1
|
Ayasli A, Tóth P, Michaelsen T, Gstir T, Zappa F, Papp D, Czakó G, Wester R. Imaging the Ion-Molecule Reaction Dynamics of O - + CD 4. J Phys Chem A 2024; 128:3078-3085. [PMID: 38597714 PMCID: PMC11056988 DOI: 10.1021/acs.jpca.3c08274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
While neutral reactions involved in methane oxidation have been intensively studied, much less information is known about the reaction dynamics of the oxygen radical anion with methane. Here, we study the scattering dynamics of this anion-molecule reaction using crossed-beam velocity map imaging with deuterated methane. Differential scattering cross sections for the deuterium abstraction channel have been determined at relative collision energies between 0.2 and 1.5 eV and ab initio calculations of the important stationary points along the reaction pathway have been performed. At lower collision energies, direct backscattering and indirect complex-mediated reaction dynamics are observed, whereas at higher energies, sideways deuterium stripping dominates the reaction. Above 0.7 eV collision energy, a suppressed cross section is observed at low product ion velocities, which is likely caused by the endoergic pathway of combined deuteron/deuterium transfer, forming heavy water. The measured product internal energy is attributed mainly to the low-lying deformation and out-of-plane bending vibrations of the methyl radical product. The results are compared with a previous crossed-beam result for the reaction of oxygen anions with nondeuterated ̧methane and with the related neutral-neutral reactions, showing similar dynamics and qualitative agreement.
Collapse
Affiliation(s)
- Atilay Ayasli
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Petra Tóth
- MTA-SZTE
Lendület Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Tim Michaelsen
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Thomas Gstir
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Fabio Zappa
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Dóra Papp
- MTA-SZTE
Lendület Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE
Lendület Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Roland Wester
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| |
Collapse
|
2
|
Shao KJ, Fu BN, Zhang DH. Quasiclassical Trajectory Study of the Reaction of CD4 with O(1D). CHINESE J CHEM PHYS 2015. [DOI: 10.1063/1674-0068/28/cjcp1507152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Nguyen TL, Stanton JF. A Steady-State Approximation to the Two-Dimensional Master Equation for Chemical Kinetics Calculations. J Phys Chem A 2015; 119:7627-36. [DOI: 10.1021/acs.jpca.5b00997] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thanh Lam Nguyen
- Department
of Chemistry, The University of Texas at Austin, Mail Stop A5300, Austin, Texas 78712-0165, United States
| | - John F. Stanton
- Department
of Chemistry, The University of Texas at Austin, Mail Stop A5300, Austin, Texas 78712-0165, United States
| |
Collapse
|
4
|
Shao K, Fu B, Zhang DH. A global full-dimensional potential energy surface and quasiclassical trajectory study of the O(1D) + CH4 multichannel reaction. Phys Chem Chem Phys 2015; 17:24098-107. [DOI: 10.1039/c5cp04278j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The QCT calculations based on an accurate global full-dimensional PES are capable of reproducing the experimental dynamic features for O(1D) + CH4.
Collapse
Affiliation(s)
- Kejie Shao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- P. R. China 116023
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- P. R. China 116023
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- P. R. China 116023
| |
Collapse
|
5
|
Yang J, Shao K, Zhang D, Shuai Q, Fu B, Zhang DH, Yang X. Trapped Abstraction in the O((1)D) + CHD3 → OH + CD3 Reaction. J Phys Chem Lett 2014; 5:3106-3111. [PMID: 26276320 DOI: 10.1021/jz5016923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Despite significant progress made in past decades, it is still challenging to elucidate dynamics mechanisms for polyatomic reactions, in particular, involving complex formation. The reaction of O((1)D) with methane has long been regarded as a prototypical polyatomic system of direct insertion reaction in which the O((1)D) atom can insert into the C-H bond of methane to form a "hot" methanol intermediate before decomposition. Here, we report a combined theoretical and experimental study on the O((1)D) + CHD3 reaction, on which good agreement between theory and experiment is achieved. Our study revealed that this complex-forming reaction actually proceeds via a trapped abstraction mechanism, rather than an insertion mechanism as has long been thought. We anticipate that this reaction mechanism should also be responsible for the reaction of O((1)D) with ethane and propane, as well as many other chemical reactions with deep wells in the interaction region.
Collapse
Affiliation(s)
- Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kejie Shao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Quan Shuai
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|