1
|
Zhong X, Zhan H, Wang X, Zhang M, Wang S, Zhang M, Cheng F, Liu P. In-situ galvanic replacement reaction assisted preparation of porous Cu-Au composites as highly sensitive SERS substrates. Anal Chim Acta 2025; 1353:343959. [PMID: 40221206 DOI: 10.1016/j.aca.2025.343959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/01/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Surface-enhanced Raman spectroscopy (SERS) substrates have undergone extensive development over the years, yet the challenge of significantly enhancing their sensitivity persists. Most existing substrates face considerable difficulties in obtaining the strongest electromagnetic coupling to maximize SERS signal intensity, i.e., it is hard to achieve optimal structural parameters such as the gap width and particle size, and to fabricate surfaces that are free from contamination such as surfactants. Therefore, there is a pressing need for a substrate optimization approach that allows for in-situ monitoring and real-time dynamic adjustments to precisely achieve the ideal substrate characteristics for superior performance. RESULTS In this study, a highly sensitive porous copper-gold (Cu-Au) SERS substrate was fabricated using the galvanic replacement reaction (GRR), coupled with in-situ SERS monitoring to optimize substrate preparation. The Cu-Au nanoparticles formed and grew on sacrificial templates while noble metal ions were reduced by the sacrificial metal during GRR. The substrate preparation process revealed that the optimal preparation time was 200 ± 20 s. The SERS performance with crystal violet (CV) as a probe molecule demonstrated the substrate's remarkable sensitivity with detecting concentrations as low as 10-16 M, which surpasses most literature reports. The optimized SERS substrate was further tested for detecting malachite green (MG), yielding an ultra-high enhancement factor (EF) of 8.96 × 1014. The entire optimization process did not involve the addition of aggregation or surfactant agents, ensuring a clean substrate surface. SIGNIFICANCE AND NOVELTY This study is a further proof of the significance of the in-situ optimization of SERS substrates via GRR which allows real-time adjustment of nanoparticle size and gap width to enhance sensitivity. This approach has enabled us to develop substrates with exceptional sensitivity and reproducibility. These significant contributions may open up new avenues for the facile fabrication of ultrasensitive SERS substrates.
Collapse
Affiliation(s)
- Xing Zhong
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Hezheng Zhan
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiao Wang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Min Zhang
- Analytical and Testing Center, Dongguan University of Technology, Dongguan, 523808, China
| | - Shoushan Wang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Meili Zhang
- Institute of Science & Technology Innovation, Dongguan University of Technology, Dongguan, 523808, China
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Peng Liu
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
2
|
Zeng W, Fu X, Tang X, Liu X, Pan F, Wu L. Novel Clean-Background Coffee Ring SERS Platform for Trace Toxin Analysis. Anal Chem 2025; 97:7429-7438. [PMID: 40055851 DOI: 10.1021/acs.analchem.5c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Biotoxins, known for their ubiquity and potent toxicity, pose significant threats to ecosystems and human health, highlighting the urgency the development of robust detection methods. Despite the significant potential of surface-enhanced Raman spectroscopy (SERS) in analytical science, challenges emerge when dealing with low Raman active molecules, such as biotoxins. Our study addresses this by introducing an innovative, ultrasensitive, clean-background coffee ring SERS (CC-SERS) platform, specifically designed for the detection of neo-saxitoxin (neo-STX), saxitoxin (STX), microcystin-LR (MC-LR), and microcystin-RR (MC-RR) using the AgNPs@Ag2O@AgCl coffee rings. By fine-tuning surface ligands and laser wavelength, a clean SERS background was obtained for the accurate detection of biotoxins. The CC-SERS platform exhibited a strong linear response for STX, neo-STX and microcystins (MC-LR and MC-RR) with limit of detection (LOD, 3δ/k) of 3.3, 1.3, 2.2 and 2.2 nM, respectively. By employing principal component analysis (PCA), we effectively differentiated between highly similar biotoxins, ensuring precise identification within complex samples. The accuracy and sensitivity of this detection platform were validated through high-performance liquid chromatography (HPLC) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis of real samples, indicating its promising application in ensuring food safety.
Collapse
Affiliation(s)
- Wei Zeng
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xiaopan Fu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xuemei Tang
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Xing Liu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, Hainan, P. R. China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, P. R. China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, Hainan, P. R. China
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, P. R. China
| |
Collapse
|
3
|
Verdin A, Malherbe C, Sloan-Dennison S, Faulds K, Graham D, Eppe G. Thiol-polyethylene glycol-folic acid (HS-PEG-FA) induced aggregation of Au@Ag nanoparticles: A SERS and extinction UV-Vis spectroscopy combined study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124848. [PMID: 39032228 DOI: 10.1016/j.saa.2024.124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Plasmonic colloidal nanoparticles (NPs) functionalised with polymers are widely employed in diverse applications, offering advantages demonstrated over non-functionalised NPs such as enhanced colloidal stability or increased biocompatibility. However, functionalisation with polymers does not always increase the stability of the colloidal system. This work explores the intricate relationship between the functionalisation of plasmonic core@shell Au@Ag nanoparticles (NPs) with thiol-polyethylene glycol-folic acid (HS-PEG-FA) polymer chains and the resulting stability and spectral characteristics of Surface-Enhanced Raman Scattering (SERS) nanotags based on these NPs. We demonstrate that varying levels of HS-PEG-FA grafting influence nanotag stability, with a low level of grafting causing aggregation and subsequently affecting the spectral signature of Raman-reporter molecules attached to the surface of the NP. Electrostatic destabilisation is identified as the primary mechanism driving aggregation, impacting the SERS spectrum of Malachite Green isothiocyanate (MGITC) whose spectral shape is different between the aggregated and non-aggregated NPs. The findings provide valuable insights into NPs stability under different conditions, offering essential considerations for the design and optimisation of SERS nanotags in bio-analytical applications, particularly those involving data processing based on spectral shape, such as in multiplex approaches where experimental spectra are decomposed with several reference components.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Sian Sloan-Dennison
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, UK
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
4
|
Fernández-Lodeiro A, Fernández-Lodeiro C, Nuti S, Pérez-Juste I, Pastoriza-Santos I, Pérez-Juste J, Carbo-Argibay E, Capelo-Martínez JL, Lodeiro C, Fernández-Lodeiro J. Precise control of silver nanoplate dimensions and optical properties via pH, EDTA and AMP mediated synthesis. J Colloid Interface Sci 2024; 680:286-297. [PMID: 39509777 DOI: 10.1016/j.jcis.2024.10.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
We present a seed-mediated synthesis method for producing silver nanoplates (AgNPTs) with customizable size and thickness, ensuring high yield and precise optical properties. This approach leverages ethylenediaminetetraacetic acid (EDTA) as a key component in the synthesis process, utilizing small single-crystal silver seeds. The interaction between Ag+ ions and EDTA at varying pH levels dynamically regulates silver complexation and reduction kinetics during seed overgrowth, leading to the formation of truncated nanoplates with superior optical responses. By adjusting the pH within the range of 8-10.5, we can manipulate the growth of the nanoplates, enabling a flexible optical response ranging from 519 to 1006 nm due to changes in their size and thickness. Additionally, nanoplate overgrowth extends plasmon resonance up to approximately 2000 nm. The incorporation of Adenosine 5' monophosphate (AMP) not only enhances nanoplate stability but also allows for precise thickness adjustment independent of growth kinetics. This method provides a systematic approach to tailor nanoplate morphology and optical properties with unprecedented precision. The role of EDTA is attributed to its complexation ability with Ag+ and its assistance in facet evolution, supported by density functional theory (DFT) simulations of surface energies modified by EDTA adsorption. Furthermore, DFT calculations confirm that AMP can further modify the surface energies of different facets, enabling precise thickness control.
Collapse
Affiliation(s)
- Adrián Fernández-Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Costa de Caparica, 2825-466, Portugal
| | - Carlos Fernández-Lodeiro
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain; Departamento de Química Física, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Silvia Nuti
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Costa de Caparica, 2825-466, Portugal
| | - Ignacio Pérez-Juste
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain; Departamento de Química Física, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain; Departamento de Química Física, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain; Departamento de Química Física, Universidade de Vigo, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain.
| | - Enrique Carbo-Argibay
- International Iberian Nanotechnology Laboratory - INL, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - José Luis Capelo-Martínez
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Costa de Caparica, 2825-466, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Costa de Caparica, 2825-466, Portugal
| | - Javier Fernández-Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Costa de Caparica, 2825-466, Portugal.
| |
Collapse
|
5
|
Chen Z, Tan R, Zeng M, Yuan X, Zhuang K, Feng C, He Y, Luo X. SERS detection of triazole pesticide residues on vegetables and fruits using Au decahedral nanoparticles. Food Chem 2024; 439:138110. [PMID: 38043282 DOI: 10.1016/j.foodchem.2023.138110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/11/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Triazole pesticides are widely used in modern agricultural practices to improve agricultural production quality. Simultaneously, unreasonable and standardized use of triazole pesticides could induce a series of potential diseases of humans. Surface-enhanced Raman spectroscopy has attracted enormous research attention because of its label-free and fingerprint detection capability to noninvasively trace extremely low concentration analytes. To the best of our knowledge, there is a lack of systematic comparison regarding the Raman spectral information of triazole pesticides in existing literatures. In this work, we successfully captured the characteristic peaks of six different triazole pesticides individually and simultaneously using Au decahedral nanoparticles. The proposed method exhibited remarkable detection sensitivity, a wide dynamic range, and the capability for in-situ detection of multiple pesticide residues on bean, apple, and vegetable surfaces with satisfactory recovery rates. Therefore, our proposed SERS platform have great applications in agricultural products safety, environmental monitoring and other fields.
Collapse
Affiliation(s)
- Zhinan Chen
- School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Rui Tan
- School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Mei Zeng
- School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Xue Yuan
- School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Kaiyi Zhuang
- School of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Changsheng Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Yi He
- School of Science, Xihua University, Chengdu, Sichuan 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610039, China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, Sichuan 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu 610039, China.
| |
Collapse
|
6
|
Zhao Y, Kumar A, Yang Y. Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chem Soc Rev 2024; 53:1004-1057. [PMID: 38116610 DOI: 10.1039/d3cs00540b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been an exponential growth in the number of publications focusing on surface-enhanced Raman scattering (SERS), primarily driven by advancements in nanotechnology and the increasing demand for chemical and biological detection. While many of these publications have focused on the development of new substrates and detection-based applications, there is a noticeable lack of attention given to various practical issues related to SERS measurements and detection. This review aims to fill this gap by utilizing silver nanorod (AgNR) SERS substrates fabricated through the oblique angle deposition method as an illustrative example. The review highlights and addresses a range of practical issues associated with SERS measurements and detection. These include the optimization of SERS substrates in terms of morphology and structural design, considerations for measurement configurations such as polarization and the incident angle of the excitation laser, and exploration of enhancement mechanisms encompassing both intrinsic properties induced by the structure and materials, as well as extrinsic factors arising from wetting/dewetting phenomena and analyte size. The manufacturing and storage aspects of SERS substrates, including scalable fabrication techniques, contamination control, cleaning procedures, and appropriate storage methods, are also discussed. Furthermore, the review delves into device design considerations, such as well arrays, flow cells, and fiber probes, and explores various sample preparation methods such as drop-cast and immersion. Measurement issues, including the effect of excitation laser wavelength and power, as well as the influence of buffer, are thoroughly examined. Additionally, the review discusses spectral analysis techniques, encompassing baseline removal, chemometric analysis, and machine learning approaches. The wide range of AgNR-based applications of SERS, across various fields, is also explored. Throughout the comprehensive review, key lessons learned from collective findings are outlined and analyzed, particularly in the context of detailed SERS measurements and standardization. The review also provides insights into future challenges and perspectives in the field of SERS. It is our hope that this comprehensive review will serve as a valuable reference for researchers seeking to embark on in-depth studies and applications involving their own SERS substrates.
Collapse
Affiliation(s)
- Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Nga DTN, Mai QD, Nguyen HA, Le Nhat Trang N, Khanh PM, Hoa NQ, Lam VD, Hoang VT, Le AT. Enhanced sensing performance of carbaryl pesticide by employing a MnO 2/GO/e-Ag-based nanoplatform: role of graphene oxide as an adsorbing agent in the SERS analytical performance. RSC Adv 2023; 13:33067-33078. [PMID: 37954412 PMCID: PMC10633879 DOI: 10.1039/d3ra05381d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
A functional ternary substrate was developed for surface-enhanced Raman scattering (SERS) sensing systems. MnO2 nanosheets were synthesized by a simple and controllable hydrothermal method, followed by the integration of graphene oxide (GO) nanosheets. Subsequently, MnO2/GO nanostructures were decorated with plasmonic Ag nanoparticles (e-AgNPs). The MnO2/GO/e-Ag substrate could enhance the SERS sensing signal for organic chemicals without the assistance of chemical bonds between those analytes and the semiconductor within the ternary substrate, which have been proven to promote charge transfer and elevate the SERS enhancement in previous studies. Instead, GO nanosheets acted as a carpet also supporting the MnO2 nanosheets and e-AgNPs to form a porous structure, allowing the analytes to be well-adsorbed onto the ternary substrate, which improved the sensing performance of the SERS platform, compared to pure e-AgNPs, MnO2/e-Ag, and GO/e-Ag alone. The GO content in the nanocomposite was also considered to optimize the SERS substrate. With the most optimal GO content of 0.1 wt%, MnO2/GO/e-Ag-based SERS sensors could detect carbaryl, a pesticide, at concentrations as low as 1.11 × 10-8 M in standard solutions and 10-7 M in real tap water and cucumber extract.
Collapse
Affiliation(s)
- Dao Thi Nguyet Nga
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Quan Doan Mai
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Ha Anh Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Nguyen Le Nhat Trang
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Pham Minh Khanh
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Nguyen Quang Hoa
- Faculty of Physics, VNU University of Science, Vietnam National University Hanoi, 334 Nguyen Trai, Thanh Xuan Hanoi Vietnam
| | - Vu Dinh Lam
- Institute of Materials Science (IMS) and Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 10000 Vietnam
| | - Van-Tuan Hoang
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Anh-Tuan Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Materials Science and Engineering (MSE), Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
8
|
Gu Y, Cao D, Mao Y, Ge S, Li Z, Gu Y, Sun Y, Li L, Cao X. A SERS microfluidic chip based on hpDNA-functioned Au-Ag nanobowl array for efficient simultaneous detection of non-small cell lung cancer-related microRNAs. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Li Z, Zhang J, Huang Y, Zhai J, Liao G, Wang Z, Ning C. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Kedia A, Singhal R, Senthil Kumar P. Shape trimming and LSPR tuning of colloidal gold nanostars. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Li J, Li R, Xu Y, Xue X, Chen X, Chui HC. The Wavelength-Dependent SERS Template Based on a Nanopillar Array. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7446. [PMID: 36363038 PMCID: PMC9657544 DOI: 10.3390/ma15217446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) can be regarded as a powerful tool for probing chemical molecules by effectively enhancing Raman signals. However, the enhancement factors depend on the SERS template, the probed molecular structures, and the excitation laser wavelength. Herein, we proposed a simple and easily fabricated nanostructured template for SERS and analyzed the wavelength-dependent factors. Three types of golden nanopillar arrays on silicon wafers were designed and manufactured. The SERS signals of the Rhodamine 6G (R6G) molecules were extracted. Three laser sources, a blue 17 mW 458 nm diode laser, a green 20 mW 532 nm laser, and a red 6 mW 633 nm laser, were employed as the excitation laser sources. The 458 nm laser was located far from the resonate spectrum of R6G. The optical intensity distributions for the different SERS templates excited by three laser beams were also simulated. The enhancement factors (EFs) of R6G on the three nanostructured templates were measured and compared. The photoluminescence spectrum of the nanostructured templates and SERS signals of R6G were also measured. In addition, the experimental results concerned optical simulations. The analysis tool that was used was a convolution profile of multiple Lorentzian line shapes with a Gaussian profile. It is helpful to understand the SERS signals when the excitation laser wavelength is located out of the resonance region of molecules. It can also provide a new design approach to fabricate an SERS Template with a nanopillar array for different excitation wavelengths.
Collapse
Affiliation(s)
- Jiayi Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Rui Li
- College of Physics, Dalian University of Technology, Dalian 116024, China
| | - Ying Xu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Xue
- PipeChina Group, Beijing Pipe Co., Ltd., Beijing 100020, China
| | - Xiaoming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Hsiang-Chen Chui
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
12
|
Surface Plasmon Resonance of Large-Size Ag Nanobars. MICROMACHINES 2022; 13:mi13040638. [PMID: 35457942 PMCID: PMC9025477 DOI: 10.3390/mi13040638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023]
Abstract
Silver nanobars have attracted much attention due to their distinctive localized surface plasmon resonance (LSPR) in the visible and near-infrared regions. In this work, large-size Ag nanobars (length: 400~1360 nm) working at a longer-wavelength near-infrared range (>1000 nm) have been synthesized. By using the finite-difference time-domain (FDTD) simulation, the LSPR properties of a single large-size Ag nanobar are systematically investigated. The LSPR in Ag nanobar can be flexibly tuned in a wide wavelength range (400~2000 nm) by changing the bar length or etching the bar in the length direction. Our work provides a flexible way to fabricate nanoparticle arrays using large-size nanobars and throws light on the applications of large-size nanomaterials on wide spectral absorbers, LSPR-based sensors and nanofilters.
Collapse
|
13
|
Serafinelli C, Fantoni A, Alegria ECBA, Vieira M. Plasmonic Metal Nanoparticles Hybridized with 2D Nanomaterials for SERS Detection: A Review. BIOSENSORS 2022; 12:bios12040225. [PMID: 35448285 PMCID: PMC9029226 DOI: 10.3390/bios12040225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/27/2023]
Abstract
In SERS analysis, the specificity of molecular fingerprints is combined with potential single-molecule sensitivity so that is an attractive tool to detect molecules in trace amounts. Although several substrates have been widely used from early on, there are still some problems such as the difficulties to bind some molecules to the substrate. With the development of nanotechnology, an increasing interest has been focused on plasmonic metal nanoparticles hybridized with (2D) nanomaterials due to their unique properties. More frequently, the excellent properties of the hybrids compounds have been used to improve the drawbacks of the SERS platforms in order to create a system with outstanding properties. In this review, the physics and working principles of SERS will be provided along with the properties of differently shaped metal nanoparticles. After that, an overview on how the hybrid compounds can be engineered to obtain the SERS platform with unique properties will be given.
Collapse
Affiliation(s)
- Caterina Serafinelli
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
- Department of Electrotechnical and Computer Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, DEE-FCT-UNL, Caparica, 2829-516 Almada, Portugal
| | - Alessandro Fantoni
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
| | - Elisabete C. B. A. Alegria
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Manuela Vieira
- Instituto Superior de Engenharia de Lisboa—Instituto Politécnico de Lisboa, 1949-014 Lisboa, Portugal; (A.F.); (E.C.B.A.A.); (M.V.)
- CTS—Centre of Technology and Systems, Caparica, 2829-516 Almada, Portugal
- Department of Electrotechnical and Computer Engineering, Faculty of Science and Technology, Universidade NOVA de Lisboa, DEE-FCT-UNL, Caparica, 2829-516 Almada, Portugal
| |
Collapse
|
14
|
Fularz A, Stogiannis D, Rice JH. Cellulose Acetate-Based Plasmonic Crystals for Surface-Enhanced Raman and Fluorescence Spectroscopy. ACS MATERIALS AU 2022; 2:453-463. [PMID: 36855706 PMCID: PMC9928397 DOI: 10.1021/acsmaterialsau.2c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to meet environmental concerns, there is an increasing demand for biodegradable and sustainable materials in many areas, including photonics. Cellulose and its derivatives are potentially eco-friendly alternatives to conventional plastics, because of their abundance and lower environmental impact. Here, we report the fabrication of plasmonic structures by molding cellulose acetate into submicrometric periodic lattices, using soft lithography. The fabricated platforms can be used for the enhancement of Raman and fluorescence signals of a range of analytes including a model immunoassay utilizing a streptavidin-conjugated dye, which is characterized by a 23-fold enhancement in fluorescence signal intensity, which shows the potential of the platform to be further used for the assay-based development of diagnostic tools.
Collapse
Affiliation(s)
- Agata Fularz
- School
of Physics, University College Dublin, Belfield, Dublin 4, Ireland,
| | - Dimitrios Stogiannis
- School
of Physics, University College Dublin, Belfield, Dublin 4, Ireland,Department
of Physics, University of Ioannina, Ioannina 45110, Greece
| | - James H. Rice
- School
of Physics, University College Dublin, Belfield, Dublin 4, Ireland,
| |
Collapse
|
15
|
Zheng Y, Tan T, Wang C. Seed‐mediated Growth of Alloyed
Ag‐Pd
Shells toward Alkyne Semi‐hydrogenation Reactions under Mild Conditions
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuqin Zheng
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low‐Carbon Technologies, School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| | - Taixing Tan
- Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou Jiangxi 341000 China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low‐Carbon Technologies, School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China
| |
Collapse
|
16
|
Dai P, Li H, Huang X, Wang N, Zhu L. Highly Sensitive and Stable Copper-Based SERS Chips Prepared by a Chemical Reduction Method. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2770. [PMID: 34685206 PMCID: PMC8541386 DOI: 10.3390/nano11102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/02/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Cu chips are cheaper than Ag and Au chips for practical SERS applications. However, copper substrates generally have weak SERS enhancement effects and poor stability. In the present work, Cu-based SERS chips with high sensitivity and stability were developed by a chemical reduction method. In the preparation process, Cu NPs were densely deposited onto fabric supports. The as-prepared Cu-coated fabric was hydrophobic with fairly good SERS performance. The Cu-coated fabric was able to be used as a SERS chip to detect crystal violet, and it exhibited an enhancement factor of 2.0 × 106 and gave a limit of detection (LOD) as low as 10-8 M. The hydrophobicity of the Cu membrane on the fabric is favorable to cleaning background interference signals and promoting the stability of Cu NPs to environment oxidation. However, this Cu SERS chip was still poor in its long-term stability. The SERS intensity on the chip was decreased to 18% of the original one after it was stored in air for 60 days. A simple introduction of Ag onto the clean Cu surface was achieved by a replacement reaction to further enhance the SERS performances of the Cu chips. The Ag-modified Cu chips showed an increase of the enhancement factor to 7.6 × 106 due to the plasmonic coupling between Cu and Ag in nanoscale, and decreased the LOD of CV to 10-11 M by three orders of magnitude. Owing to the additional protection of Ag shell, the SERS intensity of the Cu-Ag chip after a two-month storing maintained 80% of the original intensity. The Cu-Ag SERS chips were also applied to detect other organics, and showing wide linearity range and low LOD values for the quantitative detection.
Collapse
Affiliation(s)
| | | | | | | | - Lihua Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (P.D.); (H.L.); (X.H.); (N.W.)
| |
Collapse
|
17
|
Ji J, Li Z, Sun W, Wang H. Thermal annealing induced tunable localized surface plasmon resonance of Au/Ag bimetallic thin film. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Food Chem 2020; 338:127796. [PMID: 32805691 DOI: 10.1016/j.foodchem.2020.127796] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 01/19/2023]
Abstract
Trace detection of toxic chemicals in foodstuffs is of great concern in recent years. Surface-enhanced Raman scattering (SERS) has drawn significant attention in the monitoring of food safety due to its high sensitivity. This study synthesized signal optimized flower-like silver nanoparticle-(AgNP) with EF at 25 °C of 1.39 × 106 to extend the SERS application for pesticide sensing in foodstuffs. The synthesized AgNP was deployed as SERS based sensing platform to detect methomyl, acetamiprid-(AC) and 2,4-dichlorophenoxyacetic acid-(2,4-D) residue levels in green tea via solid-phase extraction. A linear correlation was twigged between the SERS signal and the concentration for methomyl, AC and 2,4-D with regression coefficient of 0.9974, 0.9956 and 0.9982 and limit of detection of 5.58 × 10-4, 1.88 × 10-4 and 4.72 × 10-3 µg/mL, respectively; the RSD value < 5% was recorded for accuracy and precision analysis suggesting that proposed method could be deployed for the monitoring of methomyl, AC and 2,4-D residue levels in green tea.
Collapse
|
19
|
Zhang Y, Nishi N, Sakka T. Interface-templated synthesis of single-crystalline silver chain-like nanobelts at the liquid-liquid interface between water and redox-active ionic liquid. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
A dual-mode colorimetric and SERS detection of hydrogen sulfide in live prostate cancer cells using a silver nanoplate-coated paper assay. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104724] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Early detection of cancer: Focus on antibody coated metal and magnetic nanoparticle-based biosensors. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
22
|
Ardianrama AD, Wijaya YN, Hur SH, Woo HC, Kim MH. Reshaping of triangular silver nanoplates by a non-halide etchant and its application in melamine sensing. J Colloid Interface Sci 2019; 552:485-493. [PMID: 31152964 DOI: 10.1016/j.jcis.2019.05.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Abstract
Although triangular silver (Ag) nanoplates are intrinsically unstable, this characteristic has been taken advantage of in the development of a novel sensing platform. However, most of these applications have relied on halide ions as etchants. In the current work, we used sodium 4-vinylbenzenesulfonate (Na-VBS) as a new powerful etchant of triangular silver (Ag) nanoplates. When aged with Na-VBS at room temperature, Na-VBS etched Ag nanoplates nearly as powerfully as halides did, and these nanoplates rapidly transformed into oblate nanospheroids. This shape evolution permitted tuning of the corresponding localized surface plasmon resonance (LSPR) features of the Ag nanostructures. Interestingly, passivation of the Ag nanoplate surface with melamine was shown to protect the nanoplates from Na-VBS-induced etching. The rate of change of the color and spectral features of the Ag nanoplate solution exposed to Na-VBS was found to be strongly correlated with the concentration of melamine in the solution. This association allowed us to apply this system to the development of a novel platform for sensing melamine.
Collapse
Affiliation(s)
- Alexander David Ardianrama
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Yosia Nico Wijaya
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Seung Hyun Hur
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749, Republic of Korea
| | - Hee-Chul Woo
- Department of Chemical Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Mun Ho Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
23
|
Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. BIOSENSORS-BASEL 2019; 9:bios9020078. [PMID: 31185689 PMCID: PMC6627098 DOI: 10.3390/bios9020078] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
The localized surface plasmon resonance (LSPR) property of metallic nanoparticles is widely exploited for chemical and biological sensing. Selective biosensing of molecules using functionalized nanoparticles has become a major research interdisciplinary area between chemistry, biology and material science. Noble metals, especially gold (Au) and silver (Ag) nanoparticles, exhibit unique and tunable plasmonic properties; the control over these metal nanostructures size and shape allows manipulating their LSPR and their response to the local environment. In this review, we will focus on Ag-based nanoparticles, a metal that has probably played the most important role in the development of the latest plasmonic applications, owing to its unique properties. We will first browse the methods for AgNPs synthesis allowing for controlled size, uniformity and shape. Ag-based biosensing is often performed with coated particles; therefore, in a second part, we will explore various coating strategies (organics, polymers, and inorganics) and their influence on coated-AgNPs properties. The third part will be devoted to the combination of gold and silver for plasmonic biosensing, in particular the use of mixed Ag and AuNPs, i.e., AgAu alloys or Ag-Au core@shell nanoparticles will be outlined. In the last part, selected examples of Ag and AgAu-based plasmonic biosensors will be presented.
Collapse
Affiliation(s)
- Alexis Loiseau
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 place Jussieu, F-75005 Paris, France.
| | - Victoire Asila
- Sorbonne Université, Faculté des Sciences et Ingénierie, Master de Chimie, Profil MatNanoBio, 4 place Jussieu, F-75005 Paris, France.
| | - Gabriel Boitel-Aullen
- Sorbonne Université, Faculté des Sciences et Ingénierie, Master de Chimie, Profil MatNanoBio, 4 place Jussieu, F-75005 Paris, France.
| | - Mylan Lam
- Sorbonne Université, Faculté des Sciences et Ingénierie, Master de Chimie, Profil MatNanoBio, 4 place Jussieu, F-75005 Paris, France.
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France.
| | - Souhir Boujday
- Laboratoire de Réactivité de Surface (LRS), Sorbonne Université, CNRS, UMR 7197, 4 place Jussieu, F-75005 Paris, France.
| |
Collapse
|
24
|
Chen R, Liu B, Ni H, Chang N, Luan C, Ge Q, Dong J, Zhao X. Vertical flow assays based on core–shell SERS nanotags for multiplex prostate cancer biomarker detection. Analyst 2019; 144:4051-4059. [DOI: 10.1039/c9an00733d] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A core–shell SERS nanotag based VFA with a single test spot for multiplex biomarker detection at pg mL−1 level with a wide LDR.
Collapse
Affiliation(s)
- Ruipeng Chen
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Bing Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Haibin Ni
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Ning Chang
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Chengxin Luan
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine)
- Zhongda Hospital
- School of Medicine Southeast University
- Nanjing 210009
- China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Jian Dong
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
25
|
Kim JK, Jang DJ. Hollow and inward-bumpy gold nanoshells fabricated using expanded silica mesopores as templates. NEW J CHEM 2019. [DOI: 10.1039/c9nj01713e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow and inward-bumpy Au nanoshells showing efficient Raman enhancement have been fabricated using expanded silica mesopores as templates.
Collapse
Affiliation(s)
- Joon Ki Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Du-Jeon Jang
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
26
|
Sun Z, Duan F, He K, Du J, Yang L, Li H, Ma T, Yang S. Physicochemical analysis of individual atmospheric fine particles based on effective surface-enhanced Raman spectroscopy. J Environ Sci (China) 2019; 75:388-395. [PMID: 30473304 DOI: 10.1016/j.jes.2018.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 06/09/2023]
Abstract
Fine particles associated with haze pollution threaten the health of more than 400 million people in China. It is therefore of great importance to thoroughly investigate and understand their composition. To determine the physicochemical properties in atmospheric fine particles at the micrometer level, we described a sensitive and feasible surface-enhanced Raman scattering (SERS) method using Ag foil as a substrate. This novel method enhanced the Raman signal intensities up to 10,000 a.u. for ν(NO3-) in fine particles. The SERS effect of Ag foil was further studied experimentally and theoretically and found to have an enhancement factor of the order of ~104. Size-fractionated real particle samples with aerodynamic diameters of 0.4-2.5 μm were successfully collected on a heavy haze day, allowing ready observation of morphology and identification of chemical components, such as soot, nitrates, and sulfates. These results suggest that the Ag-foil-based SERS technique can be effectively used to determine the microscopic characteristics of individual fine particles, which will help to understand haze formation mechanisms and formulate governance policies.
Collapse
Affiliation(s)
- Zhenli Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Tsinghua University, Beijing 100084, China.
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liu Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuo Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Nair AK, Sukumaran Nair KM, Thomas S, Rouxel D, Alwarappan S, Kalarikkal N. In Situ Synthesis of Silver Nanospheres, Nanocubes, and Nanowires over Boron-Doped Graphene Sheets for Surface-Enhanced Raman Scattering Application and Enzyme-Free Detection of Hydrogen Peroxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13603-13614. [PMID: 30350693 DOI: 10.1021/acs.langmuir.8b02005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An effective in situ synthesis strategy is demonstrated for the preparation of silver nanostructures (nanospheres (NSs), nanocubes (NCs), and nanowires (NWs)) on the surface of boron-doped graphene (BG). Further, these functional nanomaterials are employed for the surface-enhanced Raman scattering (SERS) and non-enzymatic electrochemical detection of H2O2. The results confirm the superior performance of BG-Ag nanostructures as SERS platform. Among various geometries of silver nanoparticles studied in this work, we find that the AgNCs over BG (BG-AgNC) present outstanding SERS performance for detecting 4-mercaptobenzoic acid, with a limit of detection of 1.0 × 10-13 M. Furthermore, BG-AgNC exhibits excellent capability to detect melamine as low as 1.0 × 10-9 M. Electrochemical results confirm that the BG-AgNW-based platform exhibits a superior biosensing performance toward H2O2 detection. The enhanced performance is due to the presence of graphene, which improves the conductivity and provides more active sites. The synthesis of doped graphene with metallic nanoparticles described in this work is expected to be a key strategy for the development of an efficient SERS and electrochemical sensor that offers simplicity, cost-effectiveness, long-term stability, and better reproducibility.
Collapse
Affiliation(s)
- Anju K Nair
- International and Inter University Centre for Nanoscience and Nanotechnology , Mahatma Gandhi University , Kottayam - 686 560 , Kerala , India
- Department of Physics , St Teresas's College Ernakulam - 682011 , Kerala , India
| | | | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology , Mahatma Gandhi University , Kottayam - 686 560 , Kerala , India
- School of Chemical Sciences , Mahatma Gandhi University , Kottayam - 686 560 , Kerala , India
| | - Didier Rouxel
- UMR CNRS 7198, Facult́e des Sciences et Techniques , Institut Jean Lamour , Campus Victor Grignard , BP 70239, 54506 , Vandoeuvre-les-Nancy Cedex , France
| | - Subbiah Alwarappan
- CSIR - Central Electrochemical Research Institute (CSIR-CECRI) Karaikudi - 630 003 , Tamil Nadu , India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology , Mahatma Gandhi University , Kottayam - 686 560 , Kerala , India
- School of Pure and Applied Physics , Mahatma Gandhi University , Kottayam - 686 560 , Kerala India
| |
Collapse
|
28
|
|
29
|
Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem. NANOMATERIALS 2018; 8:nano8080568. [PMID: 30044425 PMCID: PMC6116260 DOI: 10.3390/nano8080568] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
Abstract
Surface plasmon resonances of a Au ring-strip nanosystem with tunable multipolar Fano resonances have been investigated based on the finite-difference time-domain (FDTD) method. Abundant plasmon properties of a Au ring-strip nanosystem can be obtained on the basis of the unique electronic properties of different geometry parameters. In our research models, these multipolar Fano resonances are induced and can be tuned independently by changing the geometry parameters of the Au ring-strip nanosystem. Complex electric field distributions excited by the Au ring-strip nanosystem provide possibility to form dark plasmonic modes. Multipolar Fano resonances display strong light extinction in the Au ring-strip nanosystem, which can offer a new approach for an optical tunable filter, optical switching, and advanced biosensing.
Collapse
|
30
|
Pinheiro PC, Daniel-da-Silva AL, Nogueira HIS, Trindade T. Functionalized Inorganic Nanoparticles for Magnetic Separation and SERS Detection of Water Pollutants. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paula C. Pinheiro
- Department of Chemistry-CICECO; University of Aveiro; 3810-193 Aveiro Portugal
| | | | | | - Tito Trindade
- Department of Chemistry-CICECO; University of Aveiro; 3810-193 Aveiro Portugal
| |
Collapse
|
31
|
Zhang D, Huang L, Liu B, Ni H, Sun L, Su E, Chen H, Gu Z, Zhao X. Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags. Biosens Bioelectron 2018; 106:204-211. [DOI: 10.1016/j.bios.2018.01.062] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
|
32
|
Almohammed S, Zhang F, Rodriguez BJ, Rice JH. Photo-induced surface-enhanced Raman spectroscopy from a diphenylalanine peptide nanotube-metal nanoparticle template. Sci Rep 2018; 8:3880. [PMID: 29497167 PMCID: PMC5832858 DOI: 10.1038/s41598-018-22269-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/16/2018] [Indexed: 11/09/2022] Open
Abstract
UV irradiation of aligned diphenylalanine peptide nanotubes (FF-PNTs) decorated with plasmonic silver nanoparticles (Ag NPs) enables photo-induced surface-enhanced Raman spectroscopy. UV-induced charge transfer facilitates a chemical enhancement that provides up to a 10-fold increase in surface-enhanced Raman intensity and allows the detection of a wide range of small molecules and low Raman cross-section molecules at concentrations as low as 10-13 M. The aligned FF-PNT/Ag NP template further prevents photodegradation of the molecules under investigation. Our results demonstrate that FF-PNTs can be used as an alternative material to semiconductors such as titanium dioxide for photo-induced surface-enhanced Raman spectroscopy applications.
Collapse
Affiliation(s)
- Sawsan Almohammed
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fengyuan Zhang
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Brian J Rodriguez
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | - James H Rice
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
33
|
Ibañez D, Valles E, Gomez E, Colina A, Heras A. Janus Electrochemistry: Asymmetric Functionalization in One Step. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35404-35410. [PMID: 28925265 DOI: 10.1021/acsami.7b10073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Janus structures represent an overwhelming member of materials with adaptable chemical and physical properties. Development of new synthesis routes has allowed the fabrication of Janus architectures with specific characteristics depending on the final applications. In the case of the membranes, the improvement of wet routes has been limited to the capillary effect, in which the solution can gradually penetrate through the membrane, avoiding a double modification different at each face of the membrane. In this work, we propose a new electrochemical methodology to circumvent the capillary limitation and obtain a double electrochemical functionalization in only one step in a controlled way. This innovative methodology has been validated using a tridirectional spectroelectrochemistry setup. Moreover, the information provided by this optical arrangement should be especially useful for the study of the different processes (ion transfer, assisted ion transfer, and electron transfer) that can take place at liquid/liquid interfaces. Janus electrochemistry allows us to modify the two faces of a free-standing single-walled carbon nanotube electrode in a single experiment. As proof of concept, the free-standing films have been functionalized with two different conducting polymers, polyaniline and poly(3-hexylthiophene), in one electrochemical experiment. According to the obtained results, this new electrochemical methodology will open new gates for the design and functionalization of Janus materials.
Collapse
Affiliation(s)
- David Ibañez
- Department of Chemistry, Universidad de Burgos , Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Elisa Valles
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Dep. Ciència de Materials i Química Física and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona , 08028 Barcelona, Spain
| | - Elvira Gomez
- Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Dep. Ciència de Materials i Química Física and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona , 08028 Barcelona, Spain
| | - Alvaro Colina
- Department of Chemistry, Universidad de Burgos , Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Aranzazu Heras
- Department of Chemistry, Universidad de Burgos , Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
34
|
Liu B, Ni H, Zhang D, Wang D, Fu D, Chen H, Gu Z, Zhao X. Ultrasensitive Detection of Protein with Wide Linear Dynamic Range Based on Core-Shell SERS Nanotags and Photonic Crystal Beads. ACS Sens 2017; 2:1035-1043. [PMID: 28750518 DOI: 10.1021/acssensors.7b00310] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Detection of proteins in a wide concentration range from fg mL-1 to sub mg mL-1 is a challenge in the high throughput analysis of precision medicine. Herein, we proposed a biosensor consisting of core-shell surface-enhanced Raman scattering (SERS) nanotags as labels and photonic crystal beads (PCBs) as carriers for ultrasensitive detection of proteins. In practice, Raman dyes (RDs) were embedded in the interface of gold core and silver shell in the bimetal nanoparticles to form SERS nanotags. It was found that the sensitivity was significantly improved due to the enhanced Raman signal by the coupling of the core-shell structure and linear dynamic range (LDR) was extended owing to the high surface to volume ratio of PCBs as well. In addition, we also demonstrated that the biosensor exhibited fine stability and low background, which has great application potential in the detection of protein biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongyuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
35
|
Tan T, Yao L, Liu H, Li C, Wang C. Precise Control of the Lateral and Vertical Growth of Two-Dimensional Ag Nanoplates. Chemistry 2017; 23:10001-10006. [PMID: 28594454 DOI: 10.1002/chem.201701146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 11/10/2022]
Abstract
Tuning localized surface plasmon resonance (LSPR) is crucial for practical applications of two-dimensional Ag nanoplates (AgNPs) and relies on the precise control of their lateral length or/and thickness. In the present seed-mediated synthetic method, by taking advantage of underpotential deposition (UPD) of Cu on the (111) surfaces of AgNPs, a solely lateral growth of AgNPs was achieved when Cu(NO3 )2 was employed, while a vertical growth of AgNPs could be attained by introducing CuCl2 into our growth solutions. The lateral length and the vertical thickness of the AgNPs could be tuned in the ranges of 115 to nearly 300 nm and 13.4 to around 200 nm, respectively. Along with control of the dimensional size of AgNPs, LSPR could also be tuned in the visible to near infrared range. Plausible growth mechanisms for the precise control of the lateral and vertical growth of AgNPs were proposed.
Collapse
Affiliation(s)
- Taixing Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lili Yao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huiling Liu
- Institute for New-Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Chengyu Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,Institute for New-Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
36
|
Reguera J, Langer J, Jiménez de Aberasturi D, Liz-Marzán LM. Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem Soc Rev 2017; 46:3866-3885. [DOI: 10.1039/c7cs00158d] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anisotropy in plasmonic metal nanoparticles plays a major role in the enhancement of the Raman scattering of adsorbed molecules.
Collapse
Affiliation(s)
- Javier Reguera
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine
- Ciber-BBN
| | - Judith Langer
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine
- Ciber-BBN
| | - Dorleta Jiménez de Aberasturi
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine
- Ciber-BBN
| | - Luis M. Liz-Marzán
- CIC biomaGUNE
- 20014 Donostia-San Sebastián
- Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine
- Ciber-BBN
| |
Collapse
|
37
|
XU G, ZHU Y, PANG J. Sensitive and Simple Detection of Glucose Based on Single Plasmonic Nanorod. ANAL SCI 2017; 33:223-227. [DOI: 10.2116/analsci.33.223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Gang XU
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University
| | - Yuhua ZHU
- School of Chemistry & Chemical Engineering, Nanjing University
| | - Jie PANG
- School of Chemistry & Chemical Engineering, Nanjing University
| |
Collapse
|
38
|
Tan T, Zhang S, Wang C. Branched Ag nanoplates: synthesis dictated by suppressing surface diffusion and catalytic activity for nitrophenol reduction. CrystEngComm 2017. [DOI: 10.1039/c7ce01421j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Highly branched Ag nanoplates were achieved at extremely low Ag atoms surface diffusion rate, fulfilledviathe Cu under potential deposition.
Collapse
Affiliation(s)
- Taixing Tan
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Shun Zhang
- Institute for New-Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Cheng Wang
- Institute for New-Energy Materials and Low-Carbon Technologies
- School of Materials Science and Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
39
|
Jiang T, Zhang L, Jin H, Wang X, Zhou J. In situ controlled sputtering deposition of gold nanoparticles on MnO2 nanorods as surface-enhanced Raman scattering substrates for molecular detection. Dalton Trans 2016; 44:7606-12. [PMID: 25812162 DOI: 10.1039/c4dt03774j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-crystal tetragonal α-MnO2 nanorods with different amounts of gold nanoparticles (NPs) attached were successfully prepared by a facile sputtering deposition technique. Initially, the morphology and crystal structure of the bare α-MnO2 nanorods synthesized via a hydrothermal approach were investigated. Then, the amount of gold NPs at different sputtering times was analyzed. It was confirmed that the amount of the decorated gold NPs increased with the lengthening of the sputtering time until they completely covered the α-MnO2 nanorods. Theoretical calculation results indicated the advantages of the composite structure by showing the enhanced electromagnetic fields around both the bare α-MnO2 nanorods and the gold NP decorated ones. The surface-enhanced Raman scattering (SERS) efficiency of these nanocomposites was evaluated using methylene blue and 4-mercaptobenzoic acid as Raman probe molecules. It was found that the SERS intensity of the substrates strongly depended on the degree of aggregation of the gold NPs. Uniform SERS signals across the entire surface of these samples were obtained. Moreover, a typical chemical toxin, methyl parathion, was effectively detected over a broad concentration range from 1 × 10(-3) to 100 ppm using the gold NP decorated α-MnO2 nanorods, suggesting this hybrid structure is highly valuable for further applications on the rapid detection of organic environmental pollutants.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, P. R. China.
| | | | | | | | | |
Collapse
|
40
|
Biogenic Synthesis of Silver Nanoparticles Using Cnidium officinale Extract and Their Catalytic Reduction of 4-Nitroaniline. J CLUST SCI 2015. [DOI: 10.1007/s10876-015-0929-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Hou H, Wang P, Zhang J, Li C, Jin Y. Graphene Oxide-Supported Ag Nanoplates as LSPR Tunable and Reproducible Substrates for SERS Applications with Optimized Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2015. [PMID: 26203672 DOI: 10.1021/acsami.5b04946] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoparticles and nanohybrids with well-defined structures, along with tunable localized surface plasmon resonance (LSPR) properties and optimized sensitivity, are crucial and highly desired for surface-enhanced Raman spectroscopy (SERS) applications. In this article, we report on a very promising and flexible SERS platforms with a tunable LSPR response and sensitivity based on Ag nanoplates and graphene oxide (GO). The SERS detection sensitivity can be easily optimized and significantly improved by fine-tuning the LSPR band of the Ag nanoplate/GO substrates (to enhance the SERS response) during sample preparation. We applied the as-prepared SERS platform for sensitive SERS detection of 4-mercaptobenzoic acid and 4-aminothiophenol and found that the SERS signal varied markedly (by ∼10-15-fold) with the fine-tuning of the LSPR band. The SERS enhancement factor of the Ag nanoplate/GO complexes was more than 10(4) times larger than that obtained using spherical Ag nanoparticles. The as-prepared Ag nanoplate/GO platforms, because of their excellent stability and tunable LSPR properties, will find promising practical SERS applications.
Collapse
Affiliation(s)
- Hui Hou
- †State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ping Wang
- †State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Jie Zhang
- †State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuanping Li
- †State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- ‡University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yongdong Jin
- †State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| |
Collapse
|
42
|
Povolotskaya AV, Povolotskiy AV, Manshina AA. Hybrid nanostructures: synthesis, morphology and functional properties. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4487] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: an introduction. ScientificWorldJournal 2015; 2015:124582. [PMID: 25884017 PMCID: PMC4390178 DOI: 10.1155/2015/124582] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/01/2014] [Accepted: 11/02/2014] [Indexed: 01/05/2023] Open
Abstract
Raman spectroscopy has enabled researchers to map the specific chemical makeup of surfaces, solutions, and even cells. However, the inherent insensitivity of the technique makes it difficult to use and statistically complicated. When Raman active molecules are near gold or silver nanoparticles, the Raman intensity is significantly amplified. This phenomenon is referred to as surface-enhanced Raman spectroscopy (SERS). The extent of SERS enhancement is due to a variety of factors such as nanoparticle size, shape, material, and configuration. The choice of Raman reporters and protective coatings will also influence SERS enhancement. This review provides an introduction to how these factors influence signal enhancement and how to optimize them during synthesis of SERS nanoparticles.
Collapse
|
44
|
Liu L, Yang H, Ren X, Tang J, Li Y, Zhang X, Cheng Z. Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates. NANOSCALE 2015; 7:5147-51. [PMID: 25721784 DOI: 10.1039/c5nr00491h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Flower-shaped Au-ZnO hybrid nanoparticles have been prepared via seeding growth and subsequent wet-chemical etching of Au-ZnO core-shell nanoparticles. The etched Au-ZnO hybrid nanoparticles have shown a stronger surface-enhanced Raman scattering (SERS) signal of the nontotally symmetric (b2) vibrational modes of PATP molecules than Au nanoparticles alone, which is attributed to the chemical enhancement effect of the ZnO layer which is greatly excited by the localized surface plasmon resonance (LSPR) of Au cores. Further, the mechanism of the LSPR-enhanced charge transfer (CT) effect has been proved by the SERS spectra of PATP molecules excited using different laser sources from 325 to 785 nm. Moreover, the photocatalytic experimental results indicated that Au-ZnO hybrid nanoparticles are promising as biologically compatible and recyclable SERS-active platforms for different molecular species.
Collapse
Affiliation(s)
- Liping Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Gong X, Tang J, Ji Y, Wu B, Wu H, Liu A. Adjustable plasmonic optical properties of hollow gold nanospheres monolayers and LSPR-dependent surface-enhanced Raman scattering of hollow gold nanosphere/graphene oxide hybrids. RSC Adv 2015. [DOI: 10.1039/c5ra08057f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Colloidal hollow gold nanospheres with adjustable localized surface plasmon resonance (LSPR) properties were synthesized and self-assembled into HGNs monolayers for investigation of LSPR-dependent surface enhanced Raman scattering (SERS) behavior.
Collapse
Affiliation(s)
- Xue Gong
- Center for Optoelectronics Materials and Devices
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jian Tang
- Center for Optoelectronics Materials and Devices
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yixin Ji
- Center for Optoelectronics Materials and Devices
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Bingbing Wu
- Key Laboratory of E&M (Zhejiang University of Technology)
- Ministry of Education & Zhejiang Province
- Hangzhou 310014
- China
| | - Huaping Wu
- Key Laboratory of E&M (Zhejiang University of Technology)
- Ministry of Education & Zhejiang Province
- Hangzhou 310014
- China
| | - Aiping Liu
- Center for Optoelectronics Materials and Devices
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
- State Key Lab of Silicon Materials
| |
Collapse
|
46
|
Kha NM, Chen CH, Su WN, Rick J, Hwang BJ. Improved Raman and photoluminescence sensitivity achieved using bifunctional Ag@SiO2 nanocubes. Phys Chem Chem Phys 2015; 17:21226-35. [DOI: 10.1039/c4cp05217j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and metal-enhanced photoluminescence (MEPL) responses can be greatly improved by introducing a thin coating of silica (SiO2) on silver nanocubes.
Collapse
Affiliation(s)
- Nguyen Minh Kha
- NanoElectrochemistry Laboratory
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Ching-Hsiang Chen
- NanoElectrochemistry Laboratory
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Wei-Nien Su
- NanoElectrochemistry Laboratory
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - John Rick
- NanoElectrochemistry Laboratory
- Graduate Institute of Applied Science and Technology
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Bing-Joe Hwang
- NanoElectrochemistry Laboratory
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| |
Collapse
|
47
|
Terekhov SN, Kachan SM, Panarin AY, Mojzes P. Surface-enhanced Raman scattering on silvered porous alumina templates: role of multipolar surface plasmon resonant modes. Phys Chem Chem Phys 2015; 17:31780-9. [DOI: 10.1039/c5cp04197j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nanostructured silver films with different thicknesses were prepared by vapor deposition onto the surface of the anodic aluminum oxide (AAO) template to be used as surface-enhanced Raman scattering (SERS) active substrates.
Collapse
Affiliation(s)
| | - S. M. Kachan
- Department of Information Technologies and Robotics
- Belarusian National Technical University
- 220013 Minsk
- Belarus
| | | | - P. Mojzes
- Institute of Physics
- Charles University in Prague
- CZ-121 16 Prague 2
- Czech Republic
| |
Collapse
|
48
|
Chen X, Jiang C, Yu S. Nanostructured materials for applications in surface-enhanced Raman scattering. CrystEngComm 2014. [DOI: 10.1039/c4ce01383b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This highlight summarizes current advances in the design and the employment of nanostructured materials in SERS substrates especially from the dimensional point of view. We then talk about synthesis methods and the novel properties of these nanostructured materials with their potential applications in SERS.
Collapse
Affiliation(s)
- Xiaochun Chen
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering
- Hefei, China
| | - Changlong Jiang
- Institute of Intelligent Machines
- Chinese Academy of Sciences
- Hefei, China
| | - Shaoming Yu
- School of Chemistry and Chemical Engineering
- Hefei University of Technology and Anhui Key Laboratory of Controllable Chemical Reaction & Material Chemical Engineering
- Hefei, China
| |
Collapse
|