1
|
Zhang C, Zhai Y, Gong Z, Duan H, She YB, Yang YF, Su A. Transfer learning across different chemical domains: virtual screening of organic materials with deep learning models pretrained on small molecule and chemical reaction data. J Cheminform 2024; 16:89. [PMID: 39080777 PMCID: PMC11290278 DOI: 10.1186/s13321-024-00886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024] Open
Abstract
Machine learning is becoming a preferred method for the virtual screening of organic materials due to its cost-effectiveness over traditional computationally demanding techniques. However, the scarcity of labeled data for organic materials poses a significant challenge for training advanced machine learning models. This study showcases the potential of utilizing databases of drug-like small molecules and chemical reactions to pretrain the BERT model, enhancing its performance in the virtual screening of organic materials. By fine-tuning the BERT models with data from five virtual screening tasks, the version pretrained with the USPTO-SMILES dataset achieved R2 scores exceeding 0.94 for three tasks and over 0.81 for two others. This performance surpasses that of models pretrained on the small molecule or organic materials databases and outperforms three traditional machine learning models trained directly on virtual screening data. The success of the USPTO-SMILES pretrained BERT model can be attributed to the diverse array of organic building blocks in the USPTO database, offering a broader exploration of the chemical space. The study further suggests that accessing a reaction database with a wider range of reactions than the USPTO could further enhance model performance. Overall, this research validates the feasibility of applying transfer learning across different chemical domains for the efficient virtual screening of organic materials.Scientific contributionThis study verifies the feasibility of applying transfer learning to large language models in different chemical fields to help organic materials perform virtual screening. Through the comparison of transfer learning from different chemical fields to a variety of organic material molecules, the high precision virtual screening of organic materials is realized.
Collapse
Affiliation(s)
- Chengwei Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yushuang Zhai
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ziyang Gong
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hongliang Duan
- Faculty of Applied Sciences, Macao Polytechnic University, Macao, 999078, China
| | - Yuan-Bin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - An Su
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
2
|
Su A, Zhang X, Zhang C, Ding D, Yang YF, Wang K, She YB. Deep transfer learning for predicting frontier orbital energies of organic materials using small data and its application to porphyrin photocatalysts. Phys Chem Chem Phys 2023; 25:10536-10549. [PMID: 36987933 DOI: 10.1039/d3cp00917c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
A deep transfer learning approach is used to predict HOMO/LUMO energies of organic materials with a small amount of training data.
Collapse
Affiliation(s)
- An Su
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xin Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chengwei Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Debo Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Keke Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
3
|
Exploring Deep Learning for Metalloporphyrins: Databases, Molecular Representations, and Model Architectures. Catalysts 2022. [DOI: 10.3390/catal12111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metalloporphyrins have been studied as biomimetic catalysts for more than 120 years and have accumulated a large amount of data, which provides a solid foundation for deep learning to discover chemical trends and structure–function relationships. In this study, key components of deep learning of metalloporphyrins, including databases, molecular representations, and model architectures, were systematically investigated. A protocol to construct canonical SMILES for metalloporphyrins was proposed, which was then used to represent the two-dimensional structures of over 10,000 metalloporphyrins in an existing computational database. Subsequently, several state-of-the-art chemical deep learning models, including graph neural network-based models and natural language processing-based models, were employed to predict the energy gaps of metalloporphyrins. Two models showed satisfactory predictive performance (R2 0.94) with canonical SMILES as the only source of structural information. In addition, an unsupervised visualization algorithm was used to interpret the molecular features learned by the deep learning models.
Collapse
|
4
|
Omar ÖH, Del Cueto M, Nematiaram T, Troisi A. High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:13557-13583. [PMID: 34745630 PMCID: PMC8515942 DOI: 10.1039/d1tc03256a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 06/01/2023]
Abstract
We present a review of the field of high-throughput virtual screening for organic electronics materials focusing on the sequence of methodological choices that determine each virtual screening protocol. These choices are present in all high-throughput virtual screenings and addressing them systematically will lead to optimised workflows and improve their applicability. We consider the range of properties that can be computed and illustrate how their accuracy can be determined depending on the quality and size of the experimental datasets. The approaches to generate candidates for virtual screening are also extremely varied and their relative strengths and weaknesses are discussed. The analysis of high-throughput virtual screening is almost never limited to the identification of top candidates and often new patterns and structure-property relations are the most interesting findings of such searches. The review reveals a very dynamic field constantly adapting to match an evolving landscape of applications, methodologies and datasets.
Collapse
Affiliation(s)
- Ömer H Omar
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | - Marcos Del Cueto
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| | | | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Liverpool L69 3BX UK
| |
Collapse
|
5
|
De Lile J, Kang SG, Son YA, Lee SG. Do HOMO-LUMO Energy Levels and Band Gaps Provide Sufficient Understanding of Dye-Sensitizer Activity Trends for Water Purification? ACS OMEGA 2020; 5:15052-15062. [PMID: 32637777 PMCID: PMC7330899 DOI: 10.1021/acsomega.0c00870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/19/2020] [Indexed: 05/24/2023]
Abstract
A dye-sensitized solar cell assembly can be used to harvest solar energy, while suitable dye sensitizers can be used to purify water. Here, we characterized the activity trends of four dye sensitizers, namely, PORPC-1, PORPC-2, PORPC-3, and PORPC-4, for water purification applications using density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE), B3LYP, and PBE0 functionals, ΔSCF, time-dependent DFT (TD-DFT), and quasiparticle Green's function (GW) methods. The energy levels of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) were calculated using gas-phase and aqueous-phase methods in order to understand charge-injection abilities and the dye regeneration processes. PBE, B3LYP, PBE0, and TD-DFT methods failed to predict PORPC-4 to be the best sensitizer, while PORPC-2 and PORPC-4 were predicted to be the best sensitizers using ΔSCF coupled with the implicit solvation method, and HOMO-LUMO energies were corrected for the aqueous environment in the GW calculations. However, none of these methods accurately predicted the performance trend of all four dye sensitizers. Consequently, we used the aggregation assembly patterns of the dye molecules in an aqueous environment to further probe the activity trends and found that PORPC-3 and PORPC-4 prefer J-aggregated assembly patterns, whereas PROPC-1 and PORPC-2 prefer to be H-aggregated. Therefore, the performance of these dye molecules can be determined by combining HOMO-LUMO energy levels with aggregate-assembly patterns, with the activity trend predicted to be PORPC-4 > PORPC-2 > PORPC-3 > PORPC-1, which is in good agreement with experimental findings.
Collapse
Affiliation(s)
- Jeffrey
Roshan De Lile
- Department
of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil,
Geumjeong-gu, Busan 46241, Republic of Korea
| | - Sung Gu Kang
- School
of Chemical Engineering, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic
of Korea
| | - Young-A Son
- Department
of Advanced Organic Materials Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Republic
of Korea
| | - Seung Geol Lee
- Department
of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil,
Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
6
|
Mesta M, Chang JH, Shil S, Thygesen KS, Lastra JMG. A Protocol for Fast Prediction of Electronic and Optical Properties of Donor-Acceptor Polymers Using Density Functional Theory and the Tight-Binding Method. J Phys Chem A 2019; 123:4980-4989. [PMID: 31117588 DOI: 10.1021/acs.jpca.9b02391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of donor-acceptor (D-A) type polymers to control the positions of the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals makes them a popular choice for organic solar cell applications. The alternating D-A pattern in a monomer leads to a weak electronic coupling between the constituent monomers within the polymer chain. Exploiting the weak electronic coupling characteristics, we developed a method to efficiently calculate (1) the electronic properties and (2) the optical gap of such polymer chains. The electronic properties (HOMO and LUMO energies, ionization potential, electron affinity, and quasiparticle gap of an oligomer of any length up to an infinitely long polymer) of the D-A polymers are predicted by combining density functional theory calculation results and a tight-binding model. The weak electronic coupling implies that the optical gap of the polymer is size-independent, and thus, it can be calculated using a monomer. We validated the methods using a set of 104 polymers by checking the consistency where the electronic gap of a polymer is larger than the optical gap. Furthermore, we establish relationships between the results obtained from more accurate, yet slower methods (i.e., B3LYP functional, singlet-ΔSCF) with those obtained from the faster counterparts (i.e., BLYP functional, triplet-ΔSCF). Leveraging the found relationships, we propose a way in which the electronic and optical properties of the polymers can be calculated efficiently while retaining high accuracy. The use of the tight-binding model combined with the approach to estimate more accurate results based on less expensive simulations is crucial in the applications where a large volume of computations needs to be carried out efficiently with sufficiently high accuracy, such as high-throughput computational screening or training a machine-learning model.
Collapse
Affiliation(s)
- Murat Mesta
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Jin Hyun Chang
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Suranjan Shil
- CAMD, Department of Physics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Kristian S Thygesen
- CAMD, Department of Physics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Juan Maria Garcia Lastra
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
7
|
Jiang J, Guo S, Wang X, Xu L, Li Q, Zhang X. Theoretical investigation of the structural and spectroscopic properties of expanded metalloporphyrin complexes. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181199. [PMID: 30800371 PMCID: PMC6366163 DOI: 10.1098/rsos.181199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/18/2018] [Indexed: 05/08/2023]
Abstract
The frontier molecular orbitals, UV-Vis absorption spectra, charge transfer (CT) and triplet excited states of 12 expanded D-A porphyrin/benzoporphyrin complexes were investigated using the density functional theory (DFT) method and time-dependent DFT in this work. The results showed that thiophene was an effective fragment for absorption of 'long wavelength', while the benzoporphyrin worked on the 'short wavelength', which was derived from its saddle-shaped structure; this expanded D-A conjugated system had a mild CT process with anthraquinone/isoindigo as acceptors and a strong CT process with naphtoquinone as acceptor. In addition, based on the simulation of the triplet state, the theoretical phosphorescence wavelength range of this series of derivatives was between 1000 and 1200 nm. This study is expected to assist the design of conjugated porphyrin for the field of porphyrin chemistry.
Collapse
Affiliation(s)
- Jie Jiang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, People's Republic of China
- School of Materials Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Shengwei Guo
- School of Materials Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Xiaorong Wang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, People's Republic of China
- School of Materials Science and Engineering, North Minzu University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Liyan Xu
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, People's Republic of China
| | - Qiang Li
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, People's Republic of China
| | - Xiaoxin Zhang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, People's Republic of China
| |
Collapse
|
8
|
Zhang X, Chen A, Zhou Z. High‐throughput computational screening of layered and two‐dimensional materials. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1385] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xu Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Computational Centre for Molecular Science, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - An Chen
- School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Computational Centre for Molecular Science, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Zhen Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Computational Centre for Molecular Science, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| |
Collapse
|
9
|
Jørgensen PB, Mesta M, Shil S, García Lastra JM, Jacobsen KW, Thygesen KS, Schmidt MN. Machine learning-based screening of complex molecules for polymer solar cells. J Chem Phys 2018; 148:241735. [DOI: 10.1063/1.5023563] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter Bjørn Jørgensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, 2800 Kongens Lyngby, Denmark
| | - Murat Mesta
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark
| | - Suranjan Shil
- Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark
| | - Juan Maria García Lastra
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark
| | - Karsten Wedel Jacobsen
- Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kongens Lyngby, Denmark
| | | | - Mikkel N. Schmidt
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Li Z, Omidvar N, Chin WS, Robb E, Morris A, Achenie L, Xin H. Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations. J Phys Chem A 2018; 122:4571-4578. [DOI: 10.1021/acs.jpca.8b02842] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zheng Li
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Noushin Omidvar
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Wei Shan Chin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Esther Robb
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Amanda Morris
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Luke Achenie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Hongliang Xin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Jin X, Li D, Sun L, Wang CL, Bai FQ. Theoretical design of porphyrin sensitizers with different acceptors for application in dye-sensitized solar cells. RSC Adv 2018; 8:19804-19810. [PMID: 35541014 PMCID: PMC9080764 DOI: 10.1039/c8ra02974a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022] Open
Abstract
Using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, three porphyrin dyes with different acceptors, such as carboxylic acid, cyanoacrylic acid, and 2-cyano-N-hydroxyacrylamide, have been designed. Compared to the best sensitizer (YD2-o-C8) so far, these designed dyes have small highest occupied orbital to lowest unoccupied orbital (HOMO–LUMO) band gaps, and wide absorptions with large oscillator strength at porphyrin Q bands. And the designed Dye1 is similar to YD2-o-C8 in electronic coupling with TiO2, while improved Dye2 and Dye3 are better than YD2-o-C8, thus, Dye2 and Dye3 will be much faster for electron injection in dye-sensitized solar cell systems based on their long-term stable and efficient anchor groups. All these features show that our designed dyes, especially Dye2 and Dye3, have better absorption performance and faster electron injection. In addition, our results point out that 2-cyano-N-hydroxyacrylamide is a new promising acceptor. This study is expected to assist the molecular design of new efficient dyes for the advancement of dye-sensitized solar cells. Using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, three porphyrin dyes with different acceptors, such as carboxylic acid, cyanoacrylic acid, and 2-cyano-N-hydroxyacrylamide, have been designed.![]()
Collapse
Affiliation(s)
- Xingyi Jin
- 1st Department of Neurosurgery
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- People's Republic of China
| | - Dongyuan Li
- 1st Department of Neurosurgery
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- People's Republic of China
| | - Libo Sun
- 1st Department of Neurosurgery
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- People's Republic of China
| | - Cheng-Long Wang
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
| | - Fu-Quan Bai
- Laboratory of Theoretical and Computational Chemistry
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130023
| |
Collapse
|
12
|
Marom N. Accurate description of the electronic structure of organic semiconductors by GW methods. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:103003. [PMID: 28145283 DOI: 10.1088/1361-648x/29/10/103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electronic properties associated with charged excitations, such as the ionization potential (IP), the electron affinity (EA), and the energy level alignment at interfaces, are critical parameters for the performance of organic electronic devices. To computationally design organic semiconductors and functional interfaces with tailored properties for target applications it is necessary to accurately predict these properties from first principles. Many-body perturbation theory is often used for this purpose within the GW approximation, where G is the one particle Green's function and W is the dynamically screened Coulomb interaction. Here, the formalism of GW methods at different levels of self-consistency is briefly introduced and some recent applications to organic semiconductors and interfaces are reviewed.
Collapse
Affiliation(s)
- Noa Marom
- Department of Materials Science and Engineering, Department of Chemistry, and Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
13
|
Knight JW, Wang X, Gallandi L, Dolgounitcheva O, Ren X, Ortiz JV, Rinke P, Körzdörfer T, Marom N. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods. J Chem Theory Comput 2016; 12:615-26. [DOI: 10.1021/acs.jctc.5b00871] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph W. Knight
- Physics
and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Xiaopeng Wang
- Physics
and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Lukas Gallandi
- Computational
Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Olga Dolgounitcheva
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Xinguo Ren
- Key
Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - J. Vincent Ortiz
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Patrick Rinke
- COMP/Department
of Applied Physics, Aalto University School of Science, P.O. Box 11100, FI-00076 Aalto, Finland
| | - Thomas Körzdörfer
- Computational
Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Noa Marom
- Physics
and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
14
|
Balanay MP, Enopia CMG, Lee SH, Kim DH. Theoretical design of triphenylamine-based derivatives with asymmetric D-D-π-A configuration for dye-sensitized solar cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 140:382-391. [PMID: 25617849 DOI: 10.1016/j.saa.2015.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/08/2014] [Accepted: 01/03/2015] [Indexed: 06/04/2023]
Abstract
The use of theoretical techniques in the structural development of dye-sensitized solar cells helps in the efficient screening of the dyes. To properly rationalize the dye's design process, benchmark calculations were conducted using long-range corrected exchange-correlation (xc) functionals with varying separation parameters to be able to predict the excited-state energies of triphenylamine-based dyes, namely: PPS, PSP, and PSS, wherein they differ at the π-conjugated bridge using thiophene and/or phenyl moieties. The results show that LC-ωPBE xc functional with an optimized parameter provided better correlation with the experimental results compared to the other functionals. The relative shifts of the absorption spectra, light harvesting efficiency, normal dipole moments, as well as the ionization potentials and electron affinities of the dyes were well-correlated with the experimental data. A new set of dyes was designed in an effort to increase its solar cell efficiency that was patterned after PSS with an additional donor moiety such as fluorene, cyclopentaindole, and pyrene attached asymmetrically at the triphenylamine ring. Among the newly designed dyes, analogs that contain 4-phenyl-1,2,3,4-tetrahydrocyclopenta[b]indole (I) and pyrido[2,3,4-5-imn]phenanthridine-5,10(4H,9H)-dione (P2) as the additional donor moiety produced the best photophysical properties and charge-transfer characteristics for a promising dye for solar cell applications.
Collapse
Affiliation(s)
- Mannix P Balanay
- Department of Chemistry, Kunsan National University, Kunsan 573-701, Republic of Korea; Department of Chemistry, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | | | - Sang Hee Lee
- Department of Chemistry, Kunsan National University, Kunsan 573-701, Republic of Korea
| | - Dong Hee Kim
- Department of Chemistry, Kunsan National University, Kunsan 573-701, Republic of Korea.
| |
Collapse
|
15
|
Ørnsø KB, Garcia-Lastra JM, De La Torre G, Himpsel FJ, Rubio A, Thygesen KS. Design of two-photon molecular tandem architectures for solar cells by ab initio theory. Chem Sci 2015; 6:3018-3025. [PMID: 29142685 PMCID: PMC5657411 DOI: 10.1039/c4sc03835e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/04/2015] [Indexed: 11/27/2022] Open
Abstract
We present new two-photon molecular architectures for photovoltaics where atomic precision can be obtained by synthetic chemistry.
An extensive database of spectroscopic properties of molecules from ab initio calculations is used to design molecular complexes for use in tandem solar cells that convert two photons into a single electron–hole pair, thereby increasing the output voltage while covering a wider spectral range. Three different architectures are considered: the first two involve a complex consisting of two dye molecules with appropriately matched frontier orbitals, connected by a molecular diode. Optimized combinations of dye molecules are determined by taking advantage of our computational database of the structural and energetic properties of several thousand porphyrin dyes. The third design is a molecular analogy of the intermediate band solar cell, and involves a single dye molecule with strong intersystem crossing to ensure a long lifetime of the intermediate state. Based on the calculated energy levels and molecular orbitals, energy diagrams are presented for the individual steps in the operation of such tandem solar cells. We find that theoretical open circuit voltages of up to 1.8 V can be achieved using these tandem designs. Questions about the practical implementation of prototypical devices, such as the synthesis of the tandem molecules and potential loss mechanisms, are addressed.
Collapse
Affiliation(s)
- Kristian B Ørnsø
- Center for Atomic-scale Materials Design , Department of Physics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark . ;
| | - Juan M Garcia-Lastra
- Center for Atomic-scale Materials Design , Department of Physics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark . ; .,Department of Energy Conversion , Technical University of Denmark , Frederiksborgvej 399 , 4000 Roskilde , Denmark
| | - Gema De La Torre
- Departamento de Quimica Organica , Facultad de Ciencias , Universidad Autonoma de Madrid , Campus de Cantoblanco , 28049 Madrid , Spain
| | - F J Himpsel
- Department of Physics , University of Wisconsin-Madison , 1150 University Avenue , Madison , Wisconsin 53706 , USA
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter , Hamburg , Germany.,Nano-Bio Spectroscopy Group and ETSF , Universidad del Pais Vasco CFM CSIC-UPV/EHU-MPC & DIPC , 20018 San Sebastian , Spain
| | - Kristian S Thygesen
- Center for Atomic-scale Materials Design , Department of Physics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark . ;
| |
Collapse
|
16
|
Chaitanya K, Ju XH, Heron BM. Can elongation of the π-system in triarylamine derived sensitizers with either benzothiadiazole and/or ortho-fluorophenyl moieties enrich their light harvesting efficiency? – a theoretical study. RSC Adv 2015. [DOI: 10.1039/c4ra09914a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study established that elongation of the π-system in a series of hypothetical triphenylamine dyes by the judicious placement either a fluorophenyl or benzothiadiazole group, or a combination of both groups, results in improved light harvesting efficiency in DSSCs.
Collapse
Affiliation(s)
- Kadali Chaitanya
- Key Laboratory of Soft Chemistry and Functional Materials of MOE
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Xue-Hai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - B. Mark Heron
- Department of Chemical and Biological Sciences
- School of Applied Sciences
- University of Huddersfield
- Huddersfield
- UK
| |
Collapse
|
17
|
Li H, Li Y, Chen M. Molecular design of organic sensitizers absorbing over a broadened visible region for dye-sensitized solar cells. RSC Adv 2014. [DOI: 10.1039/c4ra10896e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
18
|
Chaitanya K, Ju XH, Heron BM. Theoretical study on the light harvesting efficiency of zinc porphyrin sensitizers for DSSCs. RSC Adv 2014. [DOI: 10.1039/c4ra02473g] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DFT and TDDFT calculations have been carried out to investigate the effect of donor and acceptor groups on the electronic properties of zinc-porphyrin sensitizers. The calculated results show that increasing the electron releasing strength of a meso-donor group opposite to a meso substituted acceptor group increases the light harvesting efficiency and short circuit current density.
Collapse
Affiliation(s)
- Kadali Chaitanya
- Key Laboratory of Soft Chemistry and Functional Materials of MOE
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing, P. R. China
| | - Xue-Hai Ju
- Key Laboratory of Soft Chemistry and Functional Materials of MOE
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing, P. R. China
| | - B. Mark Heron
- Department of Chemical and Biological Sciences
- School of Applied Sciences
- University of Huddersfield
- Huddersfield, UK
| |
Collapse
|
19
|
Ørnsø KB, Pedersen CS, Garcia-Lastra JM, Thygesen KS. Optimizing porphyrins for dye sensitized solar cells using large-scale ab initio calculations. Phys Chem Chem Phys 2014; 16:16246-54. [DOI: 10.1039/c4cp01289e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a systematic study of the level alignment of 5145 porphyrin based dyes for dye sensitized solar cells.
Collapse
Affiliation(s)
- Kristian B. Ørnsø
- Center for Atomic-scale Materials Design
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby, Denmark
| | - Christian S. Pedersen
- Center for Atomic-scale Materials Design
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby, Denmark
| | - Juan M. Garcia-Lastra
- Center for Atomic-scale Materials Design
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby, Denmark
- Department of Energy Conversion
| | - Kristian S. Thygesen
- Center for Atomic-scale Materials Design
- Department of Physics
- Technical University of Denmark
- 2800 Kgs. Lyngby, Denmark
| |
Collapse
|