1
|
Reppert M, Dutta R, Slipchenko L. The interplay of excitonic delocalization and vibrational localization in optical lineshapes: A variational polaron approach. J Chem Phys 2024; 161:154109. [PMID: 39422207 DOI: 10.1063/5.0225083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
The dynamics of molecular excitonic systems are complicated by a competition between electronic coupling (which drives delocalization) and vibrational-electronic (vibronic) interactions (which tend to encourage electronic localization). A particular challenge of molecular systems is that they typically possess a large number of independent vibrations, with frequencies often spanning the entire spectrum of relevant electronic energy gaps. Recent spectroscopic observations and numerical simulations on a water-soluble chlorophyll-binding protein (WSCP) reveal a transition between two regimes of vibronic behavior, a Redfield-like regime in which low-frequency vibrations respond to a delocalized excitonic state, and a Förster-like regime where high-frequency vibrations act as incoherent excitations on individual pigments. Although numerical simulations can reproduce these effects, there is a need for a simple, systematic theory that accurately describes the smooth transition between these two regimes in experimental spectra. Here we address this challenge by generalizing the variational polaron transform approach of [Bloemsma et al., Chem. Phys. 481, 250 (2016)] to include arbitrary bath densities for systems with or without symmetry. We benchmark this theory against both numerical matrix-diagonalization methods and experimental 77 K fluorescence spectra for two WSCP variants, obtaining quite satisfactory agreement in both cases. We apply this theory to offer an explanation for the large loss in apparent electronic coupling in the WSCP Q57K mutant and to examine the likely impact of the interplay between excitonic delocalization and vibrational localization on vibrational sideband shapes and apparent coupling strengths in high-resolution optical spectra for chlorophyll-protein complexes such as WSCP.
Collapse
Affiliation(s)
- Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, USA
| | - Rajesh Dutta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, USA
| | - Lyudmila Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47920, USA
| |
Collapse
|
2
|
Cupellini L, Gwizdala M, Krüger TPJ. Energetic Landscape and Terminal Emitters of Phycobilisome Cores from Quantum Chemical Modeling. J Phys Chem Lett 2024; 15:9746-9756. [PMID: 39288324 DOI: 10.1021/acs.jpclett.4c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Phycobilisomes (PBs) are giant antenna supercomplexes of cyanobacteria that use phycobilin pigments to capture sunlight and transfer the collected energy to membrane-bound photosystems. In the PB core, phycobilins are bound to particular allophycocyanin (APC) proteins. Some phycobilins are thought to be terminal emitters (TEs) with red-shifted fluorescence. However, the precise identification of TEs is still under debate. In this work, we employ multiscale quantum-mechanical calculations to disentangle the excitation energy landscape of PB cores. Using the recent atomistic PB structures from Synechoccoccus PCC 7002 and Synechocystis PCC 6803, we compute the spectral properties of different APC trimers and assign the low-energy pigments. We show that the excitation energy of APC phycobilins is determined by geometric and electrostatic factors and is tuned by the specific protein-protein interactions within the core. Our findings challenge the simple picture of a few red-shifted bilins in the PB core and instead suggest that the red-shifts are established by the entire TE-containing APC trimers. Our work provides a theoretical microscopic basis for the interpretation of energy migration and time-resolved spectroscopy in phycobilisomes.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
- National Institute of Theoretical and Computational Sciences (NITheCS), https://nithecs.ac.za/
| |
Collapse
|
3
|
Eder M, Renger T. A Simple Expression for the Screening of Excitonic Couplings between Chlorophylls as Inferred for Photosystem I Trimers. Int J Mol Sci 2024; 25:9006. [PMID: 39201694 PMCID: PMC11355009 DOI: 10.3390/ijms25169006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The Coulomb coupling between transition densities of the pigments in photosynthetic pigment-protein complexes, termed excitonic coupling, is a key factor for the description of optical spectra and energy transfer. A challenging question is the quantification of the screening of the excitonic coupling by the optical polarizability of the environment. We use the equivalence between the sophisticated quantum chemical polarizable continuum (PCM) model and the simple electrostatic Poisson-TrEsp approach to analyze the distance and orientation dependence of the dielectric screening between chlorophylls in photosystem I trimers. On the basis of these calculations we find that the vacuum couplings Vmn(0) and the couplings in the dielectric medium Vmn=fmnVmn(0) are related by the empirical screening factor fmn=0.60+39.6θ(|κmn|-1.17)exp(-0.56Rmn/Å), where κmn is the usual orientational factor of the dipole-dipole coupling between the pigments, Rmn is the center-to-center distance, and the Heaviside-function θ(|κmn|-1.17) ensures that the exponential distance dependence only contributes for in-line type dipole geometries. We are confident that the present expression can be applied also to other pigment-protein complexes with chlorophyll or related pigments of similar shape. The variance between the Poisson-TrEsp and the approximate coupling values is found to decrease by a factor of 8 and 3-4 using the present expression, instead of an exponential distance dependent or constant screening factor, respectively, assumed previously in the literature.
Collapse
Affiliation(s)
| | - Thomas Renger
- Institute for Theoretical Physics, Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria;
| |
Collapse
|
4
|
Rankelytė G, Gelzinis A, Robert B, Valkunas L, Chmeliov J. Environment-dependent chlorophyll-chlorophyll charge transfer states in Lhca4 pigment-protein complex. FRONTIERS IN PLANT SCIENCE 2024; 15:1412750. [PMID: 39170787 PMCID: PMC11335733 DOI: 10.3389/fpls.2024.1412750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
Photosystem I (PSI) light-harvesting antenna complexes LHCI contain spectral forms that absorb and emit photons of lower energy than that of its primary electron donor, P700. The most red-shifted fluorescence is associated with the Lhca4 complex. It has been suggested that this red emission is related to the inter-chlorophyll charge transfer (CT) states. In this work we present a systematic quantum-chemical study of the CT states in Lhca4, accounting for the influence of the protein environment by estimating the electrostatic interactions. We show that significant energy shifts result from these interactions and propose that the emission of the Lhca4 complex is related not only to the previously proposed a603+-a608- state, but also to the a602+-a603- state. We also investigate how different protonation patterns of protein amino acids affect the energetics of the CT states.
Collapse
Affiliation(s)
- Gabrielė Rankelytė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Leonas Valkunas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
5
|
Sarngadharan P, Holtkamp Y, Kleinekathöfer U. Protein Effects on the Excitation Energies and Exciton Dynamics of the CP24 Antenna Complex. J Phys Chem B 2024; 128:5201-5217. [PMID: 38756003 PMCID: PMC11145653 DOI: 10.1021/acs.jpcb.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
In this study, the site energy fluctuations, energy transfer dynamics, and some spectroscopic properties of the minor light-harvesting complex CP24 in a membrane environment were determined. For this purpose, a 3 μs-long classical molecular dynamics simulation was performed for the CP24 complex. Furthermore, using the density functional tight binding/molecular mechanics molecular dynamics (DFTB/MM MD) approach, we performed excited state calculations for the chlorophyll a and chlorophyll b molecules in the complex starting from five different positions of the MD trajectory. During the extended simulations, we observed variations in the site energies of the different sets as a result of the fluctuating protein environment. In particular, a water coordination to Chl-b 608 occurred only after about 1 μs in the simulations, demonstrating dynamic changes in the environment of this pigment. From the classical and the DFTB/MM MD simulations, spectral densities and the (time-dependent) Hamiltonian of the complex were determined. Based on these results, three independent strongly coupled chlorophyll clusters were revealed within the complex. In addition, absorption and fluorescence spectra were determined together with the exciton relaxation dynamics, which reasonably well agrees with experimental time scales.
Collapse
Affiliation(s)
- Pooja Sarngadharan
- School of Science, Constructor
University, Campus Ring
1, 28759 Bremen, Germany
| | - Yannick Holtkamp
- School of Science, Constructor
University, Campus Ring
1, 28759 Bremen, Germany
| | | |
Collapse
|
6
|
Bhattacharjee S, Arra S, Daidone I, Pantazis DA. Excitation landscape of the CP43 photosynthetic antenna complex from multiscale simulations. Chem Sci 2024; 15:7269-7284. [PMID: 38756808 PMCID: PMC11095388 DOI: 10.1039/d3sc06714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
Photosystem II (PSII), the principal enzyme of oxygenic photosynthesis, contains two integral light harvesting proteins (CP43 and CP47) that bind chlorophylls and carotenoids. The two intrinsic antennae play crucial roles in excitation energy transfer and photoprotection. CP43 interacts most closely with the reaction center of PSII, specifically with the branch of the reaction center (D1) that is responsible for primary charge separation and electron transfer. Deciphering the function of CP43 requires detailed atomic-level insights into the properties of the embedded pigments. To advance this goal, we employ a range of multiscale computational approaches to determine the site energies and excitonic profile of CP43 chlorophylls, using large all-atom models of a membrane-bound PSII monomer. In addition to time-dependent density functional theory (TD-DFT) used in the context of a quantum-mechanics/molecular-mechanics setup (QM/MM), we present a thorough analysis using the perturbed matrix method (PMM), which enables us to utilize information from long-timescale molecular dynamics simulations of native PSII-complexed CP43. The excited state energetics and excitonic couplings have both similarities and differences compared with previous experimental fits and theoretical calculations. Both static TD-DFT and dynamic PMM results indicate a layered distribution of site energies and reveal specific groups of chlorophylls that have shared contributions to low-energy excitations. Importantly, the contribution to the lowest energy exciton does not arise from the same chlorophylls at each system configuration, but rather changes as a function of conformational dynamics. An unexpected finding is the identification of a low-energy charge-transfer excited state within CP43 that involves a lumenal (C2) and the central (C10) chlorophyll of the complex. The results provide a refined basis for structure-based interpretation of spectroscopic observations and for further deciphering excitation energy transfer in oxygenic photosynthesis.
Collapse
Affiliation(s)
- Sinjini Bhattacharjee
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Srilatha Arra
- Department of Physical and Chemical Sciences, University of L'Aquila Via Vetoio (Coppito 1) 67010 L'Aquila Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila Via Vetoio (Coppito 1) 67010 L'Aquila Italy
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
7
|
Ahad S, Lin C, Reppert M. PigmentHunter: A point-and-click application for automated chlorophyll-protein simulations. J Chem Phys 2024; 160:154111. [PMID: 38639311 DOI: 10.1063/5.0198443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Chlorophyll proteins (CPs) are the workhorses of biological photosynthesis, working together to absorb solar energy, transfer it to chemically active reaction centers, and control the charge-separation process that drives its storage as chemical energy. Yet predicting CP optical and electronic properties remains a serious challenge, driven by the computational difficulty of treating large, electronically coupled molecular pigments embedded in a dynamically structured protein environment. To address this challenge, we introduce here an analysis tool called PigmentHunter, which automates the process of preparing CP structures for molecular dynamics (MD), running short MD simulations on the nanoHUB.org science gateway, and then using electrostatic and steric analysis routines to predict optical absorption, fluorescence, and circular dichroism spectra within a Frenkel exciton model. Inter-pigment couplings are evaluated using point-dipole or transition-charge coupling models, while site energies can be estimated using both electrostatic and ring-deformation approaches. The package is built in a Jupyter Notebook environment, with a point-and-click interface that can be used either to manually prepare individual structures or to batch-process many structures at once. We illustrate PigmentHunter's capabilities with example simulations on spectral line shapes in the light harvesting 2 complex, site energies in the Fenna-Matthews-Olson protein, and ring deformation in photosystems I and II.
Collapse
Affiliation(s)
- S Ahad
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - C Lin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - M Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
8
|
Saraceno P, Sláma V, Cupellini L. First-principles simulation of excitation energy transfer and transient absorption spectroscopy in the CP29 light-harvesting complex. J Chem Phys 2023; 159:184112. [PMID: 37962444 DOI: 10.1063/5.0170295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The dynamics of delocalized excitons in light-harvesting complexes (LHCs) can be investigated using different experimental techniques, and transient absorption (TA) spectroscopy is one of the most valuable methods for this purpose. A careful interpretation of TA spectra is essential for the clarification of excitation energy transfer (EET) processes occurring during light-harvesting. However, even in the simplest LHCs, a physical model is needed to interpret transient spectra as the number of EET processes occurring at the same time is very large to be disentangled from measurements alone. Physical EET models are commonly built by fittings of the microscopic exciton Hamiltonians and exciton-vibrational parameters, an approach that can lead to biases. Here, we present a first-principles strategy to simulate EET and transient absorption spectra in LHCs, combining molecular dynamics and accurate multiscale quantum chemical calculations to obtain an independent estimate of the excitonic structure of the complex. The microscopic parameters thus obtained are then used in EET simulations to obtain the population dynamics and the related spectroscopic signature. We apply this approach to the CP29 minor antenna complex of plants for which we follow the EET dynamics and transient spectra after excitation in the chlorophyll b region. Our calculations reproduce all the main features observed in the transient absorption spectra and provide independent insight on the excited-state dynamics of CP29. The approach presented here lays the groundwork for the accurate simulation of EET and unbiased interpretation of transient spectra in multichromophoric systems.
Collapse
Affiliation(s)
- Piermarco Saraceno
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Vladislav Sláma
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
9
|
Brütting M, Foerster JM, Kümmel S. Understanding Primary Charge Separation in the Heliobacterial Reaction Center. J Phys Chem Lett 2023; 14:3092-3102. [PMID: 36951395 DOI: 10.1021/acs.jpclett.3c00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The homodimeric reaction center of heliobacteria retains features of the ancestral reaction center and can thus provide insights into the evolution of photosynthesis. Primary charge separation is expected to proceed in a two-step mechanism along either of the two reaction center branches. We reveal the first charge-separation step from first-principles calculations based on time-dependent density functional theory with an optimally tuned range-separated hybrid and ab initio Born-Oppenheimer molecular dynamics: the electron is most likely localized on the electron transfer cofactor 3 (EC3, OH-chlorophyll a), and the hole on the adjacent EC2. Including substantial parts of the surrounding protein environment into the calculations shows that a distinct structural mechanism is decisive for the relative energetic positioning of the electronic excitations: specific charged amino acids in the vicinity of EC3 lower the energy of charge-transfer excitations and thus facilitate efficient charge separation. These results are discussed considering recent experimental insights.
Collapse
|
10
|
Cupellini L, Qian P, Nguyen-Phan TC, Gardiner AT, Cogdell RJ. Quantum chemical elucidation of a sevenfold symmetric bacterial antenna complex. PHOTOSYNTHESIS RESEARCH 2023; 156:75-87. [PMID: 35672557 PMCID: PMC10070313 DOI: 10.1007/s11120-022-00925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The light-harvesting complex 2 (LH2) of purple bacteria is one of the most studied photosynthetic antenna complexes. Its symmetric structure and ring-like bacteriochlorophyll arrangement make it an ideal system for theoreticians and spectroscopists. LH2 complexes from most bacterial species are thought to have eightfold or ninefold symmetry, but recently a sevenfold symmetric LH2 structure from the bacterium Mch. purpuratum was solved by Cryo-Electron microscopy. This LH2 also possesses unique near-infrared absorption and circular dichroism (CD) spectral properties. Here we use an atomistic strategy to elucidate the spectral properties of Mch. purpuratum LH2 and understand the differences with the most commonly studied LH2 from Rbl. acidophilus. Our strategy exploits a combination of molecular dynamics simulations, multiscale polarizable quantum mechanics/molecular mechanics calculations, and lineshape simulations. Our calculations reveal that the spectral properties of LH2 complexes are tuned by site energies and exciton couplings, which in turn depend on the structural fluctuations of the bacteriochlorophylls. Our strategy proves effective in reproducing the absorption and CD spectra of the two LH2 complexes, and in uncovering the origin of their differences. This work proves that it is possible to obtain insight into the spectral tuning strategies of purple bacteria by quantitatively simulating the spectral properties of their antenna complexes.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124, Pisa, Italy.
| | - Pu Qian
- Materials and Structure Analysis, Thermofisher Scientific, Achtseweg Nordic 5, 5651 GTC, Eindhoven, The Netherlands
| | - Tu C Nguyen-Phan
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Centre Algatech, Novohradská 237 - Opatovický mlýn, 379 01, Třeboň, Czech Republic
| | - Richard J Cogdell
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
11
|
Navakoudis E, Stergiannakos T, Daskalakis V. A perspective on the major light-harvesting complex dynamics under the effect of pH, salts, and the photoprotective PsbS protein. PHOTOSYNTHESIS RESEARCH 2023; 156:163-177. [PMID: 35816266 PMCID: PMC10070230 DOI: 10.1007/s11120-022-00935-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The photosynthetic apparatus is a highly modular assembly of large pigment-binding proteins. Complexes called antennae can capture the sunlight and direct it from the periphery of two Photosystems (I, II) to the core reaction centers, where it is converted into chemical energy. The apparatus must cope with the natural light fluctuations that can become detrimental to the viability of the photosynthetic organism. Here we present an atomic scale view of the photoprotective mechanism that is activated on this line of defense by several photosynthetic organisms to avoid overexcitation upon excess illumination. We provide a complete macroscopic to microscopic picture with specific details on the conformations of the major antenna of Photosystem II that could be associated with the switch from the light-harvesting to the photoprotective state. This is achieved by combining insight from both experiments and all-atom simulations from our group and the literature in a perspective article.
Collapse
Affiliation(s)
- Eleni Navakoudis
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Street, 3603, Limassol, Cyprus
| | - Taxiarchis Stergiannakos
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Street, 3603, Limassol, Cyprus
| | - Vangelis Daskalakis
- Department of Chemical Engineering, Cyprus University of Technology, 95 Eirinis Street, 3603, Limassol, Cyprus.
| |
Collapse
|
12
|
Maity S, Kleinekathöfer U. Recent progress in atomistic modeling of light-harvesting complexes: a mini review. PHOTOSYNTHESIS RESEARCH 2023; 156:147-162. [PMID: 36207489 PMCID: PMC10070314 DOI: 10.1007/s11120-022-00969-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this mini review, we focus on recent advances in the atomistic modeling of biological light-harvesting (LH) complexes. Because of their size and sophisticated electronic structures, multiscale methods are required to investigate the dynamical and spectroscopic properties of such complexes. The excitation energies, in this context also known as site energies, excitonic couplings, and spectral densities are key quantities which usually need to be extracted to be able to determine the exciton dynamics and spectroscopic properties. The recently developed multiscale approach based on the numerically efficient density functional tight-binding framework followed by excited state calculations has been shown to be superior to the scheme based on pure classical molecular dynamics simulations. The enhanced approach, which improves the description of the internal vibrational dynamics of the pigment molecules, yields spectral densities in good agreement with the experimental counterparts for various bacterial and plant LH systems. Here, we provide a brief overview of those results and described the theoretical foundation of the multiscale protocol.
Collapse
Affiliation(s)
- Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
| |
Collapse
|
13
|
Gómez S, Giovannini T, Cappelli C. Multiple Facets of Modeling Electronic Absorption Spectra of Systems in Solution. ACS PHYSICAL CHEMISTRY AU 2022; 3:1-16. [PMID: 36718266 PMCID: PMC9881242 DOI: 10.1021/acsphyschemau.2c00050] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
In this Perspective, we outline the essential physicochemical aspects that need to be considered when building a reliable approach to describe absorption properties of solvated systems. In particular, we focus on how to properly model the complexity of the solvation phenomenon, arising from dynamical aspects and specific, strong solute-solvent interactions. To this end, conformational and configurational sampling techniques, such as Molecular Dynamics, have to be coupled to accurate fully atomistic Quantum Mechanical/Molecular Mechanics (QM/MM) methodologies. By exploiting different illustrative applications, we show that an effective reproduction of experimental spectral signals can be achieved by delicately balancing exhaustive sampling, hydrogen bonding, mutual polarization, and nonelectrostatic effects.
Collapse
|
14
|
Sarngadharan P, Maity S, Kleinekathöfer U. Spectral densities and absorption spectra of the core antenna complex CP43 from photosystem II. J Chem Phys 2022; 156:215101. [DOI: 10.1063/5.0091005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Besides absorbing light, the core antenna complex CP43 of photosystem II is of great importance in transferring excitation energy from the antenna complexes to the reaction center. Excitation energies, spectral densities, and linear absorption spectra of the complex have been evaluated by a multiscale approach. In this scheme, quantum mechanics/molecular mechanics molecular dynamics simulations are performed employing the parameterized density functional tight binding (DFTB) while the time-dependent long-range-corrected DFTB scheme is applied for the excited state calculations. The obtained average spectral density of the CP43 complex shows a very good agreement with experimental results. Moreover, the excitonic Hamiltonian of the system along with the computed site-dependent spectral densities was used to determine the linear absorption. While a Redfield-like approximation has severe shortcomings in dealing with the CP43 complex due to quasi-degenerate states, the non-Markovian full second-order cumulant expansion formalism is able to overcome the drawbacks. Linear absorption spectra were obtained, which show a good agreement with the experimental counterparts at different temperatures. This study once more emphasizes that by combining diverse techniques from the areas of molecular dynamics simulations, quantum chemistry, and open quantum systems, it is possible to obtain first-principle results for photosynthetic complexes, which are in accord with experimental findings.
Collapse
Affiliation(s)
- Pooja Sarngadharan
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
15
|
Cignoni E, Slama V, Cupellini L, Mennucci B. The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol. J Chem Phys 2022; 156:120901. [DOI: 10.1063/5.0086275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of light-harvesting complexes is determined by a complex network of dynamic interactions among all the different components: the aggregate of pigments, the protein, and the surrounding environment. Complete and reliable predictions on these types of composite systems can be only achieved with an atomistic description. In the last few decades, there have been important advances in the atomistic modeling of light-harvesting complexes. These advances have involved both the completeness of the physical models and the accuracy and effectiveness of the computational protocols. In this Perspective, we present an overview of the main theoretical and computational breakthroughs attained so far in the field, with particular focus on the important role played by the protein and its dynamics. We then discuss the open problems in their accurate modeling that still need to be addressed. To illustrate an effective computational workflow for the modeling of light harvesting complexes, we take as an example the plant antenna complex CP29 and its H111N mutant.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Vladislav Slama
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
16
|
ZHU ZHE, Higashi M, Saito S. Excited states of chlorophyll a and b in solution by time-dependent density functional theory. J Chem Phys 2022; 156:124111. [DOI: 10.1063/5.0083395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ground state and excited state electronic properties of chlorophyll (Chl) a and Chl b in diethyl ether, acetone, and ethanol solutions are investigated using quantum mechanical and molecular mechanical calculations with density functional theory (DFT) and time-dependent DFT (TDDFT). Although the DFT/TDDFT methods are widely used, the electronic structures of molecules, especially large molecules, calculated with these methods are known to be strongly dependent on the functionals and the parameters used in functionals. Here, we optimize the range-separated parameter, µ, of the CAM-B3LYP functional of Chl a and Chl b to reproduce the experimental excitation energy differences of these Chl molecules in solution. The optimal values of µ for Chl a and Chl b are smaller than the default value of µ and that for bacteriochlorophyll a, indicating the change in electronic distribution, i.e., an increase in electron delocalization, within the molecule. We find that the electronic distribution of Chl b with an extra formyl group is different from that of Chl a. We also find that the polarity of solution and hydrogen bond cause the decrease in the excitation energies and the increase in the widths of excitation energy distributions of Chl a and Chl b. The present results are expected to be useful for understanding the electronic properties of each pigment molecule in a local heterogeneous environment, which will play an important role in the excitation energy transfer in light-harvesting complex II.
Collapse
Affiliation(s)
| | - Masahiro Higashi
- Department of Molecular Engineering, Kyoto University - Katsura Campus, Japan
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Japan
| |
Collapse
|
17
|
Friedl C, Fedorov DG, Renger T. Towards a quantitative description of excitonic couplings in photosynthetic pigment-protein complexes: quantum chemistry driven multiscale approaches. Phys Chem Chem Phys 2022; 24:5014-5038. [PMID: 35142765 PMCID: PMC8865841 DOI: 10.1039/d1cp03566e] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/31/2021] [Indexed: 01/18/2023]
Abstract
A structure-based quantitative calculation of excitonic couplings between photosynthetic pigments has to describe the dynamical polarization of the protein/solvent environment of the pigments, giving rise to reaction field and screening effects. Here, this challenging problem is approached by combining the fragment molecular orbital (FMO) method with the polarizable continuum model (PCM). The method is applied to compute excitonic couplings between chlorophyll a (Chl a) pigments of the water-soluble chlorophyll-binding protein (WSCP). By calibrating the vacuum dipole strength of the 0-0 transition of the Chl a chromophores according to experimental data, an excellent agreement between calculated and experimental linear absorption and circular dichroism spectra of WSCP is obtained. The effect of the mutual polarization of the pigment ground states is calculated to be very small. The simple Poisson-Transition-charge-from-Electrostatic-potential (Poisson-TrEsp) method is found to accurately describe the screening part of the excitonic coupling, obtained with FMO/PCM. Taking into account that the reaction field effects of the latter method can be described by a scalar constant leads to an improvement of Poisson-TrEsp that is expected to provide the basis for simple and realistic calculations of optical spectra and energy transfer in photosynthetic light-harvesting complexes. In addition, we present an expression for the estimation of Huang-Rhys factors of high-frequency pigment vibrations from experimental fluorescence line-narrowing spectra that takes into account the redistribution of oscillator strength by the interpigment excitonic coupling. Application to WSCP results in corrected Huang-Rhys factors that are less than one third of the original values obtained by the standard electronic two-state analysis that neglects the above redistribution. These factors are important for the estimation of the dipole strength of the 0-0 transition of the chromophores and for the development of calculation schemes for the spectral density of the exciton-vibrational coupling.
Collapse
Affiliation(s)
- Christian Friedl
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria.
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan.
| | - Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria.
| |
Collapse
|
18
|
Sirohiwal A, Pantazis DA. Electrostatic profiling of photosynthetic pigments: implications for directed spectral tuning. Phys Chem Chem Phys 2021; 23:24677-24684. [PMID: 34708851 DOI: 10.1039/d1cp02580e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photosynthetic pigment-protein complexes harvest solar energy with a high quantum efficiency. Protein scaffolds are known to tune the spectral properties of embedded pigments principally through structured electrostatic environments. Although the physical nature of electrostatic tuning is straightforward, the precise spatial principles of electrostatic preorganization remain poorly explored for different protein matrices and incompletely characterized with respect to the intrinsic properties of different photosynthetic pigments. In this work, we study the electronic structure features associated with the lowest excited state of a series of eight naturally occurring (bacterio)chlorophylls and pheophytins to describe the precise topological differences in electrostatic potentials and hence determine intrinsic differences in the expected mode and impact of electrostatic tuning. The difference electrostatic potentials between the ground and first excited states are used as fingerprints. Both the spatial profile and the propensity for spectral tuning are found to be unique for each pigment, indicating spatially and directionally distinct modes of electrostatic tuning. The results define a specific partitioning of the protein matrix around each pigment as an aid to identify regions with a maximal impact on spectral tuning and have direct implications for dimensionality reduction in protein design and engineering. Thus, a quantum mechanical basis is provided for understanding, predicting, and ultimately designing sequence-modified or pigment-exchanged biological systems, as suggested for selected examples of pigment-reconstituted proteins.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
19
|
Mao R, Wang X, Gao J. Bridging Carotenoid-to-Bacteriochlorophyll Energy Transfer of Purple Bacteria LH2 With Temperature Variations: Insights From Conformational Changes. Front Chem 2021; 9:764107. [PMID: 34671594 PMCID: PMC8521103 DOI: 10.3389/fchem.2021.764107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Photosynthesis is a key process for converting light energy into chemical energy and providing food for lives on Earth. Understanding the mechanism for the energy transfers could provide insights into regulating energy transfers in photosynthesis and designing artificial photosynthesis systems. Many efforts have been devoted to exploring the mechanism of temperature variations affecting the excitonic properties of LH2. In this study, we performed all-atom molecular dynamics (MD) simulations and quantum mechanics calculations for LH2 complex from purple bacteria along with its membrane environment under three typical temperatures: 270, 300, and 330 K. The structural analysis from validated MD simulations showed that the higher temperature impaired interactions at N-terminus of both α and β polypeptide helices and led to the dissociation of this hetero polypeptide dimer. Rhodopin-β-D-glucosides (RG1) moved centripetally with α polypeptide helices when temperature increased and enlarged their distances with bacteriochlorophylls molecules that have the absorption peak at 850 nm (B850), which resulted in reducing the coupling strengths between RG1 and B850 molecules. The present study reported a cascading mechanism for temperature regulating the energy transfers in LH2 of purple bacteria.
Collapse
Affiliation(s)
- Ruichao Mao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
20
|
Srivastava A, Ahad S, Wat JH, Reppert M. Accurate prediction of mutation-induced frequency shifts in chlorophyll proteins with a simple electrostatic model. J Chem Phys 2021; 155:151102. [PMID: 34686046 DOI: 10.1063/5.0064567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photosynthetic pigment-protein complexes control local chlorophyll (Chl) transition frequencies through a variety of electrostatic and steric forces. Site-directed mutations can modify this local spectroscopic tuning, providing critical insight into native photosynthetic functions and offering the tantalizing prospect of creating rationally designed Chl proteins with customized optical properties. Unfortunately, at present, no proven methods exist for reliably predicting mutation-induced frequency shifts in advance, limiting the method's utility for quantitative applications. Here, we address this challenge by constructing a series of point mutants in the water-soluble chlorophyll protein of Lepidium virginicum and using them to test the reliability of a simple computational protocol for mutation-induced site energy shifts. The protocol uses molecular dynamics to prepare mutant protein structures and the charge density coupling model of Adolphs et al. [Photosynth. Res. 95, 197-209 (2008)] for site energy prediction; a graphical interface that implements the protocol automatically is published online at http://nanohub.org/tools/pigmenthunter. With the exception of a single outlier (presumably due to unexpected structural changes), we find that the calculated frequency shifts match the experiment remarkably well, with an average error of 1.6 nm over a 9 nm spread in wavelengths. We anticipate that the accuracy of the method can be improved in the future with more advanced sampling of mutant protein structures.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Safa Ahad
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jacob H Wat
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
21
|
Dobson Z, Ahad S, Vanlandingham J, Toporik H, Vaughn N, Vaughn M, Williams D, Reppert M, Fromme P, Mazor Y. The structure of photosystem I from a high-light-tolerant cyanobacteria. eLife 2021; 10:e67518. [PMID: 34435952 PMCID: PMC8428864 DOI: 10.7554/elife.67518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Photosynthetic organisms have adapted to survive a myriad of extreme environments from the earth's deserts to its poles, yet the proteins that carry out the light reactions of photosynthesis are highly conserved from the cyanobacteria to modern day crops. To investigate adaptations of the photosynthetic machinery in cyanobacteria to excessive light stress, we isolated a new strain of cyanobacteria, Cyanobacterium aponinum 0216, from the extreme light environment of the Sonoran Desert. Here we report the biochemical characterization and the 2.7 Å resolution structure of trimeric photosystem I from this high-light-tolerant cyanobacterium. The structure shows a new conformation of the PsaL C-terminus that supports trimer formation of cyanobacterial photosystem I. The spectroscopic analysis of this photosystem I revealed a decrease in far-red absorption, which is attributed to a decrease in the number of long- wavelength chlorophylls. Using these findings, we constructed two chimeric PSIs in Synechocystis sp. PCC 6803 demonstrating how unique structural features in photosynthetic complexes can change spectroscopic properties, allowing organisms to thrive under different environmental stresses.
Collapse
Affiliation(s)
- Zachary Dobson
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
- BiodesignCenter for Applied Structural Discovery, Arizona State UniversityTempeUnited States
| | - Safa Ahad
- Department of Chemistry, Purdue UniversityWest LafayetteUnited States
| | - Jackson Vanlandingham
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
- BiodesignCenter for Applied Structural Discovery, Arizona State UniversityTempeUnited States
| | - Hila Toporik
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
- BiodesignCenter for Applied Structural Discovery, Arizona State UniversityTempeUnited States
| | - Natalie Vaughn
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
- BiodesignCenter for Applied Structural Discovery, Arizona State UniversityTempeUnited States
| | - Michael Vaughn
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
- BiodesignCenter for Applied Structural Discovery, Arizona State UniversityTempeUnited States
| | - Dewight Williams
- John M. Cowley Center for High Resolution Electron Microscopy, Arizona State UniversityTempeUnited States
| | - Michael Reppert
- Department of Chemistry, Purdue UniversityWest LafayetteUnited States
| | - Petra Fromme
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
- BiodesignCenter for Applied Structural Discovery, Arizona State UniversityTempeUnited States
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State UniversityTempeUnited States
- BiodesignCenter for Applied Structural Discovery, Arizona State UniversityTempeUnited States
| |
Collapse
|
22
|
Maity S, Sarngadharan P, Daskalakis V, Kleinekathöfer U. Time-dependent atomistic simulations of the CP29 light-harvesting complex. J Chem Phys 2021; 155:055103. [PMID: 34364345 DOI: 10.1063/5.0053259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Light harvesting as the first step in photosynthesis is of prime importance for life on earth. For a theoretical description of photochemical processes during light harvesting, spectral densities are key quantities. They serve as input functions for modeling the excitation energy transfer dynamics and spectroscopic properties. Herein, a recently developed procedure is applied to determine the spectral densities of the pigments in the minor antenna complex CP29 of photosystem II, which has recently gained attention because of its active role in non-photochemical quenching processes in higher plants. To this end, the density functional-based tight binding (DFTB) method has been employed to enable simulation of the ground state dynamics in a quantum-mechanics/molecular mechanics (QM/MM) scheme for each chlorophyll pigment. Subsequently, the time-dependent extension of the long-range corrected DFTB approach has been used to obtain the excitation energy fluctuations along the ground-state trajectories also in a QM/MM setting. From these results, the spectral densities have been determined and compared for different force fields and to spectral densities from other light-harvesting complexes. In addition, time-dependent and time-independent excitonic Hamiltonians of the system have been constructed and applied to the determination of absorption spectra as well as exciton dynamics.
Collapse
Affiliation(s)
- Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Pooja Sarngadharan
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Vangelis Daskalakis
- Department of Chemical Engineering, Cyprus University of Technology, 30 Archbishop Kyprianou Str. 3603, Limassol, Cyprus
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
23
|
Renger T. Semiclassical Modified Redfield and Generalized Förster Theories of Exciton Relaxation/Transfer in Light-Harvesting Complexes: The Quest for the Principle of Detailed Balance. J Phys Chem B 2021; 125:6406-6416. [PMID: 34126008 PMCID: PMC8237266 DOI: 10.1021/acs.jpcb.1c01479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A conceptual problem
of transfer theories that use a semiclassical
description of the electron-vibrational coupling is the neglect of
the correlation between momenta and coordinates of nuclei. In the
Redfield theory of exciton relaxation, this neglect leads to a violation
of the principle of detailed balance; equal “uphill”
and “downhill” transfer rate constants are obtained.
Here, we investigate how this result depends on nuclear reorganization
effects, neglected in Redfield but taken into account in the modified
Redfield theory. These reorganization effects, resulting from a partial
localization of excited states, are found to promote a preferential
“downhill” relaxation of excitation energy. However,
for realistic spectral densities of light-harvesting antennae in photosynthesis,
the reorganization effects are too small to compensate for the missing
coordinate–momentum uncertainty. For weaker excitonic couplings
as they occur between domains of strongly coupled pigments, we find
the principle of detailed balance to be fulfilled in a semiclassical
variant of the generalized Förster theory. A qualitatively
correct description of the transfer is obtained with this theory at
a significantly lower computational cost as with the quantum generalized
Förster theory. Larger deviations between the two theories
are expected for large energy gaps as they occur in complexes with
chemically different pigments.
Collapse
Affiliation(s)
- Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
| |
Collapse
|
24
|
Lokstein H, Renger G, Götze JP. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules 2021; 26:molecules26113378. [PMID: 34204994 PMCID: PMC8199901 DOI: 10.3390/molecules26113378] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
Collapse
Affiliation(s)
- Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
- Correspondence:
| | - Gernot Renger
- Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan P. Götze
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany;
| |
Collapse
|
25
|
Lahav Y, Noy D, Schapiro I. Spectral tuning of chlorophylls in proteins - electrostatics vs. ring deformation. Phys Chem Chem Phys 2021; 23:6544-6551. [PMID: 33690760 DOI: 10.1039/d0cp06582j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In photosynthetic complexes, tuning of chlorophyll light-absorption spectra by the protein environment is crucial to their efficiency and robustness. Recombinant type II water soluble chlorophyll-binding proteins from Brassicaceae (WSCPs) are useful for studying spectral tuning mechanisms due to their symmetric homotetramer structure, and the ability to rigorously modify the chlorophyll's protein surroundings. Our previous comparison of the crystal structures of two WSCP homologues suggested that protein-induced chlorophyll ring deformation is the predominant spectral tuning mechanism. Here, we implement a more rigorous analysis based on hybrid quantum mechanics and molecular mechanics calculations to quantify the relative contributions of geometrical and electrostatic factors to the absorption spectra of WSCP-chlorophyll complexes. We show that when considering conformational dynamics, geometry distortions such as chlorophyll ring deformation accounts for about one-third of the spectral shift, whereas the direct polarization of the electron density accounts for the remaining two-thirds. From a practical perspective, protein electrostatics is easier to manipulate than chlorophyll conformations, thus, it may be more readily implemented in designing artificial protein-chlorophyll complexes.
Collapse
Affiliation(s)
- Yigal Lahav
- Fritz Haber Centre for Molecular Dynamics Research, Institute of Chemistry, Hebrew University of Jerusalem, Israel.
| | | | | |
Collapse
|
26
|
Reinot T, Khmelnitskiy A, Kell A, Jassas M, Jankowiak R. Exciton Lifetime Distributions and Population Dynamics in the FMO Protein Complex from Prosthecochloris aestuarii. ACS OMEGA 2021; 6:5990-6008. [PMID: 33681637 PMCID: PMC7931385 DOI: 10.1021/acsomega.1c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Significant protein rearrangement upon excitation and energy transfer in Fenna-Matthews-Olson protein of Prosthecochloris aestuarii results in a modified energy landscape, which induces more changes in pigment site energies than predicted by the "standard" hole-burning theory. The energy changes are elucidated by simulations while investigating the effects of site-dependent disorder, both static (site-energy distribution widths) and dynamic (spectral density shapes). The resulting optimized site energies and their fluctuations are consistent with relative differences observed in inhomogeneous widths calculated by recent molecular dynamic simulations. Two sets of different spectral densities reveal how their shapes affect the population dynamics and distribution of exciton lifetimes. Calculations revealed the wavelength-dependent distributions of exciton lifetimes (T 1) in the femtosecond to picosecond time frame. We suggest that the calculated multimodal and asymmetric wavelength-dependent T 1 distributions offer more insight into the interpretation of resonant hole-burned (HB) spectra, kinetic traces in two-dimensional (2D) electronic spectroscopy experiments, and widely used global analyses in fitting data from transient absorption experiments.
Collapse
Affiliation(s)
- Tonu Reinot
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Anton Khmelnitskiy
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Adam Kell
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mahboobe Jassas
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Ryszard Jankowiak
- Department
of Chemistry, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
27
|
Müh F, van Oort B, Puthiyaveetil S, Kirchhoff H. Reply to: Is the debate over grana stacking formation finally solved? NATURE PLANTS 2021; 7:279-281. [PMID: 33707740 DOI: 10.1038/s41477-021-00881-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Frank Müh
- Institute for Theoretical Physics, Department of Theoretical Biophysics, Johannes Kepler University Linz, Linz, Austria.
| | - Bart van Oort
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, the Netherlands
| | - Sujith Puthiyaveetil
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA.
| |
Collapse
|
28
|
Reinot T, Jassas M, Kell A, Casazza AP, Santabarbara S, Jankowiak R. On wavelength-dependent exciton lifetime distributions in reconstituted CP29 antenna of the photosystem II and its site-directed mutants. J Chem Phys 2021; 154:085101. [PMID: 33639775 DOI: 10.1063/5.0038217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To provide more insight into the excitonic structure and exciton lifetimes of the wild type (WT) CP29 complex of photosystem II, we measured high-resolution (low temperature) absorption, emission, and hole burned spectra for the A2 and B3 mutants, which lack chlorophylls a612 and b614 (Chls), respectively. Experimental and modeling results obtained for the WT CP29 and A2/B3 mutants provide new insight on the mutation-induced changes at the molecular level and shed more light on energy transfer dynamics. Simulations of the A2 and B3 optical spectra, using the second-order non-Markovian theory, and comparison with improved fits of WT CP29 optical spectra provide more insight into their excitonic structure, mutation induced changes, and frequency-dependent distributions of exciton lifetimes (T1). A new Hamiltonian obtained for WT CP29 reveals that deletion of Chls a612 or b614 induces changes in the site energies of all remaining Chls. Hamiltonians obtained for A2 and B3 mutants are discussed in the context of the energy landscape of chlorophylls, excitonic structure, and transfer kinetics. Our data suggest that the lowest exciton states in A2 and B3 mutants are contributed by a611(57%), a610(17%), a615(15%) and a615(58%), a611(20%), a612(15%) Chls, respectively, although other compositions of lowest energy states are also discussed. Finally, we argue that the calculated exciton decay times are consistent with both the hole-burning and recent transient absorption measurements. Wavelength-dependent T1 distributions offer more insight into the interpretation of kinetic traces commonly described by discrete exponentials in global analysis/global fitting of transient absorption experiments.
Collapse
Affiliation(s)
- Tonu Reinot
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Mahboobe Jassas
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Adam Kell
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, C.N.R., Via Bassini 15, 20133 Milano, Italy
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, C.N.R., Milano, Italy
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
29
|
Osella S. Artificial Photosynthesis: Is Computation Ready for the Challenge Ahead? NANOMATERIALS 2021; 11:nano11020299. [PMID: 33498961 PMCID: PMC7911014 DOI: 10.3390/nano11020299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
A tremendous effort is currently devoted to the generation of novel hybrid materials with enhanced electronic properties for the creation of artificial photosynthetic systems. This compelling and challenging problem is well-defined from an experimental point of view, as the design of such materials relies on combining organic materials or metals with biological systems like light harvesting and redox-active proteins. Such hybrid systems can be used, e.g., as bio-sensors, bio-fuel cells, biohybrid photoelectrochemical cells, and nanostructured photoelectronic devices. Despite these efforts, the main bottleneck is the formation of efficient interfaces between the biological and the organic/metal counterparts for efficient electron transfer (ET). It is within this aspect that computation can make the difference and improve the current understanding of the mechanisms underneath the interface formation and the charge transfer efficiency. Yet, the systems considered (i.e., light harvesting protein, self-assembly monolayer and surface assembly) are more and more complex, reaching (and often passing) the limit of current computation power. In this review, recent developments in computational methods for studying complex interfaces for artificial photosynthesis will be provided and selected cases discussed, to assess the inherent ability of computation to leave a mark in this field of research.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
30
|
Non-conservative circular dichroism of photosystem II reaction centers: Is there an enhancement by a coupling with charge transfer states? J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Chaillet M, Lengauer F, Adolphs J, Müh F, Fokas AS, Cole DJ, Chin AW, Renger T. Static Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experiment. J Phys Chem Lett 2020; 11:10306-10314. [PMID: 33227205 PMCID: PMC7751012 DOI: 10.1021/acs.jpclett.0c03123] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Inhomogeneous broadening of optical lines of the Fenna-Matthews-Olson (FMO) light-harvesting protein is investigated by combining a Monte Carlo sampling of low-energy conformational substates of the protein with a quantum chemical/electrostatic calculation of local transition energies (site energies) of the pigments. The good agreement between the optical spectra calculated for the inhomogeneous ensemble and the experimental data demonstrates that electrostatics is the dominant contributor to static disorder in site energies. Rotamers of polar amino acid side chains are found to cause bimodal distribution functions of site energy shifts, which can be probed by hole burning and single-molecule spectroscopy. When summing over the large number of contributions, the resulting distribution functions of the site energies become Gaussians, and the correlations in site energy fluctuations at different sites practically average to zero. These results demonstrate that static disorder in the FMO protein is in the realm of the central limit theorem of statistics.
Collapse
Affiliation(s)
- Marten
L. Chaillet
- Bijvoet
Centre for Biomolecular Research, University
of Utrecht, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
| | - Florian Lengauer
- Institute
of Theoretical Physics, Johannes Kepler
University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Julian Adolphs
- Leibniz
Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Frank Müh
- Institute
of Theoretical Physics, Johannes Kepler
University Linz, Altenberger Str. 69, 4040 Linz, Austria
| | - Alexander S. Fokas
- TCM
Group, Cavendish Laboratory, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Daniel J. Cole
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle
upon Tyne NE1 7RU, United
Kingdom
| | - Alex W. Chin
- Centre
National de la Recherce Scientifique, Institute des Nanosciences de
Paris, Sorbonne Université, Paris, France
| | - Thomas Renger
- Institute
of Theoretical Physics, Johannes Kepler
University Linz, Altenberger Str. 69, 4040 Linz, Austria
| |
Collapse
|
32
|
Sirohiwal A, Neese F, Pantazis DA. Protein Matrix Control of Reaction Center Excitation in Photosystem II. J Am Chem Soc 2020; 142:18174-18190. [PMID: 33034453 PMCID: PMC7582616 DOI: 10.1021/jacs.0c08526] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Photosystem II (PSII) is a multisubunit pigment-protein complex that uses light-induced charge separation to power oxygenic photosynthesis. Its reaction center chromophores, where the charge transfer cascade is initiated, are arranged symmetrically along the D1 and D2 core polypeptides and comprise four chlorophyll (PD1, PD2, ChlD1, ChlD2) and two pheophytin molecules (PheoD1 and PheoD2). Evolution favored productive electron transfer only via the D1 branch, with the precise nature of primary excitation and the factors that control asymmetric charge transfer remaining under investigation. Here we present a detailed atomistic description for both. We combine large-scale simulations of membrane-embedded PSII with high-level quantum-mechanics/molecular-mechanics (QM/MM) calculations of individual and coupled reaction center chromophores to describe reaction center excited states. We employ both range-separated time-dependent density functional theory and the recently developed domain based local pair natural orbital (DLPNO) implementation of the similarity transformed equation of motion coupled cluster theory with single and double excitations (STEOM-CCSD), the first coupled cluster QM/MM calculations of the reaction center. We find that the protein matrix is exclusively responsible for both transverse (chlorophylls versus pheophytins) and lateral (D1 versus D2 branch) excitation asymmetry, making ChlD1 the chromophore with the lowest site energy. Multipigment calculations show that the protein matrix renders the ChlD1 → PheoD1 charge-transfer the lowest energy excitation globally within the reaction center, lower than any pigment-centered local excitation. Remarkably, no low-energy charge transfer states are located within the "special pair" PD1-PD2, which is therefore excluded as the site of initial charge separation in PSII. Finally, molecular dynamics simulations suggest that modulation of the electrostatic environment due to protein conformational flexibility enables direct excitation of low-lying charge transfer states by far-red light.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fakultät
für Chemie und Biochemie, Ruhr-Universität
Bochum, 44780 Bochum, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
33
|
Maity S, Bold BM, Prajapati JD, Sokolov M, Kubař T, Elstner M, Kleinekathöfer U. DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex. J Phys Chem Lett 2020; 11:8660-8667. [PMID: 32991176 DOI: 10.1021/acs.jpclett.0c02526] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because of the size of light-harvesting complexes and the involvement of electronic degrees of freedom, computationally these systems need to be treated with a combined quantum-classical description. To this end, Born-Oppenheimer molecular dynamics simulations have been employed in a quantum mechanics/molecular mechanics (QM/MM) fashion for the ground state followed by excitation energy calculations again in a QM/MM scheme for the Fenna-Matthews-Olson (FMO) complex. The self-consistent-charge density functional tight-binding (DFTB) method electrostatically coupled to a classical description of the environment was applied to perform the ground-state dynamics. Subsequently, long-range-corrected time-dependent DFTB calculations were performed to determine the excitation energy fluctuations of the individual bacteriochlorophyll a molecules. The spectral densities obtained using this approach show an excellent agreement with experimental findings. In addition, the fluctuating site energies and couplings were used to estimate the exciton transfer dynamics.
Collapse
Affiliation(s)
- Sayan Maity
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Beatrix M Bold
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | | | - Monja Sokolov
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
- Institute of Biological Interfaces, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
34
|
Kehrer J, Richter R, Foerster JM, Schelter I, Kümmel S. Self-interaction correction, electrostatic, and structural influences on time-dependent density functional theory excitations of bacteriochlorophylls from the light-harvesting complex 2. J Chem Phys 2020; 153:144114. [PMID: 33086803 DOI: 10.1063/5.0014938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
First-principles calculations offer the chance to obtain a microscopic understanding of light-harvesting processes. Time-dependent density functional theory can have the computational efficiency to allow for such calculations. However, the (semi-)local exchange-correlation approximations that are computationally most efficient fail to describe charge-transfer excitations reliably. We here investigate whether the inexpensive average density self-interaction correction (ADSIC) remedies the problem. For the systems that we study, ADSIC is even more prone to the charge-transfer problem than the local density approximation. We further explore the recently reported finding that the electrostatic potential associated with the chromophores' protein environment in the light-harvesting complex 2 beneficially shifts spurious excitations. We find a great sensitivity on the chromophores' atomistic structure in this problem. Geometries obtained from classical molecular dynamics are more strongly affected by the spurious charge-transfer problem than the ones obtained from crystallography or density functional theory. For crystal structure geometries and density-functional theory optimized ones, our calculations confirm that the electrostatic potential shifts the spurious excitations out of the energetic range that is most relevant for electronic coupling.
Collapse
Affiliation(s)
- Juliana Kehrer
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Rian Richter
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| | | | - Ingo Schelter
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
35
|
Cupellini L, Lipparini F, Cao J. Absorption and Circular Dichroism Spectra of Molecular Aggregates With the Full Cumulant Expansion. J Phys Chem B 2020; 124:8610-8617. [PMID: 32901476 PMCID: PMC7901647 DOI: 10.1021/acs.jpcb.0c05180] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The exciton Hamiltonian of multichromophoric aggregates can be probed by spectroscopic
techniques such as linear absorption and circular dichroism. To compare calculated
Hamiltonians to experiments, a lineshape theory is needed, which takes into account the
coupling of the excitons with inter- and intramolecular vibrations. This coupling is
normally introduced in a perturbative way through the cumulant expansion formalism and
further approximated by assuming a Markovian exciton dynamics, for example with the
modified Redfield theory. Here, we present the implementation of the full cumulant
expansion (FCE) formalism (142, 2015, 09410625747060) to
efficiently compute absorption and circular dichroism spectra of molecular aggregates
beyond the Markov approximation, without restrictions on the form of
exciton–phonon coupling. By employing the LH2 system of purple bacteria as a
challenging test case, we compare the FCE lineshapes with the Markovian lineshapes
obtained with the modified Redfield theory, showing that the latter presents a less
satisfying agreement with experiments. The FCE approach instead accurately describes the
lineshapes, especially in the vibronic sideband of the B800 peak. We envision that the
FCE approach will become a valuable tool for accurately comparing model exciton
Hamiltonians with optical spectroscopy experiments.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
36
|
Conti I, Cerullo G, Nenov A, Garavelli M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. J Am Chem Soc 2020; 142:16117-16139. [PMID: 32841559 PMCID: PMC7901644 DOI: 10.1021/jacs.0c04952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Computational spectroscopy is becoming a mandatory tool for the interpretation of the
complex, and often congested, spectral maps delivered by modern non-linear multi-pulse
techniques. The fields of Electronic Structure Methods,
Non-Adiabatic Molecular Dynamics, and Theoretical
Spectroscopy represent the three pillars of the virtual ultrafast
optical spectrometer, able to deliver transient spectra in
silico from first principles. A successful simulation strategy requires a
synergistic approach that balances between the three fields, each one having its very
own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is
achievable now regarding the modeling of ultrafast photoinduced processes in complex
molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in
the very near future. Potential directions of development, pending challenges, and
rising opportunities are illustrated.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
37
|
Sláma V, Cupellini L, Mennucci B. Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description. Phys Chem Chem Phys 2020; 22:16783-16795. [PMID: 32662461 DOI: 10.1039/d0cp02492a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present a fully atomistic simulation of linear optical spectra (absorption, fluorescence and circular dichroism) of the Light Harvesting Complex II (LHCII) trimer using a hybrid approach, which couples a quantum chemical description of the chlorophylls with a classical model for the protein and the external environment (membrane and water). The classical model uses a polarizable Molecular Mechanics force field, thus allowing mutual polarization effects in the calculations of the excitonic properties. The investigation is performed both on the crystal structure and on structures generated by a μs long classical molecular dynamics simulation of the complex within a solvated membrane. The results show that this integrated approach not only provides a good description of the excitonic properties and optical spectra without the need for additional refinements of the excitonic parameters, but it also allows an atomistic investigation of the relative importance of electronic, structural and environment effects in determining the optical spectra.
Collapse
Affiliation(s)
- Vladislav Sláma
- Department of Chemistry and Industrial Chemistry, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy.
| | | | | |
Collapse
|
38
|
Balevičius V, Duffy CDP. Excitation quenching in chlorophyll-carotenoid antenna systems: 'coherent' or 'incoherent'. PHOTOSYNTHESIS RESEARCH 2020; 144:301-315. [PMID: 32266612 PMCID: PMC7239839 DOI: 10.1007/s11120-020-00737-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 03/18/2020] [Indexed: 05/20/2023]
Abstract
Plants possess an essential ability to rapidly down-regulate light-harvesting in response to high light. This photoprotective process involves the formation of energy-quenching interactions between the chlorophyll and carotenoid pigments within the antenna of Photosystem II (PSII). The nature of these interactions is currently debated, with, among others, 'incoherent' or 'coherent' quenching models (or a combination of the two) suggested by a range of time-resolved spectroscopic measurements. In 'incoherent quenching', energy is transferred from a chlorophyll to a carotenoid and is dissipated due to the intrinsically short excitation lifetime of the latter. 'Coherent quenching' would arise from the quantum mechanical mixing of chlorophyll and carotenoid excited state properties, leading to a reduction in chlorophyll excitation lifetime. The key parameters are the energy gap, [Formula: see text] and the resonance coupling, J, between the two excited states. Coherent quenching will be the dominant process when [Formula: see text] i.e., when the two molecules are resonant, while the quenching will be largely incoherent when [Formula: see text] One would expect quenching to be energetically unfavorable for [Formula: see text] The actual dynamics of quenching lie somewhere between these limiting regimes and have non-trivial dependencies of both J and [Formula: see text] Using the Hierarchical Equation of Motion (HEOM) formalism we present a detailed theoretical examination of these excitation dynamics and their dependence on slow variations in J and [Formula: see text] We first consider an isolated chlorophyll-carotenoid dimer before embedding it within a PSII antenna sub-unit (LHCII). We show that neither energy transfer, nor the mixing of excited state lifetimes represent unique or necessary pathways for quenching and in fact discussing them as distinct quenching mechanisms is misleading. However, we do show that quenching cannot be switched 'on' and 'off' by fine tuning of [Formula: see text] around the resonance point, [Formula: see text] Due to the large reorganization energy of the carotenoid excited state, we find that the presence (or absence) of coherent interactions have almost no impact of the dynamics of quenching. Counter-intuitively significant quenching is present even when the carotenoid excited state lies above that of the chlorophyll. We also show that, above a rather small threshold value of [Formula: see text]quenching becomes less and less sensitive to J (since in the window [Formula: see text] the overall lifetime is independent of it). The requirement for quenching appear to be only that [Formula: see text] Although the coherent/incoherent character of the quenching can vary, the overall kinetics are likely robust with respect to fluctuations in J and [Formula: see text] This may be the basis for previous observations of NPQ with both coherent and incoherent features.
Collapse
Affiliation(s)
- Vytautas Balevičius
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Christopher D P Duffy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
39
|
Müh F, Zouni A. Structural basis of light-harvesting in the photosystem II core complex. Protein Sci 2020; 29:1090-1119. [PMID: 32067287 PMCID: PMC7184784 DOI: 10.1002/pro.3841] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Photosystem II (PSII) is a membrane-spanning, multi-subunit pigment-protein complex responsible for the oxidation of water and the reduction of plastoquinone in oxygenic photosynthesis. In the present review, the recent explosive increase in available structural information about the PSII core complex based on X-ray crystallography and cryo-electron microscopy is described at a level of detail that is suitable for a future structure-based analysis of light-harvesting processes. This description includes a proposal for a consistent numbering scheme of protein-bound pigment cofactors across species. The structural survey is complemented by an overview of the state of affairs in structure-based modeling of excitation energy transfer in the PSII core complex with emphasis on electrostatic computations, optical properties of the reaction center, the assignment of long-wavelength chlorophylls, and energy trapping mechanisms.
Collapse
Affiliation(s)
- Frank Müh
- Department of Theoretical Biophysics, Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Athina Zouni
- Humboldt-Universität zu Berlin, Institute for Biology, Biophysics of Photosynthesis, Berlin, Germany
| |
Collapse
|
40
|
Bondanza M, Nottoli M, Cupellini L, Lipparini F, Mennucci B. Polarizable embedding QM/MM: the future gold standard for complex (bio)systems? Phys Chem Chem Phys 2020; 22:14433-14448. [DOI: 10.1039/d0cp02119a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We provide a perspective of the induced dipole formulation of polarizable QM/MM, showing how efficient implementations will enable their application to the modeling of dynamics, spectroscopy, and reactivity in complex biosystems.
Collapse
Affiliation(s)
- Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| |
Collapse
|
41
|
Kitoh-Nishioka H, Shigeta Y, Itoh S, Kimura A. Excitonic Coupling on a Heliobacterial Symmetrical Type-I Reaction Center: Comparison with Photosystem I. J Phys Chem B 2019; 124:389-403. [DOI: 10.1021/acs.jpcb.9b11290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hirotaka Kitoh-Nishioka
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
42
|
Schelter I, Foerster JM, Gardiner AT, Roszak AW, Cogdell RJ, Ullmann GM, de Queiroz TB, Kümmel S. Assessing density functional theory in real-time and real-space as a tool for studying bacteriochlorophylls and the light-harvesting complex 2. J Chem Phys 2019; 151:134114. [DOI: 10.1063/1.5116779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Ingo Schelter
- Theoretical Physics IV, University of Bayreuth, Bayreuth, Germany
| | - Johannes M. Foerster
- Theoretical Physics IV and Computational Biochemistry, University of Bayreuth, Bayreuth, Germany
| | | | - Aleksander W. Roszak
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. Cogdell
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Stephan Kümmel
- Theoretical Physics IV, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
43
|
Paulikat M, Mata RA, Gelabert R. A high-throughput computational approach to UV-Vis spectra in protein mutants. Phys Chem Chem Phys 2019; 21:20678-20692. [PMID: 31508628 DOI: 10.1039/c9cp03908b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work we present a high-throughput approach to the computation of absorption UV-Vis spectra tailored to mutagenesis studies. The scheme makes use of a single molecular dynamics trajectory of a reference (non-mutated) species. The shifts in absorption energy caused by a residue mutation are evaluated by building an effective potential of the environment and computing a correction term based on perturbation theory. The sampling is only performed in the phase space of the initial protein. We analyze the robustness of the method by comparing different approximations for the effective potential, the sampling of mutant residue geometries and observing the impact in the prediction of both bathocromic and hypsochromic shifts. As a test subject, we consider a red fluorescent protein variant with potential biotechnological applications.
Collapse
Affiliation(s)
- Mirko Paulikat
- Institute of Physical Chemistry, University of Goettingen, Tammannstraße 6, D-37077 Göttingen, Germany.
| | - Ricardo A Mata
- Institute of Physical Chemistry, University of Goettingen, Tammannstraße 6, D-37077 Göttingen, Germany.
| | - Ricard Gelabert
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
44
|
|
45
|
Segatta F, Cupellini L, Garavelli M, Mennucci B. Quantum Chemical Modeling of the Photoinduced Activity of Multichromophoric Biosystems. Chem Rev 2019; 119:9361-9380. [PMID: 31276384 PMCID: PMC6716121 DOI: 10.1021/acs.chemrev.9b00135] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 01/21/2023]
Abstract
Multichromophoric biosystems represent a broad family with very diverse members, ranging from light-harvesting pigment-protein complexes to nucleic acids. The former are designed to capture, harvest, efficiently transport, and transform energy from sunlight for photosynthesis, while the latter should dissipate the absorbed radiation as quickly as possible to prevent photodamages and corruption of the carried genetic information. Because of the unique electronic and structural characteristics, the modeling of their photoinduced activity is a real challenge. Numerous approaches have been devised building on the theoretical development achieved for single chromophores and on model Hamiltonians that capture the essential features of the system. Still, a question remains: is a general strategy for the accurate modeling of multichromophoric systems possible? By using a quantum chemical point of view, here we review the advancements developed so far highlighting differences and similarities with the single chromophore treatment. Finally, we outline the important limitations and challenges that still need to be tackled to reach a complete and accurate picture of their photoinduced properties and dynamics.
Collapse
Affiliation(s)
- Francesco Segatta
- Dipartimento
di Chimica Industriale “Toso Montanari” University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Lorenzo Cupellini
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Marco Garavelli
- Dipartimento
di Chimica Industriale “Toso Montanari” University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Benedetta Mennucci
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
46
|
Cupellini L, Bondanza M, Nottoli M, Mennucci B. Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148049. [PMID: 31386831 DOI: 10.1016/j.bbabio.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Light-harvesting is a crucial step of photosynthesis. Its mechanisms and related energetics have been revealed by a combination of experimental investigations and theoretical modeling. The success of theoretical modeling is largely due to the application of atomistic descriptions combining quantum chemistry, classical models and molecular dynamics techniques. Besides the important achievements obtained so far, a complete and quantitative understanding of how the many different light-harvesting complexes exploit their structural specificity is still missing. Moreover, many questions remain unanswered regarding the mechanisms through which light-harvesting is regulated in response to variable light conditions. Here we show that, in both fields, a major role will be played once more by atomistic descriptions, possibly generalized to tackle the numerous time and space scales on which the regulation takes place: going from the ultrafast electronic excitation of the multichromophoric aggregate, through the subsequent conformational changes in the embedding protein, up to the interaction between proteins.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy.
| |
Collapse
|
47
|
Anda A, Hansen T, De Vico L. Qy and Qx Absorption Bands for Bacteriochlorophyll a Molecules from LH2 and LH3. J Phys Chem A 2019; 123:5283-5292. [DOI: 10.1021/acs.jpca.9b02877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- André Anda
- Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Thorsten Hansen
- Department of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Luca De Vico
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100, Siena, Italy
| |
Collapse
|
48
|
Carli M, Turelli M, Faccioli P. Microscopic calculation of absorption spectra of macromolecules: An analytic approach. J Chem Phys 2019; 150:144103. [PMID: 30981270 DOI: 10.1063/1.5084120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a cross-disciplinary approach to analytically compute optical response functions of open macromolecular systems by exploiting the mathematical formalism of quantum field theory (QFT). Indeed, the entries of the density matrix for the electronic excitations interacting with their open dissipative environment are mapped into vacuum-to-vacuum Green's functions in a fictitious relativistic closed quantum system. We show that by re-summing appropriate self-energy diagrams in this dual QFT, it is possible to obtain analytic expressions for the response functions in Mukamel's theory. This yields physical insight into the structure and dynamics of vibronic resonances, since their frequency and width is related to fundamental physical constants and microscopic model parameters. For illustration, we apply this scheme to compute the linear absorption spectrum of the Fenna-Matthews-Olson light harvesting complex, comparing analytic calculations, numerical Monte Carlo simulations, and experimental data.
Collapse
Affiliation(s)
- Matteo Carli
- Physics Department of Trento University, Via Sommarive 14, Povo, Trento 38123, Italy
| | - Michele Turelli
- Physics Department of Trento University, Via Sommarive 14, Povo, Trento 38123, Italy
| | - Pietro Faccioli
- Physics Department of Trento University, Via Sommarive 14, Povo, Trento 38123, Italy
| |
Collapse
|
49
|
Hsieh ST, Zhang L, Ye DW, Huang X, Cheng YC. A theoretical study on the dynamics of light harvesting in the dimeric photosystem II core complex: regulation and robustness of energy transfer pathways. Faraday Discuss 2019; 216:94-115. [PMID: 31016302 DOI: 10.1039/c8fd00205c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Here we present our theoretical investigations into the light reaction in the dimeric photosystem II (PSII) core complex. An effective model for excitation energy transfer (EET) and primary charge separation (CS) in the PSII core complex was developed, with model parameters constructed based on molecular dynamics (MD) simulation data. Compared to experimental results, we demonstrated that this model faithfully reproduces the absorption spectra of the RC and core light-harvesting complexes (CP43 and CP47) as well as the full EET dynamics among the chromophores in the PSII core complex. We then applied master equation simulations and network analysis to investigate detailed EET plus CS dynamics in the system, allowing us to identify key EET pathways and produce a coarse-grained cluster model for the light reaction in the dimeric PSII core complex. We show that non-equilibrium energy transfer channels play important roles in the efficient light harvesting process and that multiple EET pathways exist between subunits of PSII to ensure the robustness of light harvesting in the system. Furthermore, we revealed that inter-monomer energy transfer dominated by the coupling between the two CLA625 molecules enables efficient energy exchange between two CP47s in the dimeric PSII core complex, which leads to significant energy pooling in the CP47 domain during the light reaction. Our study provides a blueprint for the design of light harvesting in the PSII core and show that a structure-based approach using molecular dynamics simulations and quantum chemistry calculations can be effectively utilized to elucidate the dynamics of light harvesting in complex photosynthetic systems.
Collapse
Affiliation(s)
- Shou-Ting Hsieh
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan.
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian CN 350002, China
| | - De-Wei Ye
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan.
| | - Xuhui Huang
- Department of Chemistry, Institute for Advance Study and School of Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| | - Yuan-Chung Cheng
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
50
|
Cupellini L, Caprasecca S, Guido CA, Müh F, Renger T, Mennucci B. Coupling to Charge Transfer States is the Key to Modulate the Optical Bands for Efficient Light Harvesting in Purple Bacteria. J Phys Chem Lett 2018; 9:6892-6899. [PMID: 30449098 DOI: 10.1021/acs.jpclett.8b03233] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The photosynthetic apparatus of purple bacteria uses exciton delocalization and static disorder to modulate the position and broadening of its absorption bands, leading to efficient light harvesting. Its main antenna complex, LH2, contains two rings of identical bacteriochlorophyll pigments, B800 and B850, absorbing at 800 and 850 nm, respectively. It has been an unsolved problem why static disorder of the strongly coupled B850 ring is several times larger than that of the B800 ring. Here we show that mixing between excitons and charge transfer states in the B850 ring is responsible for the effect. The linear absorption spectrum of the LH2 system is simulated by using a multiscale approach with an exciton Hamiltonian generalized to include the charge transfer states that involve adjacent pigment pairs, with static disorder modeled microscopically by molecular dynamics simulations. Our results show that sufficient inhomogeneous broadening of the B850 band, needed for efficient light harvesting, is only obtained by utilizing static disorder in the coupling between local excited and interpigment charge transfer states.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Stefano Caprasecca
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Ciro A Guido
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Frank Müh
- Institute of Theoretical Physics, Department of Theoretical Biophysics , Johannes Kepler University Linz , Altenberger Strasse 69 , 4040 Linz , Austria
| | - Thomas Renger
- Institute of Theoretical Physics, Department of Theoretical Biophysics , Johannes Kepler University Linz , Altenberger Strasse 69 , 4040 Linz , Austria
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale , University of Pisa , via G. Moruzzi 13 , 56124 Pisa , Italy
| |
Collapse
|