1
|
Sinha Roy A, Marohn JA, Freed JH. An analysis of double-quantum coherence ESR in an N-spin system: Analytical expressions and predictions. J Chem Phys 2024; 160:134105. [PMID: 38557852 PMCID: PMC11087869 DOI: 10.1063/5.0200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Electron spin resonance pulsed dipolar spectroscopy (PDS) has become popular in protein 3D structure analysis. PDS studies yield distance distributions between a pair or multiple pairs of spin probes attached to protein molecules, which can be used directly in structural studies or as constraints in theoretical predictions. Double-quantum coherence (DQC) is a highly sensitive and accurate PDS technique to study protein structures in the solid state and under physiologically relevant conditions. In this work, we have derived analytical expressions for the DQC signal for a system with N-dipolar coupled spin-1/2 particles in the solid state. The expressions are integrated over the relevant spatial parameters to obtain closed form DQC signal expressions. These expressions contain the concentration-dependent "instantaneous diffusion" and the background signal. For micromolar and lower concentrations, these effects are negligible. An approximate analysis is provided for cases of finite pulses. The expressions obtained in this work should improve the analysis of DQC experimental data significantly, and the analytical approach could be extended easily to a wide range of magnetic resonance phenomena.
Collapse
Affiliation(s)
| | - John A. Marohn
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
2
|
Bogdanov A, Frydman V, Seal M, Rapatskiy L, Schnegg A, Zhu W, Iron M, Gronenborn AM, Goldfarb D. Extending the Range of Distances Accessible by 19F Electron-Nuclear Double Resonance in Proteins Using High-Spin Gd(III) Labels. J Am Chem Soc 2024; 146:6157-6167. [PMID: 38393979 PMCID: PMC10921402 DOI: 10.1021/jacs.3c13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Fluorine electron-nuclear double resonance (19F ENDOR) has recently emerged as a valuable tool in structural biology for distance determination between F atoms and a paramagnetic center, either intrinsic or conjugated to a biomolecule via spin labeling. Such measurements allow access to distances too short to be measured by double electron-electron resonance (DEER). To further extend the accessible distance range, we exploit the high-spin properties of Gd(III) and focus on transitions other than the central transition (|-1/2⟩ ↔ |+1/2⟩), that become more populated at high magnetic fields and low temperatures. This increases the spectral resolution up to ca. 7 times, thus raising the long-distance limit of 19F ENDOR almost 2-fold. We first demonstrate this on a model fluorine-containing Gd(III) complex with a well-resolved 19F spectrum in conventional central transition measurements and show quantitative agreement between the experimental spectra and theoretical predictions. We then validate our approach on two proteins labeled with 19F and Gd(III), in which the Gd-F distance is too long to produce a well-resolved 19F ENDOR doublet when measured at the central transition. By focusing on the |-5/2⟩ ↔ |-3/2⟩ and |-7/2⟩ ↔ |-5/2⟩ EPR transitions, a resolution enhancement of 4.5- and 7-fold was obtained, respectively. We also present data analysis strategies to handle contributions of different electron spin manifolds to the ENDOR spectrum. Our new extended 19F ENDOR approach may be applicable to Gd-F distances as large as 20 Å, widening the current ENDOR distance window.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Veronica Frydman
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Manas Seal
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Leonid Rapatskiy
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Schnegg
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Wenkai Zhu
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Mark Iron
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| |
Collapse
|
3
|
Kopp K, Westhofen L, Hett T, Felix Schwering-Sohnrey M, Mayländer M, Richert S, Schiemann O. Synthesis and dark state EPR properties of PDI-trityl dyads and triads. Chemistry 2024; 30:e202303635. [PMID: 38055217 DOI: 10.1002/chem.202303635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
Covalently-linked chromophore-radical systems with their unique optical and magnetic properties are useful for applications in, e. g., quantum information science. To expand the catalog of molecular systems, we synthesized and characterized six novel chromophore-radical and radical-chromophore-radical systems employing derivatives of perylene diimide (PDI) as the chromophore and trityl as the radical. The EPR properties of these compounds were evaluated in solution at cryogenic and room temperatures. In addition, the electron spin-spin coupling in the two bistrityl systems was investigated using DQC measurements. The presented results serve as a basis for further spectroscopic investigations under photoexcitation of the PDI core.
Collapse
Affiliation(s)
- Kevin Kopp
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Lars Westhofen
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Tobias Hett
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | | | - Maximilian Mayländer
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Olav Schiemann
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| |
Collapse
|
4
|
Abdullin D, Rauh Corro P, Hett T, Schiemann O. PDSFit: PDS data analysis in the presence of orientation selectivity, g-anisotropy, and exchange coupling. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:37-60. [PMID: 38130168 DOI: 10.1002/mrc.5415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023]
Abstract
Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS), encompassing techniques such as pulsed electron-electron double resonance (PELDOR or DEER) and relaxation-induced dipolar modulation enhancement (RIDME), is a valuable method in structural biology and materials science for obtaining nanometer-scale distance distributions between electron spin centers. An important aspect of PDS is the extraction of distance distributions from the measured time traces. Most software used for this PDS data analysis relies on simplifying assumptions, such as assuming isotropic g-factors of ~2 and neglecting orientation selectivity and exchange coupling. Here, the program PDSFit is introduced, which enables the analysis of PELDOR and RIDME time traces with or without orientation selectivity. It can be applied to spin systems consisting of up to two spin centers with anisotropic g-factors and to spin systems with exchange coupling. It employs a model-based fitting of the time traces using parametrized distance and angular distributions, and parametrized PDS background functions. The fitting procedure is followed by an error analysis for the optimized parameters of the distributions and backgrounds. Using five different experimental data sets published previously, the performance of PDSFit is tested and found to provide reliable solutions.
Collapse
Affiliation(s)
- Dinar Abdullin
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Pablo Rauh Corro
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Tobias Hett
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Olav Schiemann
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Asanbaeva NB, Novopashina DS, Rogozhnikova OY, Tormyshev VM, Kehl A, Sukhanov AA, Shernyukov AV, Genaev AM, Lomzov AA, Bennati M, Meyer A, Bagryanskaya EG. 19F electron nuclear double resonance (ENDOR) spectroscopy for distance measurements using trityl spin labels in DNA duplexes. Phys Chem Chem Phys 2023; 25:23454-23466. [PMID: 37609874 DOI: 10.1039/d3cp02969g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The combination of fluorine labeling and pulsed electron-nuclear double resonance (ENDOR) is emerging as a powerful technique for obtaining structural information about proteins and nucleic acids. In this work, we explored the capability of Mims 19F ENDOR experiments on reporting intermolecular distances in trityl- and 19F-labeled DNA duplexes at three electron paramagnetic resonance (EPR) frequencies (34, 94, and 263 GHz). For spin labeling, we used the hydrophobic Finland trityl radical and hydrophilic OX063 trityl radical. Fluorine labels were introduced into two positions of a DNA oligonucleotide. The results indicated that hyperfine splittings visible in the ENDOR spectra are consistent with the most populated interspin distances between 19F and the trityl radical predicted from molecular dynamic (MD) simulations. Moreover, for some cases, ENDOR spectral simulations based on MD results were able to reproduce the conformational distribution reflected in the experimental ENDOR line broadening. Additionally, MD simulations provided more detailed information about the melting of terminal base pairs of the oligonucleotides and about the configuration of the trityls relative to a DNA end.
Collapse
Affiliation(s)
- N B Asanbaeva
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - D S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia
| | - O Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - V M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - A A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 10/7 Sibirsky Tract, Kazan 420029, Russia
| | - A V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A M Genaev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia
| | - M Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg August University of Göttingen, Tammannstr.6, Göttingen, Germany
| | - A Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg August University of Göttingen, Tammannstr.6, Göttingen, Germany
| | - E G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| |
Collapse
|
6
|
Schäfter D, Wischnat J, Tesi L, De Sousa JA, Little E, McGuire J, Mas-Torrent M, Rovira C, Veciana J, Tuna F, Crivillers N, van Slageren J. Molecular One- and Two-Qubit Systems with Very Long Coherence Times. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302114. [PMID: 37289574 DOI: 10.1002/adma.202302114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Indexed: 06/10/2023]
Abstract
General-purpose quantum computation and quantum simulation require multi-qubit architectures with precisely defined, robust interqubit interactions, coupled with local addressability. This is an unsolved challenge, primarily due to scalability issues. These issues often derive from poor control over interqubit interactions. Molecular systems are promising materials for the realization of large-scale quantum architectures, due to their high degree of positionability and the possibility to precisely tailor interqubit interactions. The simplest quantum architecture is the two-qubit system, with which quantum gate operations can be implemented. To be viable, a two-qubit system must possess long coherence times, the interqubit interaction must be well defined and the two qubits must also be addressable individually within the same quantum manipulation sequence. Here results are presented on the investigation of the spin dynamics of chlorinated triphenylmethyl organic radicals, in particular the perchlorotriphenylmethyl (PTM) radical, a mono-functionalized PTM, and a biradical PTM dimer. Extraordinarily long ensemble coherence times up to 148 µs are found at all temperatures below 100 K. Two-qubit and, importantly, individual qubit addressability in the biradical system are demonstrated. These results underline the potential of molecular materials for the development of quantum architectures.
Collapse
Affiliation(s)
- Dennis Schäfter
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Jonathan Wischnat
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Lorenzo Tesi
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - J Alejandro De Sousa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
- Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Mérida, 5101, Venezuela
| | - Edmund Little
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jake McGuire
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
7
|
Abdullin D, Hett T, Fleck N, Kopp K, Cassidy S, Richert S, Schiemann O. Magneto-Structural Correlations in a Mixed Porphyrin(Cu 2+ )/Trityl Spin System: Magnitude, Sign, and Distribution of the Exchange Coupling Constant. Chemistry 2023; 29:e202203148. [PMID: 36519664 DOI: 10.1002/chem.202203148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Tetrathiatriarylmethyl radicals (TAM or trityl) are receiving increasing attention in various fields of magnetic resonance such as imaging, dynamic nuclear polarization, spin labeling, and, more recently, molecular magnetism and quantum information technology. Here, a trityl radical attached via a phenyl bridge to a copper(II)tetraphenylporphyrin was synthesized, and its magnetic properties studied by multi-frequency continuous-wave electron paramagnetic resonance (EPR) spectroscopy and magnetic measurements. EPR revealed that the electron spin-spin coupling constant J between the trityl and Cu2+ spin centers is ferromagnetic with a magnitude of -2.3 GHz (-0.077 cm-1 , + J S → 1 S → 2 ${+J{\vec{S}}_{1}{\vec{S}}_{2}}$ convention) and a distribution width of 1.2 GHz (0.040 cm-1 ). With the help of density functional theory (DFT) calculations, the obtained ferromagnetic exchange coupling, which is unusual for para-substituted phenyl-bridged biradicals, could be related to the almost perpendicular orientation of the phenyl linker with respect to the porphyrin and trityl ring planes in the energy minimum, while the J distribution was rationalized by the temperature weighted rotation of the phenyl bridge about the molecular axis connecting both spin centers. This study exemplifies the importance of molecular dynamics for the homogeneity (or heterogeneity) of the magnetic properties of trityl-based systems.
Collapse
Affiliation(s)
- Dinar Abdullin
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Tobias Hett
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Nico Fleck
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany.,Merck KGaA, Q20/001, Frankfurterstr. 250, 64293, Darmstadt, Germany
| | - Kevin Kopp
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany
| | - Simon Cassidy
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Olav Schiemann
- Clausius-Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany.,Department of Chemical and Biological Physics, Weizmann Institute of Science, 761001, Rehovot, Israel
| |
Collapse
|
8
|
Hasanbasri Z, Poncelet M, Hunter H, Driesschaert B, Saxena S. A new 13C trityl-based spin label enables the use of DEER for distance measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107363. [PMID: 36620971 PMCID: PMC9928843 DOI: 10.1016/j.jmr.2022.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Triarylmethyl (TAM)-based labels, while still underutilized, are a powerful class of labels for pulsed-Electron Spin Resonance (ESR) distance measurements. They feature slow relaxation rates for long-lasting signals, high stability for cellular experiments, and narrow spectral features for efficient excitation of the spins. However, the typical narrow line shape limits the available distance measurements to only single-frequency experiments, such as Double Quantum Coherence (DQC) and Relaxation Induced Dipolar Modulation Enhancement (RIDME), which can be complicated to perform or hard to process. Therefore, widespread usage of TAM labels can be enhanced by the use of Double Electron-Electron Resonance (DEER) distance measurements. In this work, we developed a new spin label, 13C1-mOX063-d24, with a 13C isotope as the radical center. Due to the resolved hyperfine splitting, the spectrum is sufficiently broadened to permit DEER-based experiments at Q-band spectrometers. Additionally, this new label can be incorporated orthogonally with Cu(II)-based protein label. The orthogonal labeling scheme enables DEER distance measurement at X-band frequencies. Overall, the new trityl label allows for DEER-based distance measurements that complement existing TAM-label DQC and RIDME experiments.
Collapse
Affiliation(s)
- Zikri Hasanbasri
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Martin Poncelet
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States
| | - Hannah Hunter
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, School of Pharmacy & In Vivo Multifunctional Magnetic Resonance (IMMR) Center, Health Sciences Center, West Virginia University, Morgantown, WV 26506, United States; C. Eugene Bennett Department of Chemistry West Virginia University, Morgantown, WV 26506, United States.
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
9
|
Vanas A, Soetbeer J, Breitgoff FD, Hintz H, Sajid M, Polyhach Y, Godt A, Jeschke G, Yulikov M, Klose D. Intermolecular contributions, filtration effects and signal composition of SIFTER (single-frequency technique for refocusing). MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:1-18. [PMID: 38269110 PMCID: PMC10807728 DOI: 10.5194/mr-4-1-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2024]
Abstract
To characterize structure and molecular order in the nanometre range, distances between electron spins and their distributions can be measured via dipolar spin-spin interactions by different pulsed electron paramagnetic resonance experiments. Here, for the single-frequency technique for refocusing dipolar couplings (SIFTER), the buildup of dipolar modulation signal and intermolecular contributions is analysed for a uniform random distribution of monoradicals and biradicals in frozen glassy solvent by using the product operator formalism for electron spin S = 1 / 2 . A dipolar oscillation artefact appearing at both ends of the SIFTER time trace is predicted, which originates from the weak coherence transfer between biradicals. The relative intensity of this artefact is predicted to be temperature independent but to increase with the spin concentration in the sample. Different compositions of the intermolecular background are predicted in the case of biradicals and in the case of monoradicals. Our theoretical account suggests that the appropriate procedure of extracting the intramolecular dipolar contribution (form factor) requires fitting and subtracting the unmodulated part, followed by division by an intermolecular background function that is different in shape. This scheme differs from the previously used heuristic background division approach. We compare our theoretical derivations to experimental SIFTER traces for nitroxide and trityl monoradicals and biradicals. Our analysis demonstrates a good qualitative match with the proposed theoretical description. The resulting perspectives for a quantitative analysis of SIFTER data are discussed.
Collapse
Affiliation(s)
- Agathe Vanas
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Janne Soetbeer
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Frauke Diana Breitgoff
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Henrik Hintz
- Department of Chemistry, Bielefeld University, Universitätsstrasse
25, 33615 Bielefeld, Germany
| | - Muhammad Sajid
- Department of Chemistry, Bielefeld University, Universitätsstrasse
25, 33615 Bielefeld, Germany
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Department of Chemistry, Bielefeld University, Universitätsstrasse
25, 33615 Bielefeld, Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg
2, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
11
|
Asanbaeva N, Sukhanov A, Diveikina AA, Rogozhnikova O, Trukhin DV, Tormyshev VM, Chubarov AS, Maryasov AG, Genaev A, Shernyukov AV, Salnikov GE, Lomzov AA, Pyshnyi DV, Bagryanskaya E. Application of W-band 19F electron nuclear double resonance (ENDOR) spectroscopy to distance measurement using a trityl spin probe and a fluorine label. Phys Chem Chem Phys 2022; 24:5982-6001. [DOI: 10.1039/d1cp05445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, Marina Bennati and coworkers (Angew. Chemie - Int. Ed., 2020, 59, 373–379., A. J. Magn. Reson., 2021, 333, 107091) proposed to use electron nuclear double resonance (ENDOR) spectroscopy in...
Collapse
|
12
|
Avalos CE, Richert S, Socie E, Karthikeyan G, Casano G, Stevanato G, Kubicki DJ, Moser JE, Timmel CR, Lelli M, Rossini AJ, Ouari O, Emsley L. Enhanced Intersystem Crossing and Transient Electron Spin Polarization in a Photoexcited Pentacene–Trityl Radical. J Phys Chem A 2020; 124:6068-6075. [DOI: 10.1021/acs.jpca.0c03498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Claudia E. Avalos
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR), University of Oxford, South Parks Road, OX1 3QR Oxford, United Kingdom
| | - Etienne Socie
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | - Gabriele Stevanato
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Dominik J. Kubicki
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jacques E. Moser
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christiane R. Timmel
- Centre for Advanced Electron Spin Resonance (CAESR), University of Oxford, South Parks Road, OX1 3QR Oxford, United Kingdom
| | - Moreno Lelli
- Center of Magnetic Resonance (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Aaron J. Rossini
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Fleck N, Heubach CA, Hett T, Haege FR, Bawol PP, Baltruschat H, Schiemann O. SLIM: A Short-Linked, Highly Redox-Stable Trityl Label for High-Sensitivity In-Cell EPR Distance Measurements. Angew Chem Int Ed Engl 2020; 59:9767-9772. [PMID: 32329172 PMCID: PMC7318235 DOI: 10.1002/anie.202004452] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 12/15/2022]
Abstract
The understanding of biomolecular function is coupled to knowledge about the structure and dynamics of these biomolecules, preferably acquired under native conditions. In this regard, pulsed dipolar EPR spectroscopy (PDS) in conjunction with site-directed spin labeling (SDSL) is an important method in the toolbox of biophysical chemistry. However, the currently available spin labels have diverse deficiencies for in-cell applications, for example, low radical stability or long bioconjugation linkers. In this work, a synthesis strategy is introduced for the derivatization of trityl radicals with a maleimide-functionalized methylene group. The resulting trityl spin label, called SLIM, yields narrow distance distributions, enables highly sensitive distance measurements down to concentrations of 90 nm, and shows high stability against reduction. Using this label, the guanine-nucleotide dissociation inhibitor (GDI) domain of Yersinia outer protein O (YopO) is shown to change its conformation within eukaryotic cells.
Collapse
Affiliation(s)
- Nico Fleck
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Caspar A. Heubach
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Tobias Hett
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Florian R. Haege
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Pawel P. Bawol
- Institute of Physical and Theoretical ChemistryUniversity of BonnRömerstr. 16453117BonnGermany
| | - Helmut Baltruschat
- Institute of Physical and Theoretical ChemistryUniversity of BonnRömerstr. 16453117BonnGermany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| |
Collapse
|
14
|
Fleck N, Heubach CA, Hett T, Haege FR, Bawol PP, Baltruschat H, Schiemann O. SLIM: A Short‐Linked, Highly Redox‐Stable Trityl Label for High‐Sensitivity In‐Cell EPR Distance Measurements. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Nico Fleck
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Caspar A. Heubach
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Tobias Hett
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Florian R. Haege
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Pawel P. Bawol
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Römerstr. 164 53117 Bonn Germany
| | - Helmut Baltruschat
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Römerstr. 164 53117 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
15
|
Abdullin D, Schiemann O. Pulsed Dipolar EPR Spectroscopy and Metal Ions: Methodology and Biological Applications. Chempluschem 2020; 85:353-372. [DOI: 10.1002/cplu.201900705] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
16
|
Tormyshev VM, Chubarov AS, Krumkacheva OA, Trukhin DV, Rogozhnikova OY, Spitsyna AS, Kuzhelev AA, Koval VV, Fedin MV, Godovikova TS, Bowman MK, Bagryanskaya EG. Methanethiosulfonate Derivative of OX063 Trityl: A Promising and Efficient Reagent for Side-Directed Spin Labeling of Proteins. Chemistry 2020; 26:2705-2712. [PMID: 31851392 DOI: 10.1002/chem.201904587] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Indexed: 12/20/2022]
Abstract
Trityl radicals (TAMs) have recently appeared as an alternative source of spin labels for measuring long distances in biological systems. Finland trityl radical (FTAM) served as the basis for this new generation of spin labels, but FTAM is rather lipophilic and susceptible to self-aggregation, noncovalent binding with lipophilic sites of proteins, and noncovalent docking at the termini of duplex DNA. In this paper the very hydrophilic OX063 TAM with very low toxicity and little tendency for aggregation is used as the basis for a spin label. Human serum albumin (HSA) labeled with OX063 has an intense narrow line typical of TAM radicals in solution, whereas HSA labeled with FTAM shows broad lines and extensive aggregation. In pulse EPR measurements, the measured phase memory time TM for HSA labeled with OX063 is 6.3 μs at 50 K, the longest yet obtained with a TAM-based spin label. The lowered lipophilicity also decreases side products in the labeling reaction.
Collapse
Affiliation(s)
- Victor M Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Olesya A Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia.,International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk, 630090, Russia
| | - Dmitry V Trukhin
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Olga Yu Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Anna S Spitsyna
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Andrey A Kuzhelev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya Str. 3a, Novosibirsk, 630090, Russia
| | - Tatyana S Godovikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Pr. Lavrentjeva 8, Novosibirsk, 630090, Russia
| | - Michael K Bowman
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama, 35487-0336, USA
| | - Elena G Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk, 630090, Russia
| |
Collapse
|
17
|
Kuzhelev AA, Tormyshev VM, Plyusnin VF, Rogozhnikova OY, Edeleva MV, Veber SL, Bagryanskaya EG. Photochemistry of tris(2,3,5,6-tetrathiaaryl)methyl radicals in various solutions. Phys Chem Chem Phys 2020; 22:1019-1026. [DOI: 10.1039/c9cp06213k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A detailed mechanism of TAM photolysis was studied and includes photoionization of the TAM radical with the formation of carbocation and further conversion of the carbocation under aerobic conditions into quinone-methide and under anaerobic conditions supposedly into an aromatic carbene.
Collapse
Affiliation(s)
- Andrey A. Kuzhelev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Victor F. Plyusnin
- Novosibirsk State University
- Novosibirsk 630090
- Russia
- Voevodsky Institute of Chemical Kinetics and Combustion
- SB RAS
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
| | - Mariya V. Edeleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Sergey L. Veber
- Novosibirsk State University
- Novosibirsk 630090
- Russia
- International Tomography Center SB RAS
- Novosibirsk 630090
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| |
Collapse
|
18
|
Site Selective and Efficient Spin Labeling of Proteins with a Maleimide-Functionalized Trityl Radical for Pulsed Dipolar EPR Spectroscopy. Molecules 2019; 24:molecules24152735. [PMID: 31357628 PMCID: PMC6696014 DOI: 10.3390/molecules24152735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023] Open
Abstract
Pulsed dipolar electron paramagnetic resonance spectroscopy (PDS) in combination with site-directed spin labeling (SDSL) of proteins and oligonucleotides is a powerful tool in structural biology. Instead of using the commonly employed gem-dimethyl-nitroxide labels, triarylmethyl (trityl) spin labels enable such studies at room temperature, within the cells and with single-frequency electron paramagnetic resonance (EPR) experiments. However, it has been repeatedly reported that labeling of proteins with trityl radicals led to low labeling efficiencies, unspecific labeling and label aggregation. Therefore, this work introduces the synthesis and characterization of a maleimide-functionalized trityl spin label and its corresponding labeling protocol for cysteine residues in proteins. The label is highly cysteine-selective, provides high labeling efficiencies and outperforms the previously employed methanethiosulfonate-functionalized trityl label. Finally, the new label is successfully tested in PDS measurements on a set of doubly labeled Yersinia outer protein O (YopO) mutants.
Collapse
|
19
|
Fleck N, Hett T, Brode J, Meyer A, Richert S, Schiemann O. C–C Cross-Coupling Reactions of Trityl Radicals: Spin Density Delocalization, Exchange Coupling, and a Spin Label. J Org Chem 2019; 84:3293-3303. [DOI: 10.1021/acs.joc.8b03229] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nico Fleck
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Tobias Hett
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Jonas Brode
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Andreas Meyer
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| |
Collapse
|
20
|
Hintz H, Vanas A, Klose D, Jeschke G, Godt A. Trityl Radicals with a Combination of the Orthogonal Functional Groups Ethyne and Carboxyl: Synthesis without a Statistical Step and EPR Characterization. J Org Chem 2019; 84:3304-3320. [DOI: 10.1021/acs.joc.8b03234] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Agathe Vanas
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Daniel Klose
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
21
|
Kuzhelev AA, Krumkacheva OA, Ivanov MY, Prikhod'ko SA, Adonin NY, Tormyshev VM, Bowman MK, Fedin MV, Bagryanskaya EG. Pulse EPR of Triarylmethyl Probes: A New Approach for the Investigation of Molecular Motions in Soft Matter. J Phys Chem B 2018; 122:8624-8630. [PMID: 30137993 DOI: 10.1021/acs.jpcb.8b07714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triarylmethyl (TAM) radicals have become widely used free radicals in the past few years. Their electron spins have long relaxation times and narrow electron paramagnetic resonance (EPR) lines, which make them an important class of probes and tags in biological applications and materials science. In this work, we propose a new approach to characterize librations by means of TAM radicals. The temperature dependence of motional parameter ⟨α2⟩τc, where ⟨α2⟩ is the mean-squared amplitude of librations and τc is their characteristic time, is obtained by comparison of the 1/ Tm phase-relaxation rates at X- and Q-band EPR frequencies. We study three soft matrixes, viz., glassy trehalose and two ionic liquids, using TAMs with optimized relaxation properties OX063D and a dodeca- n-butyl homologue of Finland trityl (DBT). The motional parameters ⟨α2⟩τc obtained using TAMs are in excellent agreement with those obtained by means of nitroxide radicals. At the same time, the new TAM-based approach has (1) greater sensitivity due to the narrower EPR spectrum and (2) greater measuring accuracy and broader temperature range due to longer relaxation times. The developed approach may be fruitfully implemented to probe low-temperature molecular motions of TAM-labeled biopolymers, membrane systems, polymers, molecules in glassy media, and ionic liquids.
Collapse
Affiliation(s)
- Andrey A Kuzhelev
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS , Novosibirsk 630090 , Russia.,International Tomography Center SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Mikhail Yu Ivanov
- International Tomography Center SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | | | - Nicolay Yu Adonin
- Boreskov Institute of Catalysis SB RAS , Novosibirsk 630090 , Russia
| | - Victor M Tormyshev
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Michael K Bowman
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS , Novosibirsk 630090 , Russia.,University of Alabama , Tuscaloosa , Alabama 35487-0336 , United States
| | - Matvey V Fedin
- International Tomography Center SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| |
Collapse
|
22
|
Fleck N, Schnakenburg G, Filippou AC, Schiemann O. Tris[2,2,6,6-tetra-methyl-8-(tri-methyl-sil-yl)benzo[1,2- d;4,5- d']bis-(1,3-di-thiol)-4-yl]methanol diethyl ether monosolvate. Acta Crystallogr E Crystallogr Commun 2018; 74:539-542. [PMID: 29765762 PMCID: PMC5946984 DOI: 10.1107/s2056989018004516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022]
Abstract
The title compound, a tri-aryl-methanol, C46H64OS12Si31, was synthesized via li-thia-tion of tris-2,2,6,6-tetra-methyl-benzo[1,2-d;4,5-d']bis-[1,3]di-thiol-4-yl-methanol, 2, and electrophilic quenching with tri-methyl-silyl chloride. The current crystal structure reveals information about the reactivity of this compound and compares well with the structure reported for the unsubstituted parent compound 2 [Driesschaert et al. (2012 ▸). Eur. J. Org. Chem.33, 6517-6525]. The title compound 1 forms mol-ecular propellers and crystallizes in P [Formula: see text], featuring an unusually long Si-Car bond of 1.910 (3) Å. Moreover, the geometry at the central quaternary carbon is rather trigonal-pyramidal than tetra-hedral due to vast intra-molecular stress. One tri-methyl-silyl group is disordered over two positions in a 0.504 (4):0.496 (4) ratio and one S atom is disordered over two positions in a 0.509 (7):0.491 (7) ratio. The contribution of disordered diethyl ether solvent mol-ecule(s) was removed using the PLATON SQUEEZE (Spek, 2015 ▸) solvent masking procedure. These solvent mol-ecules are not considered in the given chemical formula and other crystal data.
Collapse
Affiliation(s)
- Nico Fleck
- University of Bonn, Institute of Physical and Theoretical Chemistry, Wegelerstrasse 12, 53115 Bonn, Germany
| | - Gregor Schnakenburg
- University of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Alexander C. Filippou
- University of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Olav Schiemann
- University of Bonn, Institute of Physical and Theoretical Chemistry, Wegelerstrasse 12, 53115 Bonn, Germany
| |
Collapse
|
23
|
Jassoy JJ, Meyer A, Spicher S, Wuebben C, Schiemann O. Synthesis of Nanometer Sized Bis- and Tris-trityl Model Compounds with Different Extent of Spin-Spin Coupling. Molecules 2018; 23:E682. [PMID: 29562622 PMCID: PMC6017437 DOI: 10.3390/molecules23030682] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/29/2022] Open
Abstract
Tris(2,3,5,6-tetrathiaaryl)methyl radicals, so-called trityl radicals, are emerging as spin labels for distance measurements in biological systems based on Electron Paramagnetic Resonance (EPR). Here, the synthesis and characterization of rigid model systems carrying either two or three trityl moieties is reported. The monofunctionalized trityl radicals are connected to the molecular bridging scaffold via an esterification reaction employing the Mukaiyama reagent 2-chloro-methylpyridinium iodide. The bis- and tris-trityl compounds exhibit different inter-spin distances, strength of electron-electron exchange and dipolar coupling and can give rise to multi-spin effects. They are to serve as benchmark systems in comparing EPR distance measurement methods.
Collapse
Affiliation(s)
- J Jacques Jassoy
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany.
| | - Andreas Meyer
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany.
| | - Sebastian Spicher
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany.
| | - Christine Wuebben
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany.
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
24
|
The contribution of modern EPR to structural biology. Emerg Top Life Sci 2018; 2:9-18. [PMID: 33525779 PMCID: PMC7288997 DOI: 10.1042/etls20170143] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 02/08/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy combined with site-directed spin labelling is applicable to biomolecules and their complexes irrespective of system size and in a broad range of environments. Neither short-range nor long-range order is required to obtain structural restraints on accessibility of sites to water or oxygen, on secondary structure, and on distances between sites. Many of the experiments characterize a static ensemble obtained by shock-freezing. Compared with characterizing the dynamic ensemble at ambient temperature, analysis is simplified and information loss due to overlapping timescales of measurement and system dynamics is avoided. The necessity for labelling leads to sparse restraint sets that require integration with data from other methodologies for building models. The double electron–electron resonance experiment provides distance distributions in the nanometre range that carry information not only on the mean conformation but also on the width of the native ensemble. The distribution widths are often inconsistent with Anfinsen's concept that a sequence encodes a single native conformation defined at atomic resolution under physiological conditions.
Collapse
|
25
|
Kuzhelev A, Akhmetzyanov D, Denysenkov V, Shevelev G, Krumkacheva O, Bagryanskaya E, Prisner T. High-frequency pulsed electron–electron double resonance spectroscopy on DNA duplexes using trityl tags and shaped microwave pulses. Phys Chem Chem Phys 2018; 20:26140-26144. [DOI: 10.1039/c8cp03951h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Distances between trityl spin labels attached to DNA duplexes were determined by 180 GHz and 260 GHz PELDOR spectroscopy applying broadband pump pulse at higher frequency.
Collapse
Affiliation(s)
- A. Kuzhelev
- Novosibirsk State University
- 630090 Novosibirsk
- Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- 630090 Novosibirsk
| | - D. Akhmetzyanov
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry
- Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - V. Denysenkov
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry
- Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - G. Shevelev
- Novosibirsk State University
- 630090 Novosibirsk
- Russia
- Institute of Chemical Biology and Fundamental Medicine SB RAS
- 630090 Novosibirsk
| | - O. Krumkacheva
- Novosibirsk State University
- 630090 Novosibirsk
- Russia
- International Tomography Center SB RAS
- Novosibirsk
| | - E. Bagryanskaya
- Novosibirsk State University
- 630090 Novosibirsk
- Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- 630090 Novosibirsk
| | - T. Prisner
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry
- Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| |
Collapse
|
26
|
Meyer A, Jassoy JJ, Spicher S, Berndhäuser A, Schiemann O. Performance of PELDOR, RIDME, SIFTER, and DQC in measuring distances in trityl based bi- and triradicals: exchange coupling, pseudosecular coupling and multi-spin effects. Phys Chem Chem Phys 2018; 20:13858-13869. [DOI: 10.1039/c8cp01276h] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The performance of pulsed EPR methods for distance measurements is evaluated on three different trityl model systems.
Collapse
Affiliation(s)
- Andreas Meyer
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Jean Jacques Jassoy
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Sebastian Spicher
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Andreas Berndhäuser
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry
- Rheinische Friedrich-Wilhelms-University Bonn
- 53115 Bonn
- Germany
| |
Collapse
|
27
|
Krumkacheva O, Bagryanskaya E. EPR-based distance measurements at ambient temperature. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 280:117-126. [PMID: 28579097 DOI: 10.1016/j.jmr.2017.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/24/2023]
Abstract
Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T<80K). Recently, application of spin labels with long electron spin dephasing time at room temperature such as triarylmethyl radicals and nitroxides with bulky substituents at a position close to radical centers enabled measurements at room temperature and even at physiologically relevant temperatures by PD EPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.
Collapse
Affiliation(s)
- Olesya Krumkacheva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation; International Tomography Center SB RAS, Institutskaya 3A, Novosibirsk 630090, Russian Federation.
| | - Elena Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Pr. Lavrentjeva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
28
|
Clayton JA, Qi M, Godt A, Goldfarb D, Han S, Sherwin MS. Gd 3+-Gd 3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Phys Chem Chem Phys 2017; 19:5127-5136. [PMID: 28139788 PMCID: PMC5394103 DOI: 10.1039/c6cp07119h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd3+ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-rulers of the type Gd-PyMTA-spacer-Gd-PyMTA, with Gd-Gd distances ranging from 1.2 nm to 4.3 nm. CW EPR measurements of these Gd-rulers show that significant dipolar broadening of the central |-1/2〉 → |1/2〉 transition occurs at 30 K for Gd-Gd distances up to ∼3.4 nm with Gd-PyMTA as the spin label. This represents a significant extension for distances accessible by CW EPR, as nitroxide-based spin labels at X-band frequencies can typically only access distances up to ∼2 nm. We show that this broadening persists at biologically relevant temperatures above 200 K, and that this method is further extendable up to room temperature by immobilizing the sample in glassy trehalose. We show that the peak-to-peak broadening of the central transition follows the expected 1/r3 dependence for the electron-electron dipolar interaction, from cryogenic temperatures up to room temperature. A simple procedure for simulating the dependence of the lineshape on interspin distance is presented, in which the broadening of the central transition is modeled as an S = 1/2 spin whose CW EPR lineshape is broadened through electron-electron dipolar interactions with a neighboring S = 7/2 spin.
Collapse
Affiliation(s)
- Jessica A Clayton
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA. and Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Bielefeld, Germany
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Songi Han
- Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA and Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA and Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mark S Sherwin
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA. and Institute for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
29
|
Gast P, Mance D, Zurlo E, Ivanov KL, Baldus M, Huber M. A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol. Phys Chem Chem Phys 2017; 19:3777-3781. [DOI: 10.1039/c6cp05864g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multi- and very high-field electron paramagnetic resonance provides essential parameters to characterize dynamic nuclear polarization agents.
Collapse
Affiliation(s)
- P. Gast
- Department of Physics
- Huygens-Kamerlingh Onnes Laboratory
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - D. Mance
- NMR Spectroscopy
- Bijvoet Center for Biomolecular Research
- Utrecht University
- Utrecht
- The Netherlands
| | - E. Zurlo
- Department of Physics
- Huygens-Kamerlingh Onnes Laboratory
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - K. L. Ivanov
- International Tomography Center
- Siberian Branch of the Russian Academy of Science
- Novosibirsk 630090
- Russia
- Novosibirsk State University
| | - M. Baldus
- NMR Spectroscopy
- Bijvoet Center for Biomolecular Research
- Utrecht University
- Utrecht
- The Netherlands
| | - M. Huber
- Department of Physics
- Huygens-Kamerlingh Onnes Laboratory
- Leiden University
- 2300 RA Leiden
- The Netherlands
| |
Collapse
|
30
|
Haeri HH, Spindler P, Plackmeyer J, Prisner T. Double quantum coherence ESR spectroscopy and quantum chemical calculations on a BDPA biradical. Phys Chem Chem Phys 2016; 18:29164-29169. [PMID: 27730235 DOI: 10.1039/c6cp05847g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbon-centered radicals are interesting alternatives to otherwise commonly used nitroxide spin labels for dipolar spectroscopy techniques because of their narrow ESR linewidth. Herein, we present a novel BDPA biradical, where two BDPA (α,α,γ,γ-bisdiphenylene-β-phenylallyl) radicals are covalently tethered by a saturated biphenyl acetylene linker. The inter-spin distance between the two spin carrier fragments was measured using double quantum coherence (DQC) ESR methodology. The DQC experiment revealed a mean distance of only 1.8 nm between the two unpaired electron spins. This distance is shorter than the predictions based on a simple modelling of the biradical geometry with the electron spins located at the central carbon atoms. Therefore, DFT (density functional theory) calculations were performed to obtain a picture of the spin delocalization, which may give rise to a modified dipolar interaction tensor, and to find those conformations that correspond best to the experimentally observed inter-spin distance. Quantum chemical calculations showed that the attachment of the biphenyl acetylene linker at the second position of the fluorenyl ring of BDPA did not affect the spin population or geometry of the BDPA radical. Therefore, spin delocalization and geometry optimization of each BDPA moiety could be performed on the monomeric unit alone. The allylic dihedral angle θ1 between the fluorenyl rings in the monomer subunit was determined to be 30° or 150° using quantum chemical calculations. The proton hyperfine coupling constant calculated from both energy minima was in very good agreement with literature values. Based on the optimal monomer geometries and spin density distributions, the dipolar coupling interaction between both BDPA units could be calculated for several dimer geometries. It was shown that the rotation of the BDPA units around the linker axis (θ2) does not significantly influence the dipolar coupling strength when compared to the allylic dihedral angle θ1. A good agreement between the experimental and calculated dipolar coupling was found for θ1 = 30°.
Collapse
Affiliation(s)
- Haleh Hashemi Haeri
- Institute of Physical und Theoretical Chemistry, Goethe University Frankfurt, Max von Laue Straße 7, 60438 Frankfurt am Main, Germany.
| | - Philipp Spindler
- Institute of Physical und Theoretical Chemistry, Goethe University Frankfurt, Max von Laue Straße 7, 60438 Frankfurt am Main, Germany.
| | - Jörn Plackmeyer
- Institute of Physical und Theoretical Chemistry, Goethe University Frankfurt, Max von Laue Straße 7, 60438 Frankfurt am Main, Germany.
| | - Thomas Prisner
- Institute of Physical und Theoretical Chemistry, Goethe University Frankfurt, Max von Laue Straße 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Kadtsyn E, Anikeenko A, Medvedev N. Molecular dynamics simulation of a DNA duplex labeled with triarylmethyl spin radicals. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Joseph B, Tormyshev VM, Rogozhnikova OY, Akhmetzyanov D, Bagryanskaya EG, Prisner TF. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR. Angew Chem Int Ed Engl 2016; 55:11538-42. [DOI: 10.1002/anie.201606335] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Benesh Joseph
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Dmitry Akhmetzyanov
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Thomas F. Prisner
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
33
|
Joseph B, Tormyshev VM, Rogozhnikova OY, Akhmetzyanov D, Bagryanskaya EG, Prisner TF. Selective High-Resolution Detection of Membrane Protein-Ligand Interaction in Native Membranes Using Trityl-Nitroxide PELDOR. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Benesh Joseph
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Victor M. Tormyshev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
- Novosibirsk State University; Novosibirsk 630090 Russia
| | - Olga Yu. Rogozhnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Dmitry Akhmetzyanov
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Elena G. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk 630090 Russia
| | - Thomas F. Prisner
- Institut für physikalische und theoretische Chemie und Biomolekulares Magnetresonanz Zentrum; Universität Frankfurt; Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
34
|
Hintze C, Bücker D, Domingo Köhler S, Jeschke G, Drescher M. Laser-Induced Magnetic Dipole Spectroscopy. J Phys Chem Lett 2016; 7:2204-9. [PMID: 27163749 DOI: 10.1021/acs.jpclett.6b00765] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pulse electron paramagnetic resonance measurements of nanometer scale distance distributions have proven highly effective in structural studies. They exploit the magnetic dipole-dipole coupling between spin labels site-specifically attached to macromolecules. The most commonly applied technique is double electron-electron resonance (DEER, also called pulsed electron double resonance (PELDOR)). Here we present the new technique of laser-induced magnetic dipole (LaserIMD) spectroscopy based on optical switching of the dipole-dipole coupling. In a proof of concept experiment on a model peptide, we find, already at a low quantum yield of triplet excitation, the same sensitivity for measuring the distance between a porphyrin and a nitroxide label as in a DEER measurement between two nitroxide labels. On the heme protein cytochrome C, we demonstrate that LaserIMD allows for distance measurements between a heme prosthetic group and a nitroxide label, although the heme triplet state is not directly observable by an electron spin echo.
Collapse
Affiliation(s)
- Christian Hintze
- Department of Chemistry, University of Konstanz , 78464 Konstanz, Germany
| | - Dennis Bücker
- Department of Chemistry, University of Konstanz , 78464 Konstanz, Germany
| | | | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule Zürich , 8093 Zürich, Switzerland
| | - Malte Drescher
- Department of Chemistry, University of Konstanz , 78464 Konstanz, Germany
| |
Collapse
|
35
|
Meyer A, Schiemann O. PELDOR and RIDME Measurements on a High-Spin Manganese(II) Bisnitroxide Model Complex. J Phys Chem A 2016; 120:3463-72. [DOI: 10.1021/acs.jpca.6b00716] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Andreas Meyer
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstr. 12, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and
Theoretical Chemistry, University of Bonn, Wegelerstr. 12, Bonn, Germany
| |
Collapse
|
36
|
Demay-Drouhard P, Ching HYV, Akhmetzyanov D, Guillot R, Tabares LC, Bertrand HC, Policar C. A Bis-Manganese(II)-DOTA Complex for Pulsed Dipolar Spectroscopy. Chemphyschem 2016; 17:2066-78. [DOI: 10.1002/cphc.201600234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Paul Demay-Drouhard
- Ecole Normale Supérieure-PSL Research University; Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06; CNRS UMR 7203 LBM; 24 rue Lhomond 75005 Paris France
| | - H. Y. Vincent Ching
- Institute for Integrative Biology of the Cell (I2BC); Department of Biochemistry, Biophysics and Structural Biology; Université Paris-Saclay, CEA, CNRS UMR 9198; Gif-sur-Yvette F-91198 France
| | - Dmitry Akhmetzyanov
- Goethe-University Frankfurt am Main; Institute of Physical and Theoretical Chemistry and; Center for Biomolecular Magnetic Resonance; Max von Laue Str. 7 60438 Frankfurt am Main Germany
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux O'Orsay; Université Paris-Sud, UMR CNRS 8182, Université Paris-Saclay; 91405 Orsay France
| | - Leandro C. Tabares
- Institute for Integrative Biology of the Cell (I2BC); Department of Biochemistry, Biophysics and Structural Biology; Université Paris-Saclay, CEA, CNRS UMR 9198; Gif-sur-Yvette F-91198 France
| | - Hélène C. Bertrand
- Ecole Normale Supérieure-PSL Research University; Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06; CNRS UMR 7203 LBM; 24 rue Lhomond 75005 Paris France
| | - Clotilde Policar
- Ecole Normale Supérieure-PSL Research University; Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06; CNRS UMR 7203 LBM; 24 rue Lhomond 75005 Paris France
| |
Collapse
|
37
|
Qi M, Hülsmann M, Godt A. Spacers for Geometrically Well-Defined Water-Soluble Molecular Rulers and Their Application. J Org Chem 2016; 81:2549-71. [DOI: 10.1021/acs.joc.6b00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mian Qi
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Miriam Hülsmann
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| |
Collapse
|
38
|
|
39
|
Akhmetzyanov D, Schöps P, Marko A, Kunjir NC, Sigurdsson ST, Prisner TF. Pulsed EPR dipolar spectroscopy at Q- and G-band on a trityl biradical. Phys Chem Chem Phys 2015; 17:24446-51. [PMID: 26339694 DOI: 10.1039/c5cp03671b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pulsed electron paramagnetic resonance (EPR) spectroscopy is a valuable technique for the precise determination of distances between paramagnetic spin labels that are covalently attached to macromolecules. Nitroxides have commonly been utilised as paramagnetic tags for biomolecules, but trityl radicals have recently been developed as alternative spin labels. Trityls exhibit longer electron spin relaxation times and higher stability than nitroxides under in vivo conditions. So far, trityl radicals have only been used in pulsed EPR dipolar spectroscopy (PDS) at X-band (9.5 GHz), Ku-band (17.2 GHz) and Q-band (34 GHz) frequencies. In this study we investigated a trityl biradical by PDS at Q-band (34 GHz) and G-band (180 GHz) frequencies. Due to the small spectral width of the trityl (30 MHz) at Q-band frequencies, single frequency PDS techniques, like double-quantum coherence (DQC) and single frequency technique for refocusing dipolar couplings (SIFTER), work very efficiently. Hence, Q-band DQC and SIFTER experiments were performed and the results were compared; yielding a signal to noise ratio for SIFTER four times higher than that for DQC. At G-band frequencies the resolved axially symmetric g-tensor anisotropy of the trityl exhibited a spectral width of 130 MHz. Thus, pulsed electron electron double resonance (PELDOR/DEER) obtained at different pump-probe positions across the spectrum was used to reveal distances. Such a multi-frequency approach should also be applicable to determine structural information on biological macromolecules tagged with trityl spin labels.
Collapse
Affiliation(s)
- D Akhmetzyanov
- Goethe-University Frankfurt am Main, Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Max von Laue Str. 7, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Kuzhelev AA, Trukhin DV, Krumkacheva OA, Strizhakov RK, Rogozhnikova OY, Troitskaya TI, Fedin MV, Tormyshev VM, Bagryanskaya EG. Room-Temperature Electron Spin Relaxation of Triarylmethyl Radicals at the X- and Q-Bands. J Phys Chem B 2015; 119:13630-13640. [PMID: 26001103 DOI: 10.1021/acs.jpcb.5b03027] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triarylmethyl radicals (trityls, TAMs) represent a relatively new class of spin labels. The long relaxation of trityls at room temperature in liquid solutions makes them a promising alternative for traditional nitroxides. In this work we have synthesized a series of TAMs including perdeuterated Finland trityl (D36 form), mono-, di-, and triester derivatives of Finland-D36 trityl, the deuterated form of OX63, the dodeca-n-butyl homologue of Finland trityl, and triamide derivatives of Finland trityl with primary and secondary amines attached. We have studied room-temperature relaxation properties of these TAMs in liquids using pulsed electron paramagnetic resonance (EPR) at two microwave frequency bands. We have found the clear dependence of phase memory time (Tm ∼ T2) on the magnetic field: room-temperature Tm values are ∼1.5-2.5 times smaller at the Q-band (34 GHz, 1.2 T) than at the X-band (9 GHz, 0.3 T). This trend is ascribed to the contribution from g-anisotropy that is negligible at lower magnetic fields but comes into play at the Q-band. In agreement with this, the difference between T1 and Tm becomes more pronounced at the Q-band than at the X-band due to increased contributions from incomplete motional averaging of g-anisotropy. Linear dependence of (1/Tm - 1/T1) on viscosity implies that g-anisotropy is modulated by rotational motion of the trityl radical. On the basis of the analysis of previous data and results of the present work, we conclude that, in the general situation where the spin label is at least partly mobile, the X-band is most suitable for application of trityls for room-temperature pulsed EPR distance measurements.
Collapse
Affiliation(s)
- Andrey A Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry V Trukhin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Rodion K Strizhakov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Olga Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatiana I Troitskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Victor M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
41
|
Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Trukhin DV, Rogozhnikova OY, Tormyshev VM, Pyshnyi DV, Fedin MV, Bagryanskaya EG. Triarylmethyl Labels: Toward Improving the Accuracy of EPR Nanoscale Distance Measurements in DNAs. J Phys Chem B 2015; 119:13641-8. [PMID: 26011022 DOI: 10.1021/acs.jpcb.5b03026] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triarylmethyl (trityl, TAM) based spin labels represent a promising alternative to nitroxides for EPR distance measurements in biomolecules. Herewith, we report synthesis and comparative study of series of model DNA duplexes, 5'-spin-labeled with TAMs and nitroxides. We have found that the accuracy (width) of distance distributions obtained by double electron-electron resonance (DEER/PELDOR) strongly depends on the type of radical. Replacement of both nitroxides by TAMs in the same spin-labeled duplex allows narrowing of the distance distributions by a factor of 3. Replacement of one nitroxide by TAM (orthogonal labeling) leads to a less pronounced narrowing but at the same time gains sensitivity in DEER experiment due to efficient pumping on the narrow EPR line of TAM. Distance distributions in nitroxide/nitroxide pairs are influenced by the structure of the linker: the use of a short amine-based linker improves the accuracy by a factor of 2. At the same time, a negligible dependence on the linker length is found for the distribution width in TAM/TAM pairs. Molecular dynamics calculations indicate greater conformational disorder of nitroxide labels compared to TAM ones, thus rationalizing the experimentally observed trends. Thereby, we conclude that double spin-labeling using TAMs allows obtaining narrower spin-spin distance distributions and potentially more precise distances between labeling sites compared to traditional nitroxides.
Collapse
Affiliation(s)
- Georgiy Yu Shevelev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Olesya A Krumkacheva
- International Tomography Center, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Andrey A Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Dmitry V Trukhin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Olga Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Victor M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Matvey V Fedin
- International Tomography Center, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| |
Collapse
|
42
|
Dalaloyan A, Qi M, Ruthstein S, Vega S, Godt A, Feintuch A, Goldfarb D. Gd(iii)–Gd(iii) EPR distance measurements – the range of accessible distances and the impact of zero field splitting. Phys Chem Chem Phys 2015; 17:18464-76. [DOI: 10.1039/c5cp02602d] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gd rulers were designed in the 2–8 nm range for in-depth evaluation of Gd(iii) complexes as spin labels for EPR distance measurements.
Collapse
Affiliation(s)
- Arina Dalaloyan
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Mian Qi
- Bielefeld University
- Faculty of Chemistry and Center for Molecular Materials
- D-33615 Bielefeld
- Germany
| | - Sharon Ruthstein
- Department of Chemistry
- Faculty of Exact Sciences
- Bar-Ilan University
- Ramat Gan
- Israel
| | - Shimon Vega
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Adelheid Godt
- Bielefeld University
- Faculty of Chemistry and Center for Molecular Materials
- D-33615 Bielefeld
- Germany
| | - Akiva Feintuch
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| | - Daniella Goldfarb
- Department of Chemical Physics
- Weizmann Institute of Science
- Rehovot
- Israel
| |
Collapse
|
43
|
Bagryanskaya EG, Krumkacheva OA, Fedin MV, Marque SR. Development and Application of Spin Traps, Spin Probes, and Spin Labels. Methods Enzymol 2015; 563:365-96. [DOI: 10.1016/bs.mie.2015.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Feintuch A, Otting G, Goldfarb D. Gd3+ Spin Labeling for Measuring Distances in Biomacromolecules. Methods Enzymol 2015; 563:415-57. [DOI: 10.1016/bs.mie.2015.07.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
|
46
|
Combining NMR and EPR to Determine Structures of Large RNAs and Protein–RNA Complexes in Solution. Methods Enzymol 2015; 558:279-331. [DOI: 10.1016/bs.mie.2015.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
|
48
|
Valera S, Bode BE. Strategies for the synthesis of yardsticks and abaci for nanometre distance measurements by pulsed EPR. Molecules 2014; 19:20227-56. [PMID: 25479188 PMCID: PMC6271543 DOI: 10.3390/molecules191220227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/19/2014] [Accepted: 11/27/2014] [Indexed: 01/18/2023] Open
Abstract
Pulsed electron paramagnetic resonance (EPR) techniques have been found to be efficient tools for the elucidation of structure in complex biological systems as they give access to distances in the nanometre range. These measurements can provide additional structural information such as relative orientations, structural flexibility or aggregation states. A wide variety of model systems for calibration and optimisation of pulsed experiments has been synthesised. Their design is based on mimicking biological systems or materials in specific properties such as the distances themselves and the distance distributions. Here, we review selected approaches to the synthesis of chemical systems bearing two or more spin centres, such as nitroxide or trityl radicals, metal ions or combinations thereof and outline their application in pulsed EPR distance measurements.
Collapse
Affiliation(s)
- Silvia Valera
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, KY16 9ST Fife, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews, KY16 9ST Fife, UK.
| |
Collapse
|
49
|
New developments in spin labels for pulsed dipolar EPR. Molecules 2014; 19:16998-7025. [PMID: 25342554 PMCID: PMC6271499 DOI: 10.3390/molecules191016998] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR) techniques allow small magnetic couplings to be measured (e.g., <50 MHz) providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.
Collapse
|
50
|
Valera S, Taylor JE, Daniels DSB, Dawson DM, Athukorala Arachchige KS, Ashbrook SE, Slawin AMZ, Bode BE. A modular approach for the synthesis of nanometer-sized polynitroxide multi-spin systems. J Org Chem 2014; 79:8313-23. [PMID: 25102422 DOI: 10.1021/jo5015678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesis of rigid symmetric polyradical model systems with inter-spin distances between 1.4 and 4 nm and their room temperature continuous wave (CW) EPR spectra are reported. Conditions for attachment of the spin-label via esterification have been optimized on the direct synthesis of polyradicals from commercially available polyphenols and the carboxylic acid functionalized nitroxide TPC. A common synthetic protocol utilizing 4-hydroxy-4'-iodobiphenyl as a key building block has been used to synthesize an equilateral biradical and a triradical in only two steps from commercially available starting materials. The first synthesis of a tetraradical based upon an adamantane core bearing six equivalent nitroxide-nitroxide distances is also reported. These systems are very promising candidates for studying multi-spin effects in pulsed EPR distance measurements.
Collapse
Affiliation(s)
- Silvia Valera
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex and Centre of Magnetic Resonance, University of St Andrews , North Haugh, St Andrews KY16 9ST, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|