1
|
Hart KD, Hollobaugh MJ, Battiste AM, Yun TY, Abraham AP, Hamidizirasefi M, Loscher IM, Chandler BD. Upside-Down Adsorption: The Counterintuitive Influences of Surface Entropy and Surface Hydroxyl Density on Hydrogen Spillover. J Am Chem Soc 2024. [PMID: 39447137 DOI: 10.1021/jacs.4c07539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Although hydrogen spillover is often invoked to explain anomalies in catalysis, spillover remains a poorly understood phenomenon. Hydrogen spillover (H*) is best described as highly mobile H atom equivalents that arise when H2 migrates from a metal nanoparticle to an oxide or carbon support. In the 60 years since its discovery, few methods have become available to quantify or characterize H*-support interactions. We recently showed in situ infrared spectroscopy and volumetric chemisorption can quantify reversible H2 adsorption on Au/TiO2 catalysts, where adsorbed hydrogen exists as H* and interacts with titania surface hydroxyl (TiOH) groups. Here, we report parallel thermogravimetric analysis and Fourier transform infrared spectroscopy methods for systematically manipulating the surface TiOH density. We examine the role of surface hydroxylation on spillover thermodynamics using van't Hoff studies to determine apparent adsorption enthalpies and entropies at constant H* coverage, which is necessary to maintain constant H* translational entropy. Although surface TiOH groups are the likely adsorption sites, the data show removing hydroxyl groups increases spillover. This surprising finding─that adsorption increases as the adsorption site density decreases─is associated with improved thermodynamics on dehydroxylated surfaces. A strong adsorption enthalpy-entropy correlation implicates the changing surface entropy of the titania support itself (i.e., an initial state effect) is deeply intertwined with the H* configurational entropy. These effects are surprising and should apply to all low-coverage adsorbates where entropy terms dominate more traditional enthalpic considerations. Moreover, this study points toward a kinetic test for invoking spillover in a reaction mechanism: namely, in situ dehydroxylation should enhance spillover processes.
Collapse
Affiliation(s)
- Kelle D Hart
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Margaret J Hollobaugh
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Audrey M Battiste
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tae Yong Yun
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Angela Pathickal Abraham
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mohammad Hamidizirasefi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ian M Loscher
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bert D Chandler
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Xie Z, Li L, Gong S, Xu S, Luo H, Li D, Chen H, Chen M, Liu K, Shi W, Xu D, Lei Y. Clustering-Resistant Cu Single Atoms on Porous Au Nanoparticles Supported by TiO 2 for Sustainable Photoconversion of CO 2 into CH 4. Angew Chem Int Ed Engl 2024; 63:e202410250. [PMID: 38887820 DOI: 10.1002/anie.202410250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Photocatalysts based on single atoms (SAs) modification can lead to unprecedented reactivity with recent advances. However, the deactivation of SAs-modified photocatalysts remains a critical challenge in the field of photocatalytic CO2 reduction. In this study, we unveil the detrimental effect of CO intermediates on Cu single atoms (Cu-SAs) during photocatalytic CO2 reduction, leading to clustering and deactivation on TiO2. To address this, we developed a novel Cu-SAs anchored on Au porous nanoparticles (CuAu-SAPNPs-TiO2) via a vectored etching approach. This system not only enhances CH4 production with a rate of 748.8 μmol ⋅ g-1 ⋅ h-1 and 93.1 % selectivity but also mitigates Cu-SAs clustering, maintaining stability over 7 days. This sustained high performance, despite the exceptionally high efficiency and selectivity in CH4 production, highlights the CuAu-SAPNPs-TiO2 overarching superior photocatalytic properties. Consequently, this work underscores the potential of tailored SAs-based systems for efficient and durable CO2 reduction by reshaping surface adsorption dynamics and optimizing the thermodynamic behavior of the SAs.
Collapse
Affiliation(s)
- Zhongkai Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shanhe Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongyun Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Di Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongjing Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Kuili Liu
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, 466001, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Dongbo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yong Lei
- School of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou, 466001, China
- Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau, 98693, Germany
| |
Collapse
|
3
|
Svensson R, Grönbeck H. Dynamics of Dilute Nanoalloy Catalysts. J Phys Chem Lett 2024; 15:7885-7891. [PMID: 39058634 PMCID: PMC11318031 DOI: 10.1021/acs.jpclett.4c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Capturing the dynamic character of metal nanoparticles under the reaction conditions is one of the major challenges within heterogeneous catalysis. The role of nanoparticle dynamics is particularly important for metal alloys as the surface composition responds sensitively to the gas environment. Here, a first-principles-based kinetic Monte Carlo method is developed to compare the dynamics of dilute PdAu alloy nanoparticles in inert and CO-rich atmospheres, corresponding to reaction conditions for catalyst deactivation and activation. CO influences the dynamics of the activation by facilitating the formation of vacancies and mobile Au-CO complexes, which are needed to obtain CO-stabilized Pd monomers on the surface. The structure of the catalyst and the location of the Pd monomers determine the rate of deactivation. The rate of catalyst deactivation is slow at low temperatures, which suggests that metastable structures determine the catalyst activity at typical operating conditions. The developed method is general and can be applied to a range of metal catalysts and reactions.
Collapse
Affiliation(s)
- Rasmus Svensson
- Department of Physics and
Competence Centre for Catalysis, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and
Competence Centre for Catalysis, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
4
|
Chaipornchalerm P, Nunthakitgoson W, Mano P, Kidkhunthod P, Montoya A, Namuangruk S, Wattanakit C. Rational Design of Fe Single Sites Supported on Hierarchical Zeolites via Atomic Layer Deposition for Few-Walled Carbon Nanotube Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33590-33600. [PMID: 38899403 DOI: 10.1021/acsami.4c06105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Metal single-site catalysts have recently played an essential role in catalysis due to their enhanced activity, selectivity, and precise reaction control compared to those of conventional metal cluster catalysts. However, the rational design and catalytic application of metal single-site catalysts are still in the early stages of development. In this contribution, we report the rational design of Fe single sites incorporated in a hierarchical ZSM-5 via atomic layer deposition (ALD). The designer catalysts demonstrated highly dispersed Fe species, predominantly stabilized by oxygen atoms in the zeolite framework at terminal, isolated, and vicinal silanol groups within the micropores and external surfaces of the zeolite. The successful incorporation of highly thermally stable and uniform Fe single sites into hierarchical zeolite through ALD represents a significant advancement in few-walled carbon nanotube production. The inner and outer diameters of produced CNTs are approximately 4.4 ± 2.4 and 8.6 ± 1.8 nm, respectively, notably smaller than those produced via traditional impregnated catalysts. This example emphasizes the concept of rational design of a single Fe site dispersed on a hierarchical ZSM-5 surface, which is anticipated to be a promising catalyst for advancing catalytic applications.
Collapse
Affiliation(s)
- Peeranat Chaipornchalerm
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Watinee Nunthakitgoson
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Poobodin Mano
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Pinit Kidkhunthod
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Alejandro Montoya
- School of Chemical and Bimolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Supawadee Namuangruk
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Chularat Wattanakit
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
5
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
6
|
Liu X, Wei Y, Fu Q, Shen X. Effect of Bystander Hydrogen Atoms on Hydrogen Desorption on Single-Atom Alloy Surfaces: Insights from Simulated Temperature-Programmed Desorption Spectra. J Phys Chem Lett 2024:5130-5136. [PMID: 38709226 DOI: 10.1021/acs.jpclett.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Single-atom alloy (SAA) catalysts exhibit unique and excellent catalytic properties in heterogeneous hydrogenation/dehydrogenation reactions. A thorough understanding of the microscopic surface processes is essential to improve the catalytic performance. Here, from a new perspective of the temperature-programmed desorption (TPD) spectra of hydrogen (H) on two common SAA surfaces, Pt@Cu(111) and Pd@Cu(111), we reveal and confirm the key influence of H atoms attached to Pt/Pd dopants, i.e., the H atom bystander, on the desorption process of surface H atoms. It is found that only after considering the effect of the H atom bystander can the simulated TPD spectra well reproduce the experimentally observed higher desorption temperature on Pt@Cu(111) than on Pd@Cu(111) and the leftward shift of the TPD peak with increasing H atom coverage; otherwise, the features are inconsistent with experiments. Our work provides direct evidence for the effect of bystander H atoms from a simulation perspective.
Collapse
Affiliation(s)
- Xiaojing Liu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
- School of Future Technology, University of Science and Technology of China, Hefei 230026, PR China
| | - Yongxue Wei
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei 230026, PR China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, PR China
| | - Xiangjian Shen
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
7
|
He C, Gong Y, Li S, Wu J, Lu Z, Li Q, Wang L, Wu S, Zhang J. Single-Atom Alloys Materials for CO 2 and CH 4 Catalytic Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311628. [PMID: 38181452 DOI: 10.1002/adma.202311628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/27/2023] [Indexed: 01/07/2024]
Abstract
The catalytic conversion of greenhouse gases CH4 and CO2 constitutes an effective approach for alleviating the greenhouse effect and generating valuable chemical products. However, the intricate molecular characteristics characterized by high symmetry and bond energies, coupled with the complexity of associated reactions, pose challenges for conventional catalysts to attain high activity, product selectivity, and enduring stability. Single-atom alloys (SAAs) materials, distinguished by their tunable composition and unique electronic structures, confer versatile physicochemical properties and modulable functionalities. In recent years, SAAs materials demonstrate pronounced advantages and expansive prospects in catalytic conversion of CH4 and CO2. This review begins by introducing the challenges entailed in catalytic conversion of CH4 and CO2 and the advantages offered by SAAs. Subsequently, the intricacies of synthesis strategies employed for SAAs are presented and characterization techniques and methodologies are introduced. The subsequent section furnishes a meticulous and inclusive overview of research endeavors concerning SAAs in CO2 catalytic conversion, CH4 conversion, and synergy CH4 and CO2 conversion. The particular emphasis is directed toward scrutinizing the intricate mechanisms underlying the influence of SAAs on reaction activity and product selectivity. Finally, insights are presented on the development and future challenges of SAAs in CH4 and CO2 conversion reactions.
Collapse
Affiliation(s)
- Chengxuan He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yalin Gong
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Songting Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jiaxin Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhaojun Lu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Qixin Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Shiqun Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Dimitratos N, Vilé G, Albonetti S, Cavani F, Fiorio J, López N, Rossi LM, Wojcieszak R. Strategies to improve hydrogen activation on gold catalysts. Nat Rev Chem 2024; 8:195-210. [PMID: 38396010 DOI: 10.1038/s41570-024-00578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/25/2024]
Abstract
Catalytic reactions involving molecular hydrogen are at the heart of many transformations in the chemical industry. Classically, hydrogenations are carried out on Pd, Pt, Ru or Ni catalysts. However, the use of supported Au catalysts has garnered attention in recent years owing to their exceptional selectivity in hydrogenation reactions. This is despite the limited understanding of the physicochemical aspects of hydrogen activation and reaction on Au surfaces. A rational design of new improved catalysts relies on making better use of the hydrogenating properties of Au. This Review analyses the strategies utilized to improve hydrogen-Au interactions, from addressing the importance of the Au particle size to exploring alternative mechanisms for H2 dissociation on Au cations and Au-ligand interfaces. These insights hold the potential to drive future applications of Au catalysis.
Collapse
Affiliation(s)
- Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Stefania Albonetti
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Fabrizio Cavani
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Jhonatan Fiorio
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Liane M Rossi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de catalyse et chimie du solide, Lille, France.
- Université de Lorraine and CNRS, L2CM UMR 7053, Nancy, France.
| |
Collapse
|
9
|
Zhang S, Wang R, Zhang X, Zhao H. Recent advances in single-atom alloys: preparation methods and applications in heterogeneous catalysis. RSC Adv 2024; 14:3936-3951. [PMID: 38288153 PMCID: PMC10823358 DOI: 10.1039/d3ra07029h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/05/2023] [Indexed: 01/31/2024] Open
Abstract
Single-atom alloys (SAAs) are a different type of alloy where a guest metal, usually a noble metal (e.g., Pt, Pd, and Ru), is atomically dispersed on a relatively more inert (e.g., Ag and Cu) host metal. As a type of atomic-scale catalyst, single-atom alloy catalysts have broad application prospects in the field of heterogeneous catalysis for hydrogenation, dehydrogenation, oxidation, and other reactions. Numerous experimental and characterization results and theoretical calculations have confirmed that the resultant electronic structure caused by charge transfer between the host metal and guest metal and the special geometric structure of the guest metal are responsible for the high selectivity and catalytic activity of SAA catalysts. In this review, the common methods for the preparation of single-atom alloys in recent years are introduced, including initial wet impregnation, physical vapor deposition, and laser ablation in liquid technique. Afterwards, the applications of single-atom alloy catalysts in selective hydrogenation, dehydrogenation, oxidation reactions, and hydrogenolysis reactions are emphatically reviewed. Finally, several challenges for the future development of SAA catalysts are proposed.
Collapse
Affiliation(s)
- Shuang Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Ruiying Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Xi Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 China
| | - Hua Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University Beijing 100048 China
| |
Collapse
|
10
|
Ahmed M, Wang C, Zhao Y, Sathish CI, Lei Z, Qiao L, Sun C, Wang S, Kennedy JV, Vinu A, Yi J. Bridging Together Theoretical and Experimental Perspectives in Single-Atom Alloys for Electrochemical Ammonia Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2308084. [PMID: 38243883 DOI: 10.1002/smll.202308084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Indexed: 01/22/2024]
Abstract
Ammonia is an essential commodity in the food and chemical industry. Despite the energy-intensive nature, the Haber-Bosch process is the only player in ammonia production at large scales. Developing other strategies is highly desirable, as sustainable and decentralized ammonia production is crucial. Electrochemical ammonia production by directly reducing nitrogen and nitrogen-based moieties powered by renewable energy sources holds great potential. However, low ammonia production and selectivity rates hamper its utilization as a large-scale ammonia production process. Creating effective and selective catalysts for the electrochemical generation of ammonia is critical for long-term nitrogen fixation. Single-atom alloys (SAAs) have become a new class of materials with distinctive features that may be able to solve some of the problems with conventional heterogeneous catalysts. The design and optimization of SAAs for electrochemical ammonia generation have recently been significantly advanced. This comprehensive review discusses these advancements from theoretical and experimental research perspectives, offering a fundamental understanding of the development of SAAs for ammonia production.
Collapse
Affiliation(s)
- MuhammadIbrar Ahmed
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cheng Wang
- CSIRO Energy Centre, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Yong Zhao
- CSIRO Energy Centre, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - C I Sathish
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Liang Qiao
- University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chenghua Sun
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - John V Kennedy
- National Isotope Centre, GNS Science, P.O. Box 31312, Lower Hutt, 5010, New Zealand
| | - Ajayan Vinu
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
11
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
12
|
Li J, Suo W, Huang Y, Chen M, Ma H, Liu C, Zhang H, Liang K, Dong Z. Mesoporous α-Al 2O 3-supported PdCu bimetallic nanoparticle catalyst for the selective semi-hydrogenation of alkynes. J Colloid Interface Sci 2023; 652:1053-1062. [PMID: 37639927 DOI: 10.1016/j.jcis.2023.08.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
The selective hydrogenation of alkynes to alkenes is widely applied in the chemical industry; nevertheless, achieving highly selective hydrogenation with high catalytic activity is considerably challenging. Herein, ultrafine PdCu bimetallic nanoparticles encapsulated by high-surface-area mesoporous α-Al2O3 were prepared by high-temperature calcination-reduction using a porous organic framework (POF) as the template. As-obtained PdCu@α-Al2O3 exhibited a high selectivity of 95% for the semi-hydrogenation of phenylacetylene as a probe reaction under mild reaction conditions. The separation of continuous Pd atoms and modification of the Pd electronic state by Cu atoms suppressed β-hydride formation and alkene adsorption, contributing to high selectivity for the catalytic hydrogenation of alkynes. The catalytic activity was maintained after 7 cycles due to the strong interaction between the PdCu bimetallic nanoparticles and α-Al2O3 as well as the encapsulation effect of mesoporous α-Al2O3. Thus, the current work provides a facile strategy for fabricating high-surface-area mesoporous α-Al2O3-supported catalysts for industrial catalysis applications.
Collapse
Affiliation(s)
- Jianfeng Li
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wenli Suo
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Yuena Huang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Minglin Chen
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Haowen Ma
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Chuang Liu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Huan Zhang
- Lanzhou Petrochemical Company, PetroChina Company Limited, Lanzhou 730060, PR China
| | - Kun Liang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
13
|
Yu Y, He Y, Yan P, Wang S, Dong F. Boosted C-C coupling with Cu-Ag alloy sub-nanoclusters for CO 2-to-C 2H 4 photosynthesis. Proc Natl Acad Sci U S A 2023; 120:e2307320120. [PMID: 37871220 PMCID: PMC10622893 DOI: 10.1073/pnas.2307320120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/07/2023] [Indexed: 10/25/2023] Open
Abstract
The selective photocatalytic conversion of CO2 and H2O to high value-added C2H4 remains a great challenge, mainly attributed to the difficulties in C-C coupling of reaction intermediates and desorption of C2H4* intermediates from the catalyst surface. These two key issues can be simultaneously overcome by alloying Ag with Cu which gives enhanced activity to both reactions. Herein, we developed a facile stepwise photodeposition strategy to load Cu-Ag alloy sub-nanoclusters (ASNCs) on TiO2 for CO2 photoreduction to produce C2H4. The optimized catalyst exhibits a record-high C2H4 formation rate (1110.6 ± 82.5 μmol g-1 h-1) with selectivity of 49.1 ± 1.9%, which is an order-of-magnitude enhancement relative to current work for C2H4 photosynthesis. The in situ FT-IR spectra combined with DFT calculations reveal the synergistic effect of Cu and Ag in Cu-Ag ASNCs, which enable an excellent C-C coupling capability like Ag and promoted C2H4* desorption property like Cu, thus advancing the selective and efficient production of C2H4. The present work provides a deeper understanding on cluster chemistry and C-C coupling mechanism for CO2 reduction on ASNCs and develops a feasible strategy for photoreduction CO2 to C2 fuels or industrial feedstocks.
Collapse
Affiliation(s)
- Yangyang Yu
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou313000, China
| | - Ye He
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Ping Yan
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan430070, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou313000, China
| |
Collapse
|
14
|
Hanson MD, Simpson SM. Geometric and Electronic Effects in the Binding Affinity of Imidazole-Based N-Heterocyclic Carbenes to Cu(100)- and Ag(100)-Based Pd and Pt Single-Atom Alloy Surfaces. ACS OMEGA 2023; 8:37402-37412. [PMID: 37841151 PMCID: PMC10568601 DOI: 10.1021/acsomega.3c05376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
We have conducted nonlocal periodic density functional theory (DFT) calculations of N-heterocyclic carbenes (NHCs) adsorbed to Pd/Cu(100), Pt/Cu(100), Pd/Ag(100), and Pt/Ag(100) single atom alloys (SAAs) utilizing the nonlocal optPBE-vdW functional. NHCs with electron donating groups (EDGs) are predicted to bind more strongly to the SAA surface compared to NHCs functionalized with electron withdrawing groups (EWGs). Our calculations show that NHCs typically bind to SAA geometries containing a small space between the heteroatom sites for the SAAs considered. Generally, this pattern is predicted to persist for a single NHCs or for a pair of NHCs bound to the SAA surfaces. Approximate linear relationships between NMR-based parameters and NHC-SAA binding energies are uncovered. We predict that the binding of NHCs to SAA surfaces is composition-dependent and heteroatom geometry dependent.
Collapse
Affiliation(s)
- Matthew D. Hanson
- Department
of Chemistry, Le Moyne College, Syracuse, New York 13214, United States
| | - Scott M. Simpson
- Department
of Chemistry, St. Bonaventure University, St. Bonaventure, New York 14778, United States
| |
Collapse
|
15
|
Kong X, Wu H, Lu K, Zhang X, Zhu Y, Lei H. Galvanic Replacement Reaction: Enabling the Creation of Active Catalytic Structures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41205-41223. [PMID: 37638534 DOI: 10.1021/acsami.3c08922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The galvanic replacement reaction (GRR) is recognized as a redox process where one metal undergoes oxidation by the ions of another metal possessing a higher reduction potential. This reaction takes place at the interface between a substrate and a solution containing metal ions. Utilizing metal or metal oxide as sacrificial templates enables the synthesis of metallic nanoparticles, oxide-metal composites, and mixed oxides through GRR. Growing evidence showed that GRR has a direct impact on surface structures and properties. This has generated significant interest in catalysis and opened up new horizons for the application of GRR in energy and chemical transformations. This review provides a comprehensive overview of the synthetic strategies utilizing GRR for the creation of catalytically active structures. It discusses the formation of alloys, intermetallic compounds, single atom alloys, metal-oxide composites, and mixed metal oxides with diverse nanostructures. Additionally, GRR serves as a postsynthesis method to modulate metal-oxide interfaces through the replacement of oxide domains. The review also outlines potential future directions in this field.
Collapse
Affiliation(s)
- Xiao Kong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Hao Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Kun Lu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Xinyi Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, P. R. China
| | - Yifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hanwu Lei
- Department of Biological Systems Engineering, Washington State University, Richland, Washington 99354, United States
| |
Collapse
|
16
|
Bunting RJ, Wodaczek F, Torabi T, Cheng B. Reactivity of Single-Atom Alloy Nanoparticles: Modeling the Dehydrogenation of Propane. J Am Chem Soc 2023. [PMID: 37390457 DOI: 10.1021/jacs.3c04030] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Physical catalysts often have multiple sites where reactions can take place. One prominent example is single-atom alloys, where the reactive dopant atoms can preferentially locate in the bulk or at different sites on the surface of the nanoparticle. However, ab initio modeling of catalysts usually only considers one site of the catalyst, neglecting the effects of multiple sites. Here, nanoparticles of copper doped with single-atom rhodium or palladium are modeled for the dehydrogenation of propane. Single-atom alloy nanoparticles are simulated at 400-600 K, using machine learning potentials trained on density functional theory calculations, and then the occupation of different single-atom active sites is identified using a similarity kernel. Further, the turnover frequency for all possible sites is calculated for propane dehydrogenation to propene through microkinetic modeling using density functional theory calculations. The total turnover frequencies of the whole nanoparticle are then described from both the population and the individual turnover frequency of each site. Under operating conditions, rhodium as a dopant is found to almost exclusively occupy (111) surface sites while palladium as a dopant occupies a greater variety of facets. Undercoordinated dopant surface sites are found to tend to be more reactive for propane dehydrogenation compared to the (111) surface. It is found that considering the dynamics of the single-atom alloy nanoparticle has a profound effect on the calculated catalytic activity of single-atom alloys by several orders of magnitude.
Collapse
Affiliation(s)
- Rhys J Bunting
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Felix Wodaczek
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tina Torabi
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Bingqing Cheng
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
17
|
Wu X, Nazemi M, Gupta S, Chismar A, Hong K, Jacobs H, Zhang W, Rigby K, Hedtke T, Wang Q, Stavitski E, Wong MS, Muhich C, Kim JH. Contrasting Capability of Single Atom Palladium for Thermocatalytic versus Electrocatalytic Nitrate Reduction Reaction. ACS Catal 2023; 13:6804-6812. [PMID: 37234352 PMCID: PMC10208376 DOI: 10.1021/acscatal.3c01285] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Indexed: 05/27/2023]
Abstract
The occurrence of high concentrations of nitrate in various water resources is a significant environmental and human health threat, demanding effective removal technologies. Single atom alloys (SAAs) have emerged as a promising bimetallic material architecture in various thermocatalytic and electrocatalytic schemes including nitrate reduction reaction (NRR). This study suggests that there exists a stark contrast between thermocatalytic (T-NRR) and electrocatalytic (E-NRR) pathways that resulted in dramatic differences in SAA performances. Among Pd/Cu nanoalloys with varying Pd-Cu ratios from 1:100 to 100:1, Pd/Cu(1:100) SAA exhibited the greatest activity (TOFPd = 2 min-1) and highest N2 selectivity (94%) for E-NRR, while the same SAA performed poorly for T-NRR as compared to other nanoalloy counterparts. DFT calculations demonstrate that the improved performance and N2 selectivity of Pd/Cu(1:100) in E-NRR compared to T-NRR originate from the higher stability of NO3* in electrocatalysis and a lower N2 formation barrier than NH due to localized pH effects and the ability to extract protons from water. This study establishes the performance and mechanistic differences of SAA and nanoalloys for T-NRR versus E-NRR.
Collapse
Affiliation(s)
- Xuanhao Wu
- Department
of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mohammadreza Nazemi
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Srishti Gupta
- School
for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Adam Chismar
- School
for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Kiheon Hong
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Hunter Jacobs
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Wenqing Zhang
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Kali Rigby
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Tayler Hedtke
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Qingxiao Wang
- Imaging
and Characterization Core Lab, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Eli Stavitski
- National
Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael S. Wong
- Department
of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Christopher Muhich
- School
for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
18
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
19
|
Islam MJ, Granollers Mesa M, Osatiashtiani A, Taylor MJ, Isaacs MA, Kyriakou G. The Hydrogenation of Crotonaldehyde on PdCu Single Atom Alloy Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1434. [PMID: 37111019 PMCID: PMC10146904 DOI: 10.3390/nano13081434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Recyclable PdCu single atom alloys supported on Al2O3 were applied to the selective hydrogenation of crotonaldehyde to elucidate the minimum number of Pd atoms required to facilitate the sustainable transformation of an α,β-unsaturated carbonyl molecule. It was found that, by diluting the Pd content of the alloy, the reaction activity of Cu nanoparticles can be accelerated, enabling more time for the cascade conversion of butanal to butanol. In addition, a significant increase in the conversion rate was observed, compared to bulk Cu/Al2O3 and Pd/Al2O3 catalysts when normalising for Cu and Pd content, respectively. The reaction selectivity over the single atom alloy catalysts was found to be primarily controlled by the Cu host surface, mainly leading to the formation of butanal but at a significantly higher rate than the monometallic Cu catalyst. Low quantities of crotyl alcohol were observed over all Cu-based catalysts but not for the Pd monometallic catalyst, suggesting that it may be a transient species converted immediately to butanol and or isomerized to butanal. These results demonstrate that fine-tuning the dilution of PdCu single atom alloy catalysts can leverage the activity and selectivity enhancement, and lead to cost-effective, sustainable, and atom-efficient alternatives to monometallic catalysts.
Collapse
Affiliation(s)
- Mohammed J. Islam
- Energy & Bioproducts Research Institute (EBRI), College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (M.J.I.); (A.O.)
| | - Marta Granollers Mesa
- Energy & Bioproducts Research Institute (EBRI), College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (M.J.I.); (A.O.)
| | - Amin Osatiashtiani
- Energy & Bioproducts Research Institute (EBRI), College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (M.J.I.); (A.O.)
| | - Martin J. Taylor
- School of Engineering, Chemical Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| | - Mark A. Isaacs
- Department of Chemistry, University College London, London WC1H 0AJ, UK;
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
| | - Georgios Kyriakou
- Energy & Bioproducts Research Institute (EBRI), College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (M.J.I.); (A.O.)
- Department of Chemical Engineering, University of Patras, Caratheodory 1, 265 04 Patras, Greece
| |
Collapse
|
20
|
Bai JQ, Xu J, Ma M, Liu H, Cai M, Cheng Q, Wei Y, Guo L, Chen F, Chen J, Sun S. Efficient Ni Ir alloy catalyst for selective hydrogenation of benzonitrile, crotonaldehyde and benzylideneacetone. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
21
|
Gates BC, Katz A, Liu J. Nested Metal Catalysts: Metal Atoms and Clusters Stabilized by Confinement with Accessibility on Supports. PRECISION CHEMISTRY 2023; 1:3-13. [PMID: 37025973 PMCID: PMC10069032 DOI: 10.1021/prechem.2c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 02/17/2023]
Abstract
Supported catalysts that are important in technology prominently include atomically dispersed metals and metal clusters. When the metals are noble, they are typically unstable-susceptible to sintering-especially under reducing conditions. Embedding the metals in supports such as organic polymers, metal oxides, and zeolites confers stability on the metals but at the cost of catalytic activity associated with the lack of accessibility of metal bonding sites to reactants. An approach to stabilizing noble metal catalysts while maintaining their accessibility involves anchoring them in molecular-scale nests that are in or on supports. The nests include zeolite pore mouths, zeolite surface cups (half-cages), raft-like islands of oxophilic metals bonded to metal oxide supports, clusters of non-noble metals (e.g., hosting noble metals as single-atom alloys), and nanoscale metal oxide islands that selectively bond to the catalytic metals, isolating them from the support. These examples illustrate a trend toward precision in the synthesis of solid catalysts, and the latter two classes of nested catalysts offer realistic prospects for economical large-scale application.
Collapse
Affiliation(s)
- Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, Davis, California 95616, United States
| | - Alexander Katz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jingyue Liu
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
22
|
Swamy A, Kanakikodi KS, Bakuru VR, Kulkarni BB, Maradur SP, Kalidindi SB. Continuous Flow Liquid‐Phase Semihydrogenation of Phenylacetylene over Pd Nanoparticles Supported on UiO‐66(Hf) Metal‐Organic Framework. ChemistrySelect 2023. [DOI: 10.1002/slct.202203926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Akkenapally Swamy
- Department of Chemistry School of Chemistry Andhra University Visakhapatnam India- 530003
| | - Kempanna S. Kanakikodi
- Materials Science & Catalysis Division Poornaprajna Institute of Scientific Research (PPISR) Bidalur Post, Devanahalli Bangalore 562164, Karnataka State India
- Graduate studies Manipal Academy of Higher Education Manipal 576104, Karnataka India
| | - Vasudeva Rao Bakuru
- Materials Science & Catalysis Division Poornaprajna Institute of Scientific Research (PPISR) Bidalur Post, Devanahalli Bangalore 562164, Karnataka State India
| | - Bhavana B. Kulkarni
- Materials Science & Catalysis Division Poornaprajna Institute of Scientific Research (PPISR) Bidalur Post, Devanahalli Bangalore 562164, Karnataka State India
| | - Sanjeev P. Maradur
- Materials Science & Catalysis Division Poornaprajna Institute of Scientific Research (PPISR) Bidalur Post, Devanahalli Bangalore 562164, Karnataka State India
| | - Suresh Babu Kalidindi
- Department of Chemistry School of Chemistry Andhra University Visakhapatnam India- 530003
- Central Tribal University of Andhra Pradesh AU PG Centre, Kondakarakam Village Cantonment Area Vizianagaram (AP) 535003 INDIA
| |
Collapse
|
23
|
Jing W, Shen H, Qin R, Wu Q, Liu K, Zheng N. Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chem Rev 2022; 123:5948-6002. [PMID: 36574336 DOI: 10.1021/acs.chemrev.2c00569] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The surface and interface coordination structures of heterogeneous metal catalysts are crucial to their catalytic performance. However, the complicated surface and interface structures of heterogeneous catalysts make it challenging to identify the molecular-level structure of their active sites and thus precisely control their performance. To address this challenge, atomically dispersed metal catalysts (ADMCs) and ligand-protected atomically precise metal clusters (APMCs) have been emerging as two important classes of model heterogeneous catalysts in recent years, helping to build bridge between homogeneous and heterogeneous catalysis. This review illustrates how the surface and interface coordination chemistry of these two types of model catalysts determines the catalytic performance from multiple dimensions. The section of ADMCs starts with the local coordination structure of metal sites at the metal-support interface, and then focuses on the effects of coordinating atoms, including their basicity and hardness/softness. Studies are also summarized to discuss the cooperativity achieved by dual metal sites and remote effects. In the section of APMCs, the roles of surface ligands and supports in determining the catalytic activity, selectivity, and stability of APMCs are illustrated. Finally, some personal perspectives on the further development of surface coordination and interface chemistry for model heterogeneous metal catalysts are presented.
Collapse
Affiliation(s)
- Wentong Jing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixuan Qin
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qingyuan Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Kunlong Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and National & Local Joint Engineering Research Center for Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
24
|
Han T, Li Y, Cao Y, Lee I, Zhou X, Frenkel AI, Zaera F. In situ identification of surface sites in Cu-Pt bimetallic catalysts: Gas-induced metal segregation. J Chem Phys 2022; 157:234706. [PMID: 36550054 DOI: 10.1063/5.0130431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The effect of gases on the surface composition of Cu-Pt bimetallic catalysts has been tested by in situ infrared (IR) and x-ray absorption spectroscopies. Diffusion of Pt atoms within the Cu-Pt nanoparticles was observed both in vacuum and under gaseous atmospheres. Vacuum IR spectra of CO adsorbed on CuPtx/SBA-15 catalysts (x = 0-∞) at 125 K showed no bonding on Pt regardless of Pt content, but reversible Pt segregation to the surface was seen with the high-Pt-content (x ≥ 0.2) samples upon heating to 225 K. In situ IR spectra in CO atmospheres also highlighted the reversible segregation of Pt to the surface and its diffusion back into the bulk when cycling the temperature from 295 to 495 K and back, most evidently for diluted single-atom alloy catalysts (x ≤ 0.01). Similar behavior was possibly observed under H2 using small amounts of CO as a probe molecule. In situ x-ray absorption near-edge structure data obtained for CuPt0.2/SBA-15 under both CO and He pointed to the metallic nature of the Pt atoms irrespective of gas or temperature, but analysis of the extended x-ray absorption fine structure identified a change in coordination environment around the Pt atoms, from a (Pt-Cu):(Pt-Pt) coordination number ratio of ∼6:6 at or below 445 K to 8:4 at 495 K. The main conclusion is that Cu-Pt bimetallic catalysts are dynamic, with the composition of their surfaces being dependent on temperature in gaseous environments.
Collapse
Affiliation(s)
- Tongxin Han
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, USA
| | - Yuanyuan Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ilkeun Lee
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, USA
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, USA
| |
Collapse
|
25
|
Wang LC, Chang LC, Chen WQ, Chien YH, Chang PY, Pao CW, Liu YF, Sheu HS, Su WP, Yeh CH, Yeh CS. Atomically dispersed golds on degradable zero-valent copper nanocubes augment oxygen driven Fenton-like reaction for effective orthotopic tumor therapy. Nat Commun 2022; 13:7772. [PMID: 36522345 PMCID: PMC9755215 DOI: 10.1038/s41467-022-35515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
Herein, we employ a galvanic replacement approach to create atomically dispersed Au on degradable zero-valent Cu nanocubes for tumor treatments on female mice. Controlling the addition of precursor HAuCl4 allows for the fabrication of different atomic ratios of AuxCuy. X-ray absorption near edge spectra indicates that Au and Cu are the predominant oxidation states of zero valence. This suggests that the charges of Au and Cu remain unchanged after galvanic replacement. Specifically, Au0.02Cu0.98 composition reveals the enhanced •OH generation following O2 → H2O2 → •OH. The degradable Au0.02Cu0.98 released Cu+ and Cu2+ resulting in oxygen reduction and Fenton-like reactions. Simulation studies indicate that Au single atoms boot zero-valent copper to reveal the catalytic capability of Au0.02Cu0.98 for O2 → H2O2 → •OH as well. Instead of using endogenous H2O2, H2O2 can be sourced from the O2 in the air through the use of nanocubes. Notably, the Au0.02Cu0.98 structure is degradable and renal-clearable.
Collapse
Affiliation(s)
- Liu-Chun Wang
- grid.64523.360000 0004 0532 3255Department of Chemistry, National Cheng Kung University, Tainan, 701 Taiwan
| | - Li-Chan Chang
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704 Taiwan
| | - Wen-Qi Chen
- grid.64523.360000 0004 0532 3255Department of Chemistry, National Cheng Kung University, Tainan, 701 Taiwan
| | - Yi-Hsin Chien
- grid.411298.70000 0001 2175 4846Department of Materials Science and Engineering, Feng Chia University, Taichung, 40724 Taiwan
| | - Po-Ya Chang
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Chih-Wen Pao
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Yin-Fen Liu
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704 Taiwan
| | - Hwo-Shuenn Sheu
- grid.410766.20000 0001 0749 1496National Synchrotron Radiation Research Center, Hsinchu, 30076 Taiwan
| | - Wen-Pin Su
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 704 Taiwan ,grid.64523.360000 0004 0532 3255Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704 Taiwan
| | - Chen-Hao Yeh
- grid.411298.70000 0001 2175 4846Department of Materials Science and Engineering, Feng Chia University, Taichung, 40724 Taiwan
| | - Chen-Sheng Yeh
- grid.64523.360000 0004 0532 3255Department of Chemistry, National Cheng Kung University, Tainan, 701 Taiwan
| |
Collapse
|
26
|
Electrocatalytic Reduction of CO2 to C1 Compounds by Zn-Based Monatomic Alloys: A DFT Calculation. Catalysts 2022. [DOI: 10.3390/catal12121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Electrocatalytic reduction of carbon dioxide to produce usable products and fuels such as alkanes, alkenes, and alcohols, is a very promising strategy. Recent experiments have witnessed great advances in precisely controlling the synthesis of single atom alloys (SAAs), which exhibit unique catalytic properties different from alloys and nanoparticles. However, only certain precious metals, such as Pd or Au, can achieve this transformation. Here, the density functional theory (DFT) calculations were performed to show that Zn-based SAAs are promising electrocatalysts for the reduction of CO2 to C1 hydrocarbons. We assume that CO2 reduction in Zn-based SAAs follows a two-step continuous reaction: first Zn reduces CO2 to CO, and then newly generated CO is captured by M and further reduced to C1 products such as methane or methanol. This work screens seven stable alloys from 16 SAAs (M = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, V, Mo, Ti, Cr). Among them, Pd@Zn (101) and Cu@Zn (101) are promising catalysts for CO2 reduction. The reaction mechanisms of these two SAAs are discussed in detail. Both of them convert CO2 into methane via the same pathway. They are reduced by the pathway: *CO2 → *COOH → *CO + H2O; *CO → *CHO → *CH2O → *CH3O → *O + CH4 → *OH + CH4 → H2O + CH4. However, their potential determination steps are different, i.e., *CO2 → *COOH (ΔG = 0.70 eV) for Cu@Zn (101) and *CO → *CHO (ΔG = 0.72 eV) for Pd@Zn, respectively. This suggests that Zn-based SAAs can reduce CO2 to methane with a small overpotential. The solvation effect is simulated by the implicit solvation model, and it is found that H2O is beneficial to CO2 reduction. These computational results show an effective monatomic material to form hydrocarbons, which can stimulate experimental efforts to explore the use of SAAs to catalyze CO2 electrochemical reduction to hydrocarbons.
Collapse
|
27
|
Ngan HT, Yan G, van der Hoeven JES, Madix RJ, Friend CM, Sautet P. Hydrogen Dissociation Controls 1-Hexyne Selective Hydrogenation on Dilute Pd-in-Au Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - George Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Jessi E. S. van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Robert J. Madix
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
28
|
Nayakasinghe MT, Ponce Perez R, Chen B, Takeuchi N, Zaera F. Adsorption, thermal conversion, and catalytic hydrogenation of acrolein on Cu surfaces. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Lee JD, Qi Z, Foucher AC, Ngan HT, Dennis K, Cui J, Sadykov II, Crumlin EJ, Sautet P, Stach EA, Friend CM, Madix RJ, Biener J. Facilitating Hydrogen Dissociation over Dilute Nanoporous Ti-Cu Catalysts. J Am Chem Soc 2022; 144:16778-16791. [PMID: 36054824 DOI: 10.1021/jacs.2c00830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dissociation of H2 is an essential elementary step in many industrial chemical transformations, typically requiring precious metals. Here, we report a hierarchical nanoporous Cu catalyst doped with small amounts of Ti (npTiCu) that increases the rate of H2-D2 exchange by approximately one order of magnitude compared to the undoped nanoporous Cu (npCu) catalyst. The promotional effect of Ti was measured via steady-state H2-D2 exchange reaction experiments under atmospheric pressure flow conditions in the temperature range of 300-573 K. Pretreatment with flowing H2 is required for stable catalytic performance, and two temperatures, 523 and 673 K, were investigated. The experimentally determined H2-D2 exchange rate is 5-7 times greater for npTiCu vs the undoped Cu material under optimized pretreatment and reaction temperatures. The H2 pretreatment leads to full reduction of Cu oxide and partial reduction of surface Ti oxide species present in the as-prepared catalyst as demonstrated using in situ ambient pressure X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The apparent activation energies and pre-exponential factors measured for H2-D2 exchange are substantially different for Ti-doped vs undoped npCu catalysts. Density functional theory calculations suggest that isolated, metallic Ti atoms on the surface of the Cu host can act as the active surface sites for hydrogen recombination. The increase in the rate of exchange above that of pure Cu is caused primarily by a shift in the rate-determining step from dissociative adsorption on Cu to H/D atom recombination on Ti-doped Cu, with the corresponding decrease in activation entropy that it produces.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Zhen Qi
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Kevin Dennis
- Division of Materials Science & Engineering, Ames Laboratory, Ames, Iowa 50010, United States
| | - Jun Cui
- Division of Materials Science & Engineering, Ames Laboratory, Ames, Iowa 50010, United States
| | | | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
30
|
Liu S, Li Y, Yu X, Han S, Zhou Y, Yang Y, Zhang H, Jiang Z, Zhu C, Li WX, Wöll C, Wang Y, Shen W. Tuning crystal-phase of bimetallic single-nanoparticle for catalytic hydrogenation. Nat Commun 2022; 13:4559. [PMID: 35931670 PMCID: PMC9355964 DOI: 10.1038/s41467-022-32274-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
Bimetallic nanoparticles afford geometric variation and electron redistribution via strong metal-metal interactions that substantially promote the activity and selectivity in catalysis. Quantitatively describing the atomic configuration of the catalytically active sites, however, is experimentally challenged by the averaging ensemble effect that is caused by the interplay between particle size and crystal-phase at elevated temperatures and under reactive gases. Here, we report that the intrinsic activity of the body-centered cubic PdCu nanoparticle, for acetylene hydrogenation, is one order of magnitude greater than that of the face-centered cubic one. This finding is based on precisely identifying the atomic structures of the active sites over the same-sized but crystal-phase-varied single-particles. The densely-populated Pd-Cu bond on the chemically ordered nanoparticle possesses isolated Pd site with a lower coordination number and a high-lying valence d-band center, and thus greatly expedites the dissociation of H2 over Pd atom and efficiently accommodates the activated H atoms on the particle top/subsurfaces.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Xiaojuan Yu
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yan Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuqi Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Hao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.
| | - Chuwei Zhu
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Wei-Xue Li
- School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
31
|
Chen W, Bao Z, Zhou Z. Selective hydrogenation of phenylacetylene over non-precious bimetallic Ni–Zn/SiO2 and Ni–Co/SiO2 catalysts prepared by glucose pyrolysis. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Single-atom catalysts for thermochemical gas-phase reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Surface engineering improving selective hydrogenation of p-chloronitrobenzene over AuPt alloy/SnNb2O6 ultrathin nanosheets under visible light. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Hong W, Swann WA, Yadav V, Li CW. Haptophilicity and Substrate-Directed Reactivity in Diastereoselective Heterogeneous Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Hong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - William A. Swann
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vamakshi Yadav
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina W. Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
35
|
Liu H, Li Y, Djitcheu X, Liu L. Recent advances in single-atom catalysts for thermally driven reactions. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Fabrication and catalytic properties of “cage like” aryl imine Pd(II)/Cu(II)-bimetallic catalytic monolayer supported on graphene oxide for Suzuki coupling reaction. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Lee JD, Miller JB, Shneidman AV, Sun L, Weaver JF, Aizenberg J, Biener J, Boscoboinik JA, Foucher AC, Frenkel AI, van der Hoeven JES, Kozinsky B, Marcella N, Montemore MM, Ngan HT, O'Connor CR, Owen CJ, Stacchiola DJ, Stach EA, Madix RJ, Sautet P, Friend CM. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chem Rev 2022; 122:8758-8808. [PMID: 35254051 DOI: 10.1021/acs.chemrev.1c00967] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jeffrey B Miller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
38
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
39
|
Li J, Yue MF, Wei YM, Li JF. Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Oberhauser W, Frediani M, Mohammadi Dehcheshmeh I, Evangelisti C, Poggini L, Capozzoli L, Najafi Moghadam P. Selective Alkyne Semi‐Hydrogenation by PdCu Nanoparticles Immobilized on Stereocomplexed Poly(lactic acid). ChemCatChem 2022. [DOI: 10.1002/cctc.202101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Werner Oberhauser
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Marco Frediani
- Department of Chemistry University of Florence Via della Lastruccia, 3–13 50019 Sesto Fiorentino Italy
| | - Iman Mohammadi Dehcheshmeh
- Department of Chemistry University of Florence Via della Lastruccia, 3–13 50019 Sesto Fiorentino Italy
- Department of Organic Chemistry Faculty of Chemistry Urmia University 57153-165 Urmia Iran
| | - Claudio Evangelisti
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) U.O.S. di Pisa Via Moruzzi 1 56124 Pisa Italy
| | - Lorenzo Poggini
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Laura Capozzoli
- Istituto di Chimica dei Composti Organometallici (CNR-ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino Italy
| | - Peyman Najafi Moghadam
- Department of Organic Chemistry Faculty of Chemistry Urmia University 57153-165 Urmia Iran
| |
Collapse
|
41
|
Xu Z, Ao Z, Yang M, Wang S. Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127427. [PMID: 34678562 DOI: 10.1016/j.jhazmat.2021.127427] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 05/14/2023]
Abstract
Heterogeneous catalysts have made outstanding advancements in pollutants elimination as well as energy and materials production over the past decades. Single-atom alloys (SAAs) are novel environmental catalysts prepared by dispersing single metal atoms on other metals. Integrating the advantages of single atom and alloys, SAAs can maximize atom utilization, reduce the use of noble metals and enhance catalytic performances. The synergistic, electronic and geometric effects of SAAs are effective to modulate the activation energy and adsorption strength, consequently breaking linear scaling relationship as well as offering an excellent catalytic activity and selectivity. Moreover, SAAs possess clear atomic structure, active sites and reaction mechanisms, providing an opportunity to tailor catalytic properties and develop effective environmental catalysts. In this review, we provide the recent progress on synthetic strategies, catalytic properties and catalyst design of SAAs. Furthermore, the applications of SAAs in environmental catalysis are introduced towards catalytic conversion and elimination of different air pollutants in many important reactions including (electrochemical) oxidation of volatile organic compounds (VOCs), dehydrogenation of VOCs, CO2 conversion, NOx reduction, CO oxidation, SO3 decomposition, etc. Finally, challenges and opportunities of SAAs in a broad environmental field are proposed.
Collapse
Affiliation(s)
- Zhiling Xu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; SINOPEC Maoming Petrochemical Company, Maoming 525011, China
| | - Zhimin Ao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mei Yang
- SINOPEC Maoming Petrochemical Company, Maoming 525011, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
42
|
Xu J, Gao D, Yu H, Wang P, Zhu B, Wang L, Fan J. Palladium-copper nanodot as novel H2-evolution cocatalyst: Optimizing interfacial hydrogen desorption for highly efficient photocatalytic activity. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63830-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
44
|
Osada W, Tanaka S, Mukai K, Kawamura M, Choi Y, Ozaki F, Ozaki T, Yoshinobu J. Elucidation of the atomic-scale processes of dissociative adsorption and spillover of hydrogen on the single atom alloy catalyst Pd/Cu(111). Phys Chem Chem Phys 2022; 24:21705-21713. [DOI: 10.1039/d2cp01652d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen spillover is a crucial process in the selective hydrogenation reactions on Pd/Cu single atom alloy catalysts. In this study, we report the atomic-scale perspective of these processes on the...
Collapse
|
45
|
Influence of Pd deposition pH value on the performance of Pd-CuO/SiO2 catalyst for semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Highly Enhanced Catalytic Stability of Copper by the Synergistic Effect of Porous Hierarchy and Alloying for Selective Hydrogenation Reaction. Catalysts 2021. [DOI: 10.3390/catal12010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Supported copper has a great potential for replacing the commercial palladium-based catalysts in the field of selective alkynes/alkadienes hydrogenation due to its excellent alkene selectivity and relatively high activity. However, fatally, it has a low catalytic stability owing to the rapid oligomerization of alkenes on the copper surface. In this study, 2.5 wt% Cu catalysts with various Cu:Zn ratios and supported on hierarchically porous alumina (HA) were designed and synthesized by deposition–precipitation with urea. Macropores (with diameters of 1 μm) and mesopores (with diameters of 3.5 nm) were introduced by the hydrolysis of metal alkoxides. After in situ activation at 350 °C, the catalytic stability of Cu was highly enhanced, with a limited effect on the catalytic activity and alkene selectivity. The time needed for losing 10% butadiene conversion for Cu1Zn3/HA was ~40 h, which is 20 times higher than that found for Cu/HA (~2 h), and 160 times higher than that found for Cu/bulky alumina (0.25 h). It was found that this type of enhancement in catalytic stability was mainly due to the rapid mass transportation in hierarchically porous structure (i.e., four times higher than that in bulky commercial alumina) and the well-dispersed copper active site modified by Zn, with identification by STEM–HAADF coupled with EDX. This study offers a universal way to optimize the catalytic stability of selective hydrogenation reactions.
Collapse
|
47
|
|
48
|
Anand S, Pinheiro D, Sunaja Devi KR. Recent Advances in Hydrogenation Reactions Using Bimetallic Nanocatalysts: A Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Samika Anand
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| | - Dephan Pinheiro
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| | - K. R. Sunaja Devi
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 Karnataka India
| |
Collapse
|
49
|
Single-Atom Catalysts: A Review of Synthesis Strategies and Their Potential for Biofuel Production. Catalysts 2021. [DOI: 10.3390/catal11121470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biofuels have been derived from various feedstocks by using thermochemical or biochemical procedures. In order to synthesise liquid and gas biofuel efficiently, single-atom catalysts (SACs) and single-atom alloys (SAAs) have been used in the reaction to promote it. SACs are made up of single metal atoms that are anchored or confined to a suitable support to keep them stable, while SAAs are materials generated by bi- and multi-metallic complexes, where one of these metals is atomically distributed in such a material. The structure of SACs and SAAs influences their catalytic performance. The challenge to practically using SACs in biofuel production is to design SACs and SAAs that are stable and able to operate efficiently during reaction. Hence, the present study reviews the system and configuration of SACs and SAAs, stabilisation strategies such as mutual metal support interaction and geometric coordination, and the synthesis strategies. This paper aims to provide useful and informative knowledge about the current synthesis strategies of SACs and SAAs for future development in the field of biofuel production.
Collapse
|
50
|
Glycerol Hydrogenolysis to Produce 1,2-Propanediol in Absence of Molecular Hydrogen Using a Pd Promoted Cu/MgO/Al2O3 Catalyst. Catalysts 2021. [DOI: 10.3390/catal11111299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The catalytic process of glycerol hydrogenolysis to produce 1,2-propandiol (1,2-PD) in the absence of external hydrogen addition has been investigated. The methanol present in the crude glycerol from a biodiesel production process is used to provide in situ hydrogen produced via methanol steam reforming for the glycerol hydrogenolysis process. This process can reduce the additional cost for the transportation and storage of molecular hydrogen and also reduce the safety risks related to using high hydrogen pressure. It was found that the introduction of Pd onto a Cu/MgO/Al2O3 catalyst significantly improved the glycerol conversion and 1,2-PD selectivity. The pseudo-first-order kinetic results suggested that the promoting effect of Pd is primarily attributed to the enhanced activity for the hydrogenation of acetol, which is the intermediate formed via glycerol dehydration. A 27−3 fractional factorial design experiment was carried out to investigate the impacts of seven single factors and their binary effects on two responses, namely 1,2-PD selectivity and glycerol conversion. The results showed that the glycerol feed concentration has the most significant effect on the 1,2-PD selectivity, such that the 1,2-PD selectivity is lower if a more concentrated glycerol is used as the feedstock; stirring speed, inert gas pressure and water to methanol molar ratio have insignificant effects on the reaction system. The addition of Pd, higher temperature and higher catalyst loading are the essential factors in order to obtain a high selectivity of 1,2-PD and a high glycerol conversion.
Collapse
|