transformation by formal oxidative cleavage and reductive amination.
Collapse
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Jiwei Mao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| |
Collapse
|
42
|
Enantioselective sulfoxidations employing the thermostable cyclohexanone monooxygenase from Thermocrispum municipale. Enzyme Microb Technol 2018; 113:24-28. [DOI: 10.1016/j.enzmictec.2018.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 11/23/2022]
|
43
|
Marques Netto CGC, Palmeira DJ, Brondani PB, Andrade LH. Enzymatic reactions involving the heteroatoms from organic substrates. AN ACAD BRAS CIENC 2018; 90:943-992. [PMID: 29742205 DOI: 10.1590/0001-3765201820170741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/01/2018] [Indexed: 11/22/2022] Open
Abstract
Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis. Herein, we describe the historical background along with the progress of biocatalyzed reactions involving the heteroatom(S, Se, B, P and Si) from hetero-organic substrates.
Collapse
Affiliation(s)
| | - Dayvson J Palmeira
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrícia B Brondani
- Departamento de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, SC, Brazil
| | - Leandro H Andrade
- Departamento de Química Fundamental, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
44
|
Chen HY, Lv M, Zhou XT, Wang JX, Han Q, Ji HB. A novel system comprising metalloporphyrins and cyclohexene for the biomimetic aerobic oxidation of toluene. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
45
|
Ewing TA, Kühn J, Segarra S, Tortajada M, Zuhse R, van Berkel WJH. Multigram Scale Enzymatic Synthesis of (R)-1-(4′-Hydroxyphenyl)ethanol Using Vanillyl Alcohol Oxidase. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tom A. Ewing
- Laboratory of Biochemistry; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jasmin Kühn
- Chiracon GmbH; Biotechnologiepark 14943 Luckenwalde Germany
| | - Silvia Segarra
- Biopolis S. L.; Parc Científic de la Universitat de València; Edificio 2, C/Catedrático Agustín Escardino 9 46980 Paterna Spain
| | - Marta Tortajada
- Biopolis S. L.; Parc Científic de la Universitat de València; Edificio 2, C/Catedrático Agustín Escardino 9 46980 Paterna Spain
| | - Ralf Zuhse
- Chiracon GmbH; Biotechnologiepark 14943 Luckenwalde Germany
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
46
|
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
47
|
Laudadio G, Govaerts S, Wang Y, Ravelli D, Koolman HF, Fagnoni M, Djuric SW, Noël T. Selective C(sp 3 )-H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angew Chem Int Ed Engl 2018; 57:4078-4082. [PMID: 29451725 PMCID: PMC5900731 DOI: 10.1002/anie.201800818] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Indexed: 11/09/2022]
Abstract
A mild and selective C(sp3 )-H aerobic oxidation enabled by decatungstate photocatalysis has been developed. The reaction can be significantly improved in a microflow reactor enabling the safe use of oxygen and enhanced irradiation of the reaction mixture. Our method allows for the oxidation of both activated and unactivated C-H bonds (30 examples). The ability to selectively oxidize natural scaffolds, such as (-)-ambroxide, pregnenolone acetate, (+)-sclareolide, and artemisinin, exemplifies the utility of this new method.
Collapse
Affiliation(s)
- Gabriele Laudadio
- Department of Chemical Engineering and ChemistryMicro Flow Chemistry and Process TechnologyEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Sebastian Govaerts
- Department of Chemical Engineering and ChemistryMicro Flow Chemistry and Process TechnologyEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| | - Ying Wang
- Discovery Chemistry and TechnologiesAbbVie Inc.1 North Waukegan RoadNorth ChicagoIllinois60064USA
| | - Davide Ravelli
- PhotoGreen LabDepartment of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| | - Hannes F. Koolman
- Discovery Chemistry and TechnologiesAbbVie Inc.1 North Waukegan RoadNorth ChicagoIllinois60064USA
- Current affiliation: Medicinal ChemistryBoehringer Ingelheim Pharma GmbH & Co. KGBirkendorfer Strasse 6588397Biberach an der RissGermany
| | - Maurizio Fagnoni
- PhotoGreen LabDepartment of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| | - Stevan W. Djuric
- Discovery Chemistry and TechnologiesAbbVie Inc.1 North Waukegan RoadNorth ChicagoIllinois60064USA
| | - Timothy Noël
- Department of Chemical Engineering and ChemistryMicro Flow Chemistry and Process TechnologyEindhoven University of TechnologyDen Dolech 25612AZEindhovenThe Netherlands
| |
Collapse
|
48
|
Ma N, Chen Z, Chen J, Chen J, Wang C, Zhou H, Yao L, Shoji O, Watanabe Y, Cong Z. Dual-Functional Small Molecules for Generating an Efficient Cytochrome P450BM3 Peroxygenase. Angew Chem Int Ed Engl 2018; 57:7628-7633. [PMID: 29481719 DOI: 10.1002/anie.201801592] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 12/21/2022]
Abstract
We report a unique strategy for the development of a H2 O2 -dependent cytochrome P450BM3 system, which catalyzes the monooxygenation of non-native substrates with the assistance of dual-functional small molecules (DFSMs), such as N-(ω-imidazolyl fatty acyl)-l-amino acids. The acyl amino acid group of DFSM is responsible for bounding to enzyme as an anchoring group, while the imidazolyl group plays the role of general acid-base catalyst in the activation of H2 O2 . This system affords the best peroxygenase activity for the epoxidation of styrene, sulfoxidation of thioanisole, and hydroxylation of ethylbenzene among those P450-H2 O2 system previously reported. This work provides the first example of the activation of the normally H2 O2 -inert P450s through the introduction of an exogenous small molecule. This approach improves the potential use of P450s in organic synthesis as it avoids the expensive consumption of the reduced nicotinamide cofactor NAD(P)H and its dependent electron transport system. This introduces a promising approach for exploiting enzyme activity and function based on direct chemical intervention in the catalytic process.
Collapse
Affiliation(s)
- Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingfei Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Cong Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Lishan Yao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshihito Watanabe
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| |
Collapse
|
49
|
Ma N, Chen Z, Chen J, Chen J, Wang C, Zhou H, Yao L, Shoji O, Watanabe Y, Cong Z. Dual-Functional Small Molecules for Generating an Efficient Cytochrome P450BM3 Peroxygenase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801592] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nana Ma
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhifeng Chen
- Hubei Key Laboratory of Natural Products Research and Development; College of Biological and Pharmaceutical Sciences; China Three Gorges University; Yichang Hubei 443002 China
| | - Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jingfei Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
| | - Cong Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development; College of Biological and Pharmaceutical Sciences; China Three Gorges University; Yichang Hubei 443002 China
| | - Lishan Yao
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
| | - Osami Shoji
- Department of Chemistry; Graduate School of Science; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8602 Japan
| | - Yoshihito Watanabe
- Department of Chemistry; Graduate School of Science; Nagoya University; Furo-cho Chikusa-ku Nagoya 464-8602 Japan
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao Shandong 266101 China
| |
Collapse
|
50
|
Laudadio G, Govaerts S, Wang Y, Ravelli D, Koolman HF, Fagnoni M, Djuric SW, Noël T. Selective C(sp3
)−H Aerobic Oxidation Enabled by Decatungstate Photocatalysis in Flow. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800818] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Gabriele Laudadio
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Sebastian Govaerts
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Ying Wang
- Discovery Chemistry and Technologies; AbbVie Inc.; 1 North Waukegan Road North Chicago Illinois 60064 USA
| | - Davide Ravelli
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Hannes F. Koolman
- Discovery Chemistry and Technologies; AbbVie Inc.; 1 North Waukegan Road North Chicago Illinois 60064 USA
- Current affiliation: Medicinal Chemistry; Boehringer Ingelheim Pharma GmbH & Co. KG; Birkendorfer Strasse 65 88397 Biberach an der Riss Germany
| | - Maurizio Fagnoni
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Stevan W. Djuric
- Discovery Chemistry and Technologies; AbbVie Inc.; 1 North Waukegan Road North Chicago Illinois 60064 USA
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry; Micro Flow Chemistry and Process Technology; Eindhoven University of Technology; Den Dolech 2 5612 AZ Eindhoven The Netherlands
| |
Collapse
|