1
|
Naciri Y, Ghazzal MN, Paineau E. Nanosized tubular clay minerals as inorganic nanoreactors for energy and environmental applications: A review to fill current knowledge gaps. Adv Colloid Interface Sci 2024; 326:103139. [PMID: 38552380 DOI: 10.1016/j.cis.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Modern society pays further and further attention to environmental protection and the promotion of sustainable energy solutions. Heterogeneous photocatalysis is widely recognized as one of the most economically viable and ecologically sound technologies to combat environmental pollution and the global energy crisis. One challenge is finding a suitable photocatalytic material for an efficient process. Inorganic nanotubes have garnered attention as potential candidates due to their optoelectronic properties, which differ from their bulk equivalents. Among them, clay nanotubes (halloysite, imogolite, and chrysotile) are attracting renewed interest for photocatalysis applications thanks to their low production costs, their unique physical and chemical properties, and the possibility to functionalize or dope their structure to enhance charge-carriers separation into their structure. In this review, we provide new insights into the potential of these inorganic nanotubes in photocatalysis. We first discuss the structural and morphological features of clay nanotubes. Applications of photocatalysts based on clay nanotubes across a range of photocatalytic reactions, including the decomposition of organic pollutants, elimination of NOx, production of hydrogen, and disinfection of bacteria, are discussed. Finally, we highlight the obstacles and outline potential avenues for advancing the current photocatalytic system based on clay nanotubes. Our aim is that this review can offer researchers new opportunities to advance further research in the field of clay nanotubes-based photocatalysis with other vital applications in the future.
Collapse
Affiliation(s)
- Yassine Naciri
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France; Université Paris-Saclay, CNRS, UMR8000, Institut de Chimie Physique, Orsay 91405, France
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay, CNRS, UMR8000, Institut de Chimie Physique, Orsay 91405, France.
| | - Erwan Paineau
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
| |
Collapse
|
2
|
Lara RC, de Castro Xavier G, Canela MC, Carvalho JA, Alexandre J, de Azevedo ARG. Characterization and photocatalytic performance of cement mortars with incorporation of TiO 2 and mineral admixtures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95537-95549. [PMID: 37552440 DOI: 10.1007/s11356-023-29084-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
As the main components of the building envelope, construction materials have a straight relation with air contaminants from anthropogenic origins. Titanium dioxide has been recently applied in construction industry products since its photocatalytic properties can be used for pollutant degradation purposes. This study evaluated the performance of cement-based mortars with the incorporation of TiO2 nanoparticles and mineral admixtures. Six mortar compositions were defined by considering two reference mixes (with and without TiO2 incorporation), two mineral admixtures (bentonite and metakaolin) as partial cement replacement and one waste from ornamental stone processing in two levels of partial substitution of natural sand. Consistency index, density, and entrained air content of mixtures were investigated at fresh state. Compressive strength, water absorption, sorptivity, and micrographs from scanning electron microscopy were used to characterize mortars at hardened state. It was observed that incorporation of TiO2 does not considerably change mortar's properties at fresh and hardened state, despite a denser microstructure and improved interfacial transition zone. In general, the relation between the water-to-cement ratio and porosity on the performances of TiO2-added mortars was shown, which is strongly related to their photocatalytic efficiency. Metakaolin mixtures were more efficient to NO conversion, and high selectivity was observed for the bentonite mortars.
Collapse
Affiliation(s)
- Rancés Castillo Lara
- Laboratory of Civil Engineering, State University of the Northern Rio de Janeiro -UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Gustavo de Castro Xavier
- Laboratory of Civil Engineering, State University of the Northern Rio de Janeiro -UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Brazil
| | - Maria C Canela
- Laboratory of Chemical Sciences, State University of the Northern Rio de Janeiro -UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Brazil
| | - Juliana Alves Carvalho
- Laboratory of Chemical Sciences, State University of the Northern Rio de Janeiro -UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Brazil
- Department of Exact, Biological and Earth Sciences, Federal Fluminense University, Av. João Jasbick, s/n, Bairro Aeroporto, Santo Antônio de Pádua, 28470-000, Brazil
| | - Jonas Alexandre
- Laboratory of Civil Engineering, State University of the Northern Rio de Janeiro -UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Brazil
| | - Afonso Rangel Garcez de Azevedo
- Laboratory of Civil Engineering, State University of the Northern Rio de Janeiro -UENF, Av. Alberto Lamego, 2000, Campos dos Goytacazes, 28013-602, Brazil
| |
Collapse
|
3
|
Yamaguchi T, Kim HJ, Park HJ, Kim T, Khalid Z, Park JK, Oh JM. Controlling the Surface Morphology of Two-Dimensional Nano-Materials upon Molecule-Mediated Crystal Growth. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2363. [PMID: 37630948 PMCID: PMC10458610 DOI: 10.3390/nano13162363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The surface morphology of Mg-Al-layered double hydroxide (LDH) was successfully controlled by reconstruction during systematic phase transformation from calcined LDH, which is referred to as layered double oxide (LDO). The LDH reconstructed its original phase by the hydration of LDO with expanded basal spacing when reacted with water, including carbonate or methyl orange molecules. During the reaction, the degree of crystal growth along the ab-plane and stacking along the c-axis was significantly influenced by the molecular size and the reaction conditions. The lower concentration of carbonate gave smaller particles on the surface of larger LDO (2000 nm), while the higher concentration induced a sand-rose structure. The reconstruction of smaller-sized LDH (350 nm) did not depend on the concentration of carbonate due to effective adsorption, and it gave a sand-rose structure and exfoliated the LDH layers. The higher the concentration of methyl orange and the longer the reaction time applied, the rougher the surface was obtained with a certain threshold point of the methyl orange concentration. The surface roughness generally increased with the loading mount of methyl orange. However, the degree of the surface roughness even increased after the methyl orange loading reached equilibrium. The result suggested that the surface roughening was mediated by not only the incorporation of guest molecules into the LDH but also a crystal arrangement after a sufficient amount of methyl orange was accommodated.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea (T.K.)
| | - Hyoung-Jun Kim
- Plasma Convergence R&BD Division, Cheorwon Plasma Research Institute, 1620, Hoguk-ro, Galmal-eup, Cherwon-gun 24047, Gangwon-do, Republic of Korea;
| | - Hee Jung Park
- KBSI Western Seoul Center, University-Industry Cooperation Building, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 03759, Republic of Korea;
| | - Taeho Kim
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea (T.K.)
| | - Zubair Khalid
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea (T.K.)
| | - Jin Kuen Park
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Gyeonggi-do, Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea (T.K.)
| |
Collapse
|
4
|
Prabagar JS, Sneha Y, Tenzin T, Shahmoradi B, Rtimi S, Wantala K, Jenkins D, Shivaraju HP. Photocatalytic transfer of aqueous nitrogen into ammonia using nickel-titanium-layered double hydroxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90341-90351. [PMID: 36520285 DOI: 10.1007/s11356-022-24726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The development of solar-driven transfer of atmospheric nitrogen into ammonia is one of the green and sustainable strategies in industrial ammonia production. Nickel-titanium-layered double hydroxide (NiTi-LDH) was synthesised using the soft-chemical process for atmospheric nitrogen fixation application under photocatalysis in an aqueous system. NiTi-LDH was investigated using advanced characterisation techniques and confirmed the potential oxygen vacancies and/or surface defects owing to better photocatalytic activity under the solar spectrum. It also exhibited a bandgap of 2.8 eV that revealed its promising visible-light catalytic activities. A maximum of 33.52 µmol L-1 aqueous NH3 was obtained by continuous nitrogen (99.9% purity) supply into the photoreactor under an LED light source. Atmospheric nitrogen supply (≈78%) yielded 14.67 µmol L-1 aqueous NH3 within 60 min but gradually reduced to 3.6 µmol L-1 at 330 min. Interestingly, in weak acidic pH, 20.90 µmol L-1 NH3 was produced compared to 11.51 µmol L-1 NH3 in basic pH. The application of NiTi-LDH for visible-light harvesting capability and photoreduction of atmospheric N2 into NH3 thereby opens a new horizon of eco-friendly NH3 production using natural sunlight as alternative driving energy.
Collapse
Affiliation(s)
- Jijoe Samuel Prabagar
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Yadav Sneha
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India
- Center for Water, Food and Energy, GREENS Trust, Harikaranahalli Village-572215, Dombaranahalli Post, Tumkur District, Turuvekere Taluka, Karnataka, India
| | - Thinley Tenzin
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Behzad Shahmoradi
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sami Rtimi
- Environment and Health, Global Institute for Water, Rue de Chantepoulet 10, Geneve, Switzerland
| | - Kitirote Wantala
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, PL4 8AA, UK
| | - Harikaranahalli Puttaiah Shivaraju
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
- Center for Water, Food and Energy, GREENS Trust, Harikaranahalli Village-572215, Dombaranahalli Post, Tumkur District, Turuvekere Taluka, Karnataka, India.
| |
Collapse
|
5
|
Paredi PS, Pandey M, Manohar EM, Tsunoji N, Shahabuddin S, Das S, Bandyopadhyay M. Ni 4 complex anchored porous silica for enhanced adsorption of organic pollutants in the wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27848-8. [PMID: 37269508 DOI: 10.1007/s11356-023-27848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/19/2023] [Indexed: 06/05/2023]
Abstract
In the current study, tetranuclear Ni complex [Ni4(LH)4]·CH3CN (1) (LH3=(E)-2-(hydroxymethyl)-6-(((2-hydroxyphenyl)imino)methyl)phenol) was prepared and incorporated in sulfonic acid functionalized MCM-48 material. This composite nanoporous material was investigated for the adsorption of toxic cationic water pollutant dyes like crystal violet (CV) and methylene blue (MB) from the water solution. Thorough characterization was carried out using a variety of techniques, including NMR, ICP, powder XRD, TGA, SEM, BET, and FT-IR, to verify the phase purity, existence of guest moiety, material morphology, and other crucial variables. The adsorption property was increased with the metal complex immobilization on the porous support. The effect of various parameters on the adsorption process was discussed, including adsorbent dosage, temperature, pH, NaCl concentration, and contact time. Maximum dye adsorption was found at 0.2 mg/ml adsorbent dosage, 10 ppm dye concentration, 6-7 pH, 25 °C temperature, and 15 minutes of contact time. The adsorption of MB (methylene blue) and CV (crystal violet) dyes by Ni complex integrated MCM-48 was effective, with over 99% adsorption achieved in 15 minutes. A recyclability test was also performed, and the material is reusable up to the third cycle, with no notable decline in adsorption found. From the previous literature survey, it is clear that very high adsorption efficiency was achieved using MCM-48-SO3-Ni in considerably short contact time which proves the novelty and effectiveness of the modified material. Ni4 was prepared, characterized, and immobilized in sulfonic acid functionalized MCM-48, and this robust and reusable adsorbent was highly effective for the adsorption of methylene blue and crystal violet dyes with >99% adsorption efficiency in short duration.
Collapse
Affiliation(s)
- Parikshit Samjubhai Paredi
- Institute of Infrastructure, Technology, Research and Management (IITRAM), Maninagar, Ahmedabad, Gujarat, India
| | - Madhu Pandey
- Institute of Infrastructure, Technology, Research and Management (IITRAM), Maninagar, Ahmedabad, Gujarat, India
| | - Ezhava Manu Manohar
- Institute of Infrastructure, Technology, Research and Management (IITRAM), Maninagar, Ahmedabad, Gujarat, India
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-, Hiroshima, 739-8527, Japan
| | - Syed Shahabuddin
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gujarat, 382426, India
| | - Sourav Das
- Institute of Infrastructure, Technology, Research and Management (IITRAM), Maninagar, Ahmedabad, Gujarat, India
| | - Mahuya Bandyopadhyay
- Institute of Infrastructure, Technology, Research and Management (IITRAM), Maninagar, Ahmedabad, Gujarat, India.
| |
Collapse
|
6
|
Vanlalhmingmawia C, Tiwari D. Novel cubical Ag(NP) decorated titanium dioxide supported bentonite thin film in the efficient removal of bisphenol A using visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32942-32956. [PMID: 36472744 DOI: 10.1007/s11356-022-24467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The persistent endocrine-disrupting chemical bisphenol A is posing serious health concerns; hence, it is known to be an emerging and potential water contaminant. The present investigation aims to synthesize novel cubical Ag(NP) decorated titanium dioxide-supported bentonite (Ag/TiO2@Clay) nanocomposite using a novel synthetic process. The nanocomposite materials were characterized by several analytical methods viz., transmission electron microscopy (TEM), X-ray diffraction (XRD) analyses, energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and diffuse reflectance spectroscopy (DRS). Further, the photocatalytic removal of bisphenol A was conducted utilizing the thin film catalyst under the LED (light emitting diode; visible light) and UV-A (ultra violet-A) light sources. The parametric studies solution pH (6.0-12.0), pollutant concentrations (1.0-20.0 mg/L), and the interaction of several scavengers and co-existing ions are studied extensively to demonstrate the insights of the removal mechanism. The mineralization of bisphenol A and repeated use of the thin film catalyst showed the potential usage of photocatalysts in the devised large-scale operations. Similarly, the natural matrix treatment was performed to evaluate the suitability of the process for real implications.
Collapse
Affiliation(s)
| | - Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl-796004, India.
| |
Collapse
|
7
|
Pouthika K, Madhumitha G. Synergistic synthesis of Carrisa edulis fruit extract capped heterogeneous CuO-ZnO-HNT composite for photocatalytic removal of organic pollutants. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
8
|
Vanlalhmingmawia C, Tiwari D, Kim DJ. Novel nanocomposite thin film in the efficient removal of antibiotics using visible light: Insights of photocatalytic reactions and stability of thin film in real water implications. ENVIRONMENTAL RESEARCH 2023; 218:115007. [PMID: 36493806 DOI: 10.1016/j.envres.2022.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Novel clay (bentonite) supported Ag0 nanoparticles (NPs) doped TiO2 nanocomposite (Clay/TiO2/Ag0(NPs)) thin film was obtained by using template synthesis method. The nanocomposite material is decorated with cubical Ag0(NPs) and utilised successfully in the photocatalytic degradation of tetracycline (TC) and sulfamethazine (SMZ) from aqueous solutions utilizing visible light and UV-A radiations. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) analyses were used to characterise the nanocomposite materials. Diffusion reflectance spectroscopy (DRS) was utilised to determine the bandgap energies of the materials and also to confirm that Ag0(NPs) was successfully doped with TiO2. The nanocomposite material showed highly efficient photocatalytic activity for the breaking down of TC/SMZ under visible light irradiation by the enhanced electron-hole separation and adsorption of antibiotics at the vicinity of the catalyst. The oxidative degradation of TC/SMZ were shown to be highly dependent on the pH, initial concentration of TC/SMZ, and various co-existing ions. Reusability test of Clay/Ag0(NPs)/TiO2 nanocomposite revealed that the activity did not decline with repeated use. Treatment of TC and SMZ in real water system further enhanced the application potential of the novel catalysts for the treatment of full-scale wastewater polluted with these antibiotics.
Collapse
Affiliation(s)
| | - Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl-796004, India.
| | - Dong-Jin Kim
- Department of Environmental Sciences and Biotechnology & Institute of Energy and Environment, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
9
|
Synthesis and characterization of novel binuclear zinc complex, immobilization in nano-porous support, and its catalytic application. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Santos LMM, Nascimento MM, Borges SDS, Bomfim E, Macedo VDJ, Silva LA. Green photocatalytic remediation of Fenthion using composites with natural red clay and non-toxic metal oxides with visible light irradiation. ENVIRONMENTAL TECHNOLOGY 2023; 44:118-129. [PMID: 34344269 DOI: 10.1080/09593330.2021.1964611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
In the present work, composites with non-toxic metal oxides, such as TiO2 and ZnO, and a natural red clay (taua) reach in hematite were used in the photocatalytic degradation of Fenthion. The composite TiO2/Taua (0.5:1 wt. ratio) and pure TiO2 were prepared by sol-gel method while ZnO/Taua (0.5:1 wt. ratio) and pure ZnO were prepared by Pechini method. The materials were characterized by XRD, SEM, EDX, and DRS. The anatase phase was formed in both pure TiO2 and TiO2/Taua, while the hexagonal phase was formed in pure ZnO and ZnO/Taua. The bandgap energies for the two composites were narrowed compared to the respective pure oxides as consequence of the hematite (α-Fe2O3, Eg = 2.1 eV) in the red clay, reaching 2.1 eV for TiO2/Taua and 2.0 eV for ZnO/Taua, while the bandgap energies for pure TiO2 and ZnO were 3.2 and 3.0 eV, respectively. Fenthion was not degraded in the dark, but the concentration droped 20% after 180 min under visible light irradiation without photocatalyst and 60% after 210 min in the presence of the pure red clay. Both TiO2/Taua and ZnO/Taua composites were also photocatalytic active to degrade Fenthion (λ > 420 nm), with degradation of 78% (in 180 min) and 85% (in 210 min) respectively. In the optimized conditions (pH 2, 100 mg L-1 of H2O2 and 30 mg L-1 of Fenthion), the ZnO/Taua composite was the most efficient, reaching 89% degradation in up to 30 min, with Fenthion sulfoxide as the degradation product.
Collapse
Affiliation(s)
| | - Madson M Nascimento
- Instituto de Química, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Elton Bomfim
- Instituto de Química, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Luciana Almeida Silva
- Instituto de Química, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, de Energia e Ambiente, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
11
|
Yadav D, Borpatra Gohain M, Karki S, Ingole PG. A Novel Approach for the Development of Low-Cost Polymeric Thin-Film Nanocomposite Membranes for the Biomacromolecule Separation. ACS OMEGA 2022; 7:47967-47985. [PMID: 36591113 PMCID: PMC9798531 DOI: 10.1021/acsomega.2c05861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 05/27/2023]
Abstract
The separation of biomacromolecules, mainly proteins, plays a significant role in the pharmaceutical and food industries. Among the membranes' techniques, thin-film nanocomposite nanofiltration membranes are the best choice due to their high energy efficiency, excellent productivity, cost-effective and tuneable properties that have captured the attention of the efficient separation of biomacromolecules, especially from the industrial perspective. The present work directs the efficient separation study of proteins, namely, lysozyme, trypsin, pepsin, bovine serum albumin (BSA), and cephalexin, using a thin-film nanocomposite membrane integrated with Arg-MMT (arginine-montmorillonite) clay nanoparticles. The surface morphology and cross-section images of the TFN membranes were studied using a field emission scanning electron microscope (FE-SEM) and a high-resolution transmission electron microscope (HR-TEM). The thermal stability and hydrophilicity of the membranes were examined using thermogravimetric analysis (TGA) and contact angle, respectively. The surface chemistry of the selective layer has different functional groups that were analyzed using FTIR spectroscopy. The performance of the membranes was studied at different trans-membrane pressures and permeation times. The effect of monomer concentration on the separation performance of the membranes was also studied at different permeation times. The membranes' antibacterial activity was evaluated using the Muller-Hinton disk diffusion method using gram-negative Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus) bacteria. The highest rejection was achieved for BSA up to 98.92 ± 1%, and the highest permeation was obtained against lysozyme feed solution up to 26 L m-2 h-1 at 5 bar pressure. The membrane also illustrated excellent rejection of cephalexin antibiotics with a rejection of 98.17 ± 1.75% and a permeation flux of 26.14 L m-2 h-1. The antifouling study performed for the membranes exhibited a flux recovery ratio of 86.48%. The fabricated thin-film nanocomposite membrane demonstrated a good alternative for the separation of biomacromolecules and has the potential to be used in different sectors of industry, especially the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Diksha Yadav
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Moucham Borpatra Gohain
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Sachin Karki
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Pravin G. Ingole
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| |
Collapse
|
12
|
Synthesis of novel tetranuclear Ni complex incorporated mesoporous silica for improved photocatalytic degradation of methylene blue in presence of visible light. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
A Review on Cement-Based Composites for Removal of Organic/Heavy Metal Contaminants from Water. Catalysts 2022. [DOI: 10.3390/catal12111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Building materials are traditionally known for their mechanical and structural properties. As environmental pollution has risen as a huge global issue, functional building materials with environmental remediation capabilities are the demand for the present time. In this context, cement and concrete with photocatalytic and adsorbent additives were explored for air and water remediation. The usage of functional building materials for self-cleaning and air cleaning is well documented and reviewed in earlier reports. This article gives an overview of the functional building material composites used for water remediation. Numerous different approaches, such as photocatalysis, adsorption, and antimicrobial disinfection, are discussed. Among all, photocatalysis for the degradation of organic compounds and antimicrobial effect has been the most studied method, with TiO2 being the first choice for a photocatalyst. Furthermore, some reports illustrate the impact of photocatalytic filler on hydration and mechanical properties, which is important in case these are used in construction. Adsorption was most preferred for heavy metal removal from the water. This article rationalizes the current status and future scope of cement-based functional composites for water cleaning and discusses their use in water cleaning facilities or regular construction.
Collapse
|
14
|
Yu Q, Li C, Ma D, Zhao J, Liu X, Liang C, Zhu Y, Zhang Z, Yang K. Layered double hydroxides-based materials as novel catalysts for gaseous VOCs abatement: Recent advances and mechanisms. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Fan WK, Tahir M. Structured clay minerals-based nanomaterials for sustainable photo/thermal carbon dioxide conversion to cleaner fuels: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157206. [PMID: 35810906 DOI: 10.1016/j.scitotenv.2022.157206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In efforts to achieve a sustainable development goal, the utilization of CO2 to generate renewable fuels is promising, as it is a sustainable technology that provides affordable and clean energy. To realize the production of renewable green fuels, a proficient and low-cost technology is required. Using photo/thermal catalytic process, the goal of sustainable CO2 hydrogenation can be achieved. There have been several types of catalysts under exploration, however, they are expensive with limited availability. In the current development, green materials such as mineral clays are emerging as cocatalyst/supports for CO2 hydrogenation. Clays are bestowed with various beneficial properties such as a large surface area, high porosity, abundant basic sites, excellent thermal stability and chemical corrosion resistance. Clays are promising materials that can drastically reduce the cost in catalyst preparation, partially fulfil the energy demand and reduce greenhouse gas emission. This review aims to focus on the various types of clays and their applications in the field of photo/thermal CO2 hydrogenation to renewable fuels. Firstly, the classifications of clays are provided, whereby they can be differentiated based on their silicate layers, namely 1:1 and 2:1 type clay and their properties are thoroughly discussed to provide advantages and applications. The applications of various clays such as kaolinite, halloysite, montmorillonite, attapulgite, saponite and volkonskoite for CO2 hydrogenation reactions are systematically discoursed. In addition, various approaches to improve the capability of raw clays as catalyst support are critically discussed, which include thermal treatment, exfoliation, acid-leaching and pillaring approaches. A critical discussion regarding the engineering aspects to further enhance clay-based catalyst for CO2 hydrogenation are further disclosed. In short, clays are freely available materials that can be found in abundance. However, there are many more different types of natural green clays that have not been studied and explored in various energy applications.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
16
|
Liu Y, Chu X, Shi A, Yao C, Ni C, Li X. Construction of 2D Bismuth Silicate Heterojunctions from Natural Mineral toward Cost-Effective Photocatalytic Reduction of CO 2. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yahui Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Xini Chu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Anqi Shi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Chao Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
| | - Xiazhang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- Department of Materials Science and Engineering, University of Delaware, Newark 19716, Delaware, United States
| |
Collapse
|
17
|
Mineral-Supported Photocatalysts: A Review of Materials, Mechanisms and Environmental Applications. ENERGIES 2022. [DOI: 10.3390/en15155607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although they are of significant importance for environmental applications, the industrialization of photocatalytic techniques still faces many difficulties, and the most urgent concern is cost control. Natural minerals possess abundant chemical inertia and cost-efficiency, which is suitable for hybridizing with various effective photocatalysts. The use of natural minerals in photocatalytic systems can not only significantly decrease the pure photocatalyst dosage but can also produce a favorable synergistic effect between photocatalyst and mineral substrate. This review article discusses the current progress regarding the use of various mineral classes in photocatalytic applications. Owing to their unique structures, large surface area, and negatively charged surface, silicate minerals could enhance the adsorption capacity, reduce particle aggregation, and promote photogenerated electron-hole pair separation for hybrid photocatalysts. Moreover, controlling the morphology and structure properties of these materials could have a great influence on their light-harvesting ability and photocatalytic activity. Composed of silica and alumina or magnesia, some silicate minerals possess unique orderly organized porous or layered structures, which are proper templates to modify the photocatalyst framework. The non-silicate minerals (referred to carbonate and carbon-based minerals, sulfate, and sulfide minerals and other special minerals) can function not only as catalyst supports but also as photocatalysts after special modification due to their unique chemical formula and impurities. The dye-sensitized minerals, as another natural mineral application in photocatalysis, are proved to be superior photocatalysts for hydrogen evolution and wastewater treatment. This work aims to provide a complete research overview of the mineral-supported photocatalysts and summarizes the common synergistic effects between different mineral substrates and photocatalysts as well as to inspire more possibilities for natural mineral application in photocatalysis.
Collapse
|
18
|
Facile synthesis of ZnO-clay minerals composites using an ultrasonic approach for photocatalytic performance. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Kumaresan M, Saravanan V, Swaminathan M. Visible active clay based Sm2(WO4)3 nanocomposite for drug removal in pharmaceutical effluents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Zhong Q, Liu J, Wang J, Li Y, Li J, Zhang G. Efficient degradation of organic pollutants by activated peroxymonosulfate over TiO 2@C decorated Mg-Fe layered double oxides: Degradation pathways and mechanism. CHEMOSPHERE 2022; 300:134564. [PMID: 35413370 DOI: 10.1016/j.chemosphere.2022.134564] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
To activate peroxymonosulfate (PMS) is an efficient way for decomposition of non-biodegradable organic pollutants. Herein, Mg-Fe layered double oxides decorated with Ti3C2 MXene-derived TiO2@C (T/LDOs) were fabricated to efficiently activate PMS for the degradation of Rhodamine B (RhB), acid red 1 (AR1), methylene blue (MB), and tetracycline hydrochloride (TC). The T/LDOs catalyst could decompose 95.8% of RhB, 94.8% of AR1, 84.9% of MB within 10 min, and 82.4% of TC within 60 min. The degradation rate constant of RhB in the optimal T/LDOs/PMS system was approximately 2.5 and 15.7 times higher than that in the Mg-Fe LDOs/PMS system and Mg-Fe LDH/PMS system, respectively. Importantly, the T/LDOs exhibited a wide working pH range (3.1-11.0) and high stability with low metal ions leaching, indicating its potential practical applications. Quenching experiments and electronic spin resonance results confirmed that both •O2- and 1O2 were the dominant active species in the T/LDOs/PMS system. In addition, the possible degradation pathway of RhB in the 5%-T/LDOs/PMS system was proposed. Finally, the catalytic mechanism study revealed that the T/LDOs with abundant surface hydroxyl groups and a certain amount of TiO2@C facilitated the electron transfer between ≡Fe(Ⅲ)‒OH complex and HSO5-, boosting the generation of •O2- and 1O2. This study provides an insight into exploiting highly efficient catalysts for PMS activation towards the degradation of organic pollutants.
Collapse
Affiliation(s)
- Qian Zhong
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Jin Liu
- Henan Key Laboratory of Rare Earth Functional Materials, Zhoukou Normal University, Zhoukou, 466001, China.
| | - Junting Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Jun Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
21
|
Effect of ionic Fe(III) doping on montmorillonite for photocatalytic reduction of Cr(VI) in wastewater. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Zou Y, Hu Y, Shen Z, Yao L, Tang D, Zhang S, Wang S, Hu B, Zhao G, Wang X. Application of aluminosilicate clay mineral-based composites in photocatalysis. J Environ Sci (China) 2022; 115:190-214. [PMID: 34969448 DOI: 10.1016/j.jes.2021.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 05/18/2023]
Abstract
Aluminosilicate clay mineral (ACM) is a kind of typical raw materials that used widely in manufacturing industry owing to the abundant reserve and low-cost exploring. In past two decades, in-depth understanding on unique layered structure and abundant surface properties endows ACM in the emerging research and application fields. In field of solar-chemical energy conversion, ACM has been widely used to support various semiconductor photocatalysts, forming the composites and achieving efficient conversion of reactants under sunlight irradiation. To date, classic ACM such as kaolinite and montmorillonite, loaded with semiconductor photocatalysts has been widely applied in photocatalysis. This review summaries the recent works on ACM-based composites in photocatalysis. Focusing on the properties of surface and layered structure, we elucidate the different features in the composition with various functional photocatalysts on two typical kinds of ACM, i.e., type 1:1 and type 2:1. Not only large surface area and active surface hydroxyl group assist the substrate adsorption, but also the layered structure provides more space to enlarge the application of ACM-based photocatalysts. Besides, we overview the modifications on ACM from both external surface and the inter-layer space that make the formation of composites more efficiently and boost the photo-chemical process. This review could inspire more upcoming design and synthesis for ACM-based photocatalysts, leading this kind of economic and eco-friendly materials for more practical application in the future.
Collapse
Affiliation(s)
- Yingtong Zou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Yezi Hu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zewen Shen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ling Yao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Duoyue Tang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Sai Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
23
|
Pawar RR, Chuaicham C, Sekar K, Rajendran S, Sasaki K. Synthesis, characterization, and application of MOF@clay composite as a visible light-driven photocatalyst for Rhodamine B degradation. CHEMOSPHERE 2022; 291:132922. [PMID: 34800503 DOI: 10.1016/j.chemosphere.2021.132922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Metal Organic Frameworks (MOFs) with natural clay materials is a relatively new research avenue that appears to reduce high production costs and address the instability issues of pure MOFs. A novel MOF and natural clay composites of MOF@Sp_n (n = 1-4) were fabricated by the in situ precipitation of stable MOF, Zr6O4(OH)4 (ABDC)6 (where ABDC = 2-aminobenzene-1,4-dicarboxylic acid), over natural sepiolite (Sp) clay and used as a photocatalysts for elimination of organic dyes in aqueous media. The formation of MOF@Sp_n due to its strong electrostatic interactions between the positively charged MOF and the negatively charged sepiolite. Optimizing the Sp content in the composite strongly influenced the dispersibility, crystallinity of MOFs, resulting in progressively functional hybrid materials with an excellent optoelectronic properties. The composites lessened the shortcomings of the individual components and made them suitable as a visible light-active, highly efficient, standalone photocatalyst material that can degrade RhB.
Collapse
Affiliation(s)
- Radheshyam Rama Pawar
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan; Ashapura International Limited, Survey No. 256/3, Village Baraya, Bhuj-Mundra Highway, Mundra, Kutch, Gujarat, 370-415, India.
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan; Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
24
|
Bhat AH, Rangreez TA, Inamuddin, Chisti HTN. Wastewater Treatment and Biomedical Applications of Montmorillonite
Based Nanocomposites: A Review. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999200729123309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Rapid industrialisation, population growth and technological race worldwide have brought adverse
consequences on water resources and as a result affect human health. Toxic metal ions, non-biodegradable dyes, organic
pollutants, pesticides, pharmaceuticals are among the chief hazardous materials released into the water bodies from various
sources. These hazardous contaminants drastically affect the flora and fauna globally leading to health deterioration there
by giving rise to new biomedical challenges.
Hypothesis::
Montmorillonite based nanocomposites (MMTCs) have drawn an attention of the researchers to design
environmental friendly, advanced and hygienic nanocomposites for wastewater treatment and biomedical purposes.
Montmorillonite clay possesses peculiar physical and chemical properties that include enhanced surface reactivity, improved
rheological performance, exorbitant miscibility in water due to which it shows highly favourable interactions with polymers,
drugs, metals, mixed metals and metal oxides leading to the fabrication of different types of advanced montmorillonite
based nanocomposites that have remarkable applications
Methodology::
Here we review the structural characteristics of montmorillonite clay, advances in the synthetic techniques
involved in the fabrication of montmorillonite nanocomposites, their applications in waste water treatment and in bio
medical field. The recently developed montmorillonite nanocomposites for (1) waste water treatment as nano-adsorbents
for the elimination of toxic inorganic species such as metal ions and heterogeneous photo-catalysts for photo degradation
of dyes, pesticides and pharmaceuticals (2) biomedical utilization viz drug delivery, wound amelioration, bone cement,
tissue engineering etc. are presented
Conclusion::
The review exclusively focuses on recent research on montmorillonite based nanocomposites and their
application in wastewater treatment and in biomedical field
Collapse
Affiliation(s)
- Aabid Hussain Bhat
- Department of Chemistry, National Institute of Technology, Srinagar, J&K-190006,India,India
| | | | - Inamuddin
- Department of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah,Saudi Arabia
| | | |
Collapse
|
25
|
Sharma SK, Kumar A, Sharma G, Vo DVN, García-Peñas A, Moradi O, Sillanpää M. MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: A review. CHEMOSPHERE 2022; 291:132923. [PMID: 34813851 DOI: 10.1016/j.chemosphere.2021.132923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 11/14/2021] [Indexed: 05/22/2023]
Abstract
Extensive research is being done to develop multifunctional advanced new materials for high performance photocatalytic applications in the field of energy production and environmental detoxification, MXenes have emerged as promising materials for enhancing photocatalytic performance owing to their excellent mechanical properties, appropriate Fermi levels, and adjustability of chemical composition. Numerous experimental and theoretical research works implied that the dimensions of MXenes have a significant impact on their performance. For photocatalysis to thrive in the future, we must understand the current state of the art for MXene in different dimensions. Using MXene co-catalysts in widely used in photocatalytic applications such as CO2 reduction, hydrogen production and organic pollutant oxidation, this study focuses on the most recent developments in MXenes based materials, structural modifications, innovations in reaction and material engineering. It has been reported that using 5 mg of CdS-MoS2-MXene researchers were able to generate as high as 9679 μmol/g/h hydrogen under visible light. The MXenes based heterojunction photocatalyst Co3O4/MXene was utilized to degrade 95% bisphenol A micro-pollutant in just 7 min. Numerous novel materials, their preparations and performances have been discussed. Depending upon the nature of MXene-based materials, the synthesis techniques and photocatalytic mechanism of MXenes as co-catalyst are also summarized. Finally, some final thoughts and prospects for developing highly efficient MXene-based photocatalysts are provided which will indeed motivate researchers to design novel hybrid materials based on MXenes for sustainable solutions to energy and pollution issues.
Collapse
Affiliation(s)
- Sunil Kumar Sharma
- School of Advance Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, India, 173229
| | - Amit Kumar
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India, 173229; School of Science and Technology, Glocal University, Saharanpur, India.
| | - Gaurav Sharma
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518060, PR China; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, India, 173229.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Alberto García-Peñas
- University Carlos III of Madrid, Av. de la Universidad, 3028911, Leganés, Madrid, Spain
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
26
|
Curcumin functionalized TiO2 modified bentonite clay nanostructure for colorimetric Aflatoxin B1 detection in peanut and corn. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Fabrication of Adsorbed Fe(III) and Structurally Doped Fe(III) in Montmorillonite/TiO2 Composite for Photocatalytic Degradation of Phenol. MINERALS 2021. [DOI: 10.3390/min11121381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Fe(III)-doped montmorillonite (Mt)/TiO2 composites were fabricated by adding Fe(III) during or after the aging of TiO2/Ti(OH)4 sol–gel in Mt, named as xFe-Mt/(1 − x)Fe-TiO2 and Fe/Mt/TiO2, respectively. In the xFe-Mt/(1 − x)Fe-TiO2, Fe(III) cations were expected to be located in the structure of TiO2, in the Mt, and in the interface between them, while Fe(III) ions are physically adsorbed on the surfaces of the composites in the Fe/Mt/TiO2. The narrower energy bandgap (Eg) lower photo-luminescence intensity were observed for the composites compared with TiO2. Better photocatalytic performance for phenol degradation was observed in the Fe/Mt/TiO2. The 94.6% phenol degradation was due to greater charge generation and migration capacity, which was confirmed by photocurrent measurements and electrochemical impedance spectroscopy (EIS). The results of the energy-resolved distribution of electron traps (ERDT) suggested that the Fe/Mt/TiO2 possessed a larger amorphous rutile phase content in direct contact with crystal anatase than that of the xFe-Mt/(1 − x)Fe-TiO2. This component is the fraction that is mainly responsible for the photocatalytic phenol degradation by the composites. As for the xFe-Mt/(1 − x)Fe-TiO2, the active rutile phase was followed by isolated amorphous phases which had larger (Eg) and which did not act as a photocatalyst. Thus, the physically adsorbed Fe(III) enhanced light adsorption and avoided charge recombination, resulting in improved photocatalytic performance. The mechanism of the photocatalytic reaction with the Fe(III)-doped Mt/TiO2 composite was proposed.
Collapse
|
28
|
Wang K, Wang T, Islam QA, Wu Y. Layered double hydroxide photocatalysts for solar fuel production. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63861-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Impact of Doping and Additive Applications on Photocatalyst Textural Properties in Removing Organic Pollutants: A Review. Catalysts 2021. [DOI: 10.3390/catal11101160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effect of ion doping and the incorporation of additives on photocatalysts’ textural properties have been reviewed. Generally, it can be summarised that ion doping and additives have beneficial effects on photocatalytic efficiency and not all have an increase in the surface area. The excessive amount of dopants and additives will produce larger aggregated particles and also cover the mesoporous structures, thereby increasing the pore size (Pd) and pore volume (Pv). An excessive amount of dopants also leads to visible light shielding effects, thus influence photocatalytic performance. Ion doping also shows some increment in the surface areas, but it has been identified that synergistic effects of the surface area, porosity, and dopant amount contribute to the photocatalytic performance. It is therefore important to understand the effect of doping and the application of additives on the textural properties of photocatalysts, thus, their performance. This review will provide an insight into the development of photocatalyst with better performance for wastewater treatment applications.
Collapse
|
30
|
Son BT, Long NV, Nhat Hang NT. Fly ash-, foundry sand-, clay-, and pumice-based metal oxide nanocomposites as green photocatalysts. RSC Adv 2021; 11:30805-30826. [PMID: 35498918 PMCID: PMC9041310 DOI: 10.1039/d1ra05647f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxides possess exceptional physicochemical properties which make them ideal materials for critical photocatalytic applications. However, of major interest, their photocatalytic applications are hampered by several drawbacks, consisting of prompt charge recombination of charge carriers, low surface area, inactive under visible light, and inefficient as well as expensive post-treatment recovery. The immobilization of metal oxide semiconductors on materials possessing high binding strength eliminates the impractical and costly recovery of spent catalysts in large-scale operations. Notably, the synthesis of green material (ash, clay, foundry sand, and pumice)-based metal oxides could provide a synergistic effect of the superior adsorption capacity of supporting materials and the photocatalytic activity of metal oxides. This phenomenon significantly improves the overall degradation efficiency of emerging pollutants. Inspired by the novel concept of "treating waste with waste", this contribution highlights recent advances in the utilization of natural material (clay mineral and pumice)- and waste material (ash and foundry sand)-based metal oxide nanocomposites for photodegradation of various pollutants. First, principles, mechanism, challenges towards using metal oxide as photocatalysts, and immobilization techniques are systematically summarized. Then, sources, classifications, properties, and chemical composition of green materials are briefly described. Recent advances in the utilization of green materials-based metal oxide composites for the photodegradation of various pollutants are highlighted. Finally, in the further development of green materials-derived photocatalysts, we underlined the current gaps that are worthy of deeper research in the future.
Collapse
Affiliation(s)
- Bui Thanh Son
- Nanotechnology, Thu Dau Mot University Binh Duong Province Vietnam
| | - Nguyen Viet Long
- Nanotechnology, Thu Dau Mot University Binh Duong Province Vietnam
| | | |
Collapse
|
31
|
Abstract
The use of titania-based composite materials in the field of heterogeneous catalysis and photocatalysis has a long and rich history. Hybrid structures combining titania nanoparticles with clay minerals have been extensively investigated for nearly four decades. The attractiveness of clay minerals as components of functional materials stems primarily from their compositional versatility and the possibility of using silicate lamellae as prefabricated building blocks ready to be fitted into the desired nanoconstruction. This review focuses on the evolution over the years of synthetic strategies employed for the manufacturing of titania–clay mineral composites with particular attention to the role of the adopted preparative approach in shaping the physical and chemical characteristics of the materials and enabling, ultimately, tuning of their catalytic and/or photocatalytic performance.
Collapse
|
32
|
El Gaidoumi A, Loqman A, Zouheir M, Tanji K, Mertah O, Dra A, El Bali B, Kherbeche A. Sol–gel fluorinated TiO2–clay nanocomposite: study of fluor-titanium interaction on the photodegradation of phenol. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04573-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Bhuvaneswari K, Palanisamy G, Bharathi G, Pazhanivel T, Upadhyaya IR, Kumari MLA, Rajesh RP, Govindasamy M, Ghfar A, Al-Shaalan NH. Visible light driven reduced graphene oxide supported ZnMgAl LTH/ZnO/g-C 3N 4 nanohybrid photocatalyst with notable two-dimension formation for enhanced photocatalytic activity towards organic dye degradation. ENVIRONMENTAL RESEARCH 2021; 197:111079. [PMID: 33775684 DOI: 10.1016/j.envres.2021.111079] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
In this study, 2D/2D/2D heterostructured r-GO/LTH/ZnO/g-C3N4 nanohybrid were synthesized through hydrothermal method. The strong electrostatic interaction between the negatively charged g-C3N4 and r-GO nanosheets with positively charged layered triple hydroxide (LTH) nanosheets are effectively influences the successful formation of heterojunction. The LTH nanosheets are well spread on the g-C3N4 nanosheets combined with r-GO. In particular, the as prepared heterojunction shows a better photocatalytic degradation activity compared to pristine samples and the significant enhancement in the photocatalytic performance is mainly accredited to the large interfacial charge transition of photogenerated charge carriers under the visible light irradiation. Although the 2D/2D/2D heterojunction effectively hinders the charge carrier recombination resulting high photocatalytic activity with good stability. In addition, the r-GO supported LTH/ZnO/g-C3N4 heterojunction shows high photo-stability after sequential experimental runs with no obvious change in the dye degradation process. Consequently, the role of active species was investigated over the r-GO/LTH/ZnO/g-C3N4 heterojunction with the help of different scavengers.
Collapse
Affiliation(s)
- K Bhuvaneswari
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
| | - G Palanisamy
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India
| | - G Bharathi
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, PR China
| | - T Pazhanivel
- Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem, 636 011, Tamilnadu, India.
| | - Indra Raj Upadhyaya
- Department of Chemistry Education, Chungbuk National University, Chungcheongbuk-do, 28644, Republic of Korea
| | - M L Aruna Kumari
- Department of Chemistry, M.S. Ramaiah College of Arts, Science and Commerce, Bengaluru, 560054, India
| | - R P Rajesh
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Mani Govindasamy
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Ghfar
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Chemistry Department P. O. Box 84428, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| |
Collapse
|
34
|
Organic Reactions Using Clay and Clay-Supported Catalysts: A Survey of Recent Literature. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09333-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Lee J, Tan LL, Chai SP. Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. NANOSCALE 2021; 13:7011-7033. [PMID: 33889914 DOI: 10.1039/d1nr00783a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an indispensable energy source, ammonia plays an essential role in agriculture and various industries. Given that the current ammonia production is still dominated by the energy-intensive and high carbon footprint Haber-Bosch process, photocatalytic nitrogen fixation represents a low-energy consuming and sustainable approach to generate ammonia. Heterostructured photocatalysts are hybrid materials composed of semiconductor materials containing interfaces that make full use of the unique superiorities of the constituents and synergistic effects between them. These promising photocatalysts have superior performances and substantial potential in photocatalytic reduction of nitrogen. In this review, a wide spectrum of recently developed heterostructured photocatalysts for nitrogen fixation to ammonia are evaluated. The fundamentals of solar-to-ammonia conversion, basic principles of various heterojunction photocatalysts and modification strategies are systematically reviewed. Finally, a brief summary and perspectives on the ongoing challenges and directions for future development of nitrogen photofixation catalysts are also provided.
Collapse
Affiliation(s)
- Jiale Lee
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia.
| | | | | |
Collapse
|
36
|
You R, Chen J, Hong M, Li J, Hong X. Facile Synthesis of g-C 3N 4/TiO 2/Hectorite Z-Scheme Composite and Its Visible Photocatalytic Degradation of Rhodamine B. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5304. [PMID: 33238637 PMCID: PMC7700213 DOI: 10.3390/ma13225304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
A novel g-C3N4/TiO2/hectorite Z-scheme composites with oxygen vacancy (Vo) defects and Ti3+ were synthesized by so-gel method and high temperature solid phase reaction. This composite exhibited high visible photo-catalytic degradation of rhodamine B (RhB). The apparent rate constant of g-C3N4/TiO2/hectorite was 0.01705 min-1, which is approximately 5.38 and 4.88 times that of P25 and g-C3N4, respectively. The enhancement of photo-catalytic efficiency of the composites can be attributed to the great light harvesting ability, high specific surface area and effective separation of electrons(e-) and holes(h+). The F element from Hectorite causes the formation of Vo and Ti3+ in TiO2, making it responsive to visible light. The effective separation of e- and h+ mainly results from Z-scheme transfer of photo-produced electrons in g-C3N4/TiO2 interface. The composites can be easily recycled and the degradation rate of the RhB still reached 84% after five cycles, indicating its good reusability.
Collapse
Affiliation(s)
- Rong You
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 201900, China; (M.H.); (J.L.); (X.H.)
| | - Jinyang Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 201900, China; (M.H.); (J.L.); (X.H.)
| | | | | | | |
Collapse
|
37
|
Saliba D, El Jamal SE, Jonderian A, Ammar M, Hmadeh M, Al-Ghoul M. Tuning the structural properties of cadmium-aluminum layered double hydroxide for enhanced photocatalytic dye degradation. RSC Adv 2020; 10:43066-43074. [PMID: 35514892 PMCID: PMC9058134 DOI: 10.1039/d0ra08006c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 11/21/2022] Open
Abstract
The distinctive layered structure, chemical stability and tunability of layered double hydroxides (LDHs) have led to extensive investigations in various areas of photocatalysis, including photocatalytic water splitting, carbon dioxide photoreduction, and degradation of organic pollutants. Here, a series of visible light active cadmium-aluminum layered double hydroxides (CdAl LDHs) with various Cd2+ : Al3+ ratios is synthesized via the reaction-diffusion framework (RDF) leading thereby to a hierarchal spherical structure of the LDH. The aim of this study is to develop an optimal CdAl LDH photocatalyst that is activated by solar light irradiation and tested for methylene blue (MB) degradation. The structural and physicochemical properties of the synthesized materials are determined by several imaging and spectroscopic techniques. The photocatalytic study reveals a strong dependence of the photocatalytic activity of the CdAl LDH on the cationic ratio with an optimal performance at a ratio Cd2+ : Al3+ equal to 3 : 1. A mechanism is proposed whereby the activity is ascribed to the formation of intermediate reactive oxidative species (ROS) during the photodegradation reactions and scrutinised by invoking different ROS quenchers and corroborated by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Daniel Saliba
- Department of Chemistry, McGill University 801 Sherbrooke St W Montreal Quebec H3A 0B8 Canada
| | - Salah Eddin El Jamal
- Department of Chemistry, American University of Beirut P. O. Box 11-0236, Riad El-Solh 1107 2020 Beirut Lebanon +961 1 365217 +961 1 350000
| | - Antranik Jonderian
- Department of Chemistry, McGill University 801 Sherbrooke St W Montreal Quebec H3A 0B8 Canada
| | - Manal Ammar
- Department of Chemistry, American University of Beirut P. O. Box 11-0236, Riad El-Solh 1107 2020 Beirut Lebanon +961 1 365217 +961 1 350000
| | - Mohamad Hmadeh
- Department of Chemistry, American University of Beirut P. O. Box 11-0236, Riad El-Solh 1107 2020 Beirut Lebanon +961 1 365217 +961 1 350000
| | - Mazen Al-Ghoul
- Department of Chemistry, McGill University 801 Sherbrooke St W Montreal Quebec H3A 0B8 Canada
- Department of Chemistry, American University of Beirut P. O. Box 11-0236, Riad El-Solh 1107 2020 Beirut Lebanon +961 1 365217 +961 1 350000
| |
Collapse
|
38
|
Molina CB, Sanz-Santos E, Boukhemkhem A, Bedia J, Belver C, Rodriguez JJ. Removal of emerging pollutants in aqueous phase by heterogeneous Fenton and photo-Fenton with Fe 2O 3-TiO 2-clay heterostructures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38434-38445. [PMID: 32418101 DOI: 10.1007/s11356-020-09236-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Fe2O3-TiO2-clay heterostructures have been prepared using an organo-bentonite as support, which organophilic character favored the fixation of TiO2. Furthermore, Fe2O3 was successfully anchored by wet impregnation. The resulting materials are characterized by a disordered layered structure and a mesoporous texture. The heterostructures were employed as catalysts for the removal of two pharmaceuticals, acetaminophen (ACE) and antipyrine (ANT), by heterogeneous Fenton and photo-Fenton processes. ACE removal under different operation conditions was studied in detail to establish structure-performance relationships, being the TiO2 formation and the developed texture the main factors controlling the activity. ANT showed a higher refractory behavior in oxidation by Fenton. Among the technologies studied, heterogeneous photo-Fenton achieved the best catalytic performance and higher kinetic rate and mineralization degree. Iron leaching was very low, lower than 5% of the initial iron load in all cases. This work demonstrates the potential application of these heterostructures for the removal of emerging pollutants of different nature.
Collapse
Affiliation(s)
- Carmen B Molina
- Chemical Engineering Department, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
| | - Eva Sanz-Santos
- Chemical Engineering Department, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Ali Boukhemkhem
- Laboratory Interactions Materials-Environment (LIME), University of Mohamed Seddik Ben Yahia, 18000, Jijel, Algeria
| | - Jorge Bedia
- Chemical Engineering Department, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Carolina Belver
- Chemical Engineering Department, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Juan J Rodriguez
- Chemical Engineering Department, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
39
|
Sun Q, Chen B. Biotemplated Fabrication of 3D Hierarchically Porous MgAl-LDH/CF Composites with Effective Adsorption of Organic Dyes from Wastewater. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qinglei Sun
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Chen
- Intelligent Equipment College, Shandong University of Science and Technology, Taian Campus, Taian 271000, China
| |
Collapse
|
40
|
Jing KQ, Fu YQ, Wang ZQ, Chen ZN, Tan HZ, Sun J, Xu ZN, Guo GC. Zn 2+ stabilized Pd clusters with enhanced covalent metal-support interaction via the formation of Pd-Zn bonds to promote catalytic thermal stability. NANOSCALE 2020; 12:14825-14830. [PMID: 32672320 DOI: 10.1039/d0nr02987d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pd-Based heterogeneous catalysts have been demonstrated to be efficient in numerous heterogeneous reactions. However, the effect of the support resulting in covalent metal-support interaction (CMSI) has not been researched sufficiently. In this work, a Lewis base is modulated over MgAl-LDH to investigate the support effects and it is further loaded with Pd clusters to research the metal-support interactions. MgAl-LDH with ultra-low Pd loading (0.0779%) shows CO conversion (55.0%) and dimethyl oxalate (DMO) selectivity (93.7%) for CO oxidative coupling to DMO, which was gradually deactivated after evaluation for 20 h. To promote the stability of Pd/MgAl-LDH, Zn2+ ions were introduced into the MgAl-LDH support to strengthen the CMSI by forming Pd-Zn bonds, which further increased the adsorption energy of the Pd clusters on ZnMgAl-LDH, and this was verified by X-ray absorption fine structure (XAFS) measurements and density functional theory (DFT) calculations. The stability of the Pd/ZnMgAl-LDH catalyst could be maintained for at least 100 h. This work highlights that covalent metal-support interactions can be strengthened by forming new metal-metal bonds, which could be extended to other systems for the stabilization of noble metals over supports.
Collapse
Affiliation(s)
- Kai-Qiang Jing
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu-Qing Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhi-Qiao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Hong-Zi Tan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jing Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Zhong-Ning Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
41
|
Akbarzadeh E, Rasteh M, Gholami MR. Visible light photocatalytic performance of Ag2O/ZnCr-LDH nanocomposite. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Coronel S, Pauker CS, Jentzsch PV, de la Torre E, Endara D, Muñoz-Bisesti F. Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.02.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Shinde SG, Shrivastava VS. Ni and Zn modified acid activated montmorillonite clay for effective removal of carbol fuchsin dye from aqueous solution. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2295-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
44
|
Xianyi Lv, Zhang D, Wang J. Preparation, Structural, and Photocatalytic Properties of Boron-Doped Bismuth Oxybromide Nanoplatelets Combined with a First-Principle Study. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Jiang D, Liu Z, Fu L, Yang H. Interfacial Chemical-Bond-Modulated Charge Transfer of Heterostructures for Improving Photocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9872-9880. [PMID: 31994377 DOI: 10.1021/acsami.9b17183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Interface engineering of heterostructured photocatalysts plays a very important role in the transfer and separation process of interfacial charge carriers, but how to regulate the transfer and separation of photogenerated charge carriers still is a huge challenge at the nanometric interface of heterostructures (HCs). Herein, we demonstrate that interfacial chemical bonds can effectively modulate photogenerated charge transfer in nanoclay-based HCs constructed by natural Kaolinite (Kaol) nanosheets and P25-TiO2. Experimental results and density functional theory (DFT) calculations confirm that stable Al-O-Ti bonds form at the interfaces by interactions of the Al-OH groups of Kaol and (101) surfaces of anatase TiO2. The Al-O-Ti bond strengthens the energy band bending of the space charge region near the interfacial bond and thus provides a fast transfer channel for interfacial photogenerated charge, resulting in the boosted charge transfer and separation ability of Kaol/P25 HCs. The findings reported here provide a deeper insight into modulating interfacial charge transfer by chemical bonds and shed new light on interface engineering of efficient heterostructured photocatalysts for environmental applications.
Collapse
Affiliation(s)
- Denghui Jiang
- Centre for Mineral Materials, School of Minerals Processing and Bioengineering , Central South University , Changsha 410083 , China
| | - Ziran Liu
- Department of Physics, Key Lab for Low-Dimensional Structures and Quantum Manipulation (Ministry of Education) , Hunan Normal University , Changsha 410081 , China
| | - Liangjie Fu
- Centre for Mineral Materials, School of Minerals Processing and Bioengineering , Central South University , Changsha 410083 , China
- Hunan International Joint Lab of Mineral Materials , Central South University , Changsha 410083 , China
| | - Huaming Yang
- Centre for Mineral Materials, School of Minerals Processing and Bioengineering , Central South University , Changsha 410083 , China
- Hunan International Joint Lab of Mineral Materials , Central South University , Changsha 410083 , China
- Key Lab of Clay Mineral Functional Materials in China Building Materials Industry , Central South University , Changsha 410083 , China
| |
Collapse
|
46
|
Silver halide-based composite photocatalysts: an updated account. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2019. [DOI: 10.1007/s12210-019-00799-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Biswas B, Warr LN, Hilder EF, Goswami N, Rahman MM, Churchman JG, Vasilev K, Pan G, Naidu R. Biocompatible functionalisation of nanoclays for improved environmental remediation. Chem Soc Rev 2019; 48:3740-3770. [PMID: 31206104 DOI: 10.1039/c8cs01019f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the wide range of materials used for remediating environmental contaminants, modified and functionalised nanoclays show particular promise as advanced sorbents, improved dispersants, or biodegradation enhancers. However, many chemically modified nanoclay materials are incompatible with living organisms when they are used in natural systems with detrimental implications for ecosystem recovery. Here we critically review the pros and cons of functionalised nanoclays and provide new perspectives on the synthesis of environmentally friendly varieties. Particular focus is given to finding alternatives to conventional surfactants used in modified nanoclay products, and to exploring strategies in synthesising nanoclay-supported metal and metal oxide nanoparticles. A large number of promising nanoclay-based sorbents are yet to satisfy environmental biocompatibility in situ but opportunities are there to tailor them to produce "biocompatible" or regenerative/reusable materials.
Collapse
Affiliation(s)
- Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia. and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Laurence N Warr
- Institute for Geography and Geology, University of Greifswald, D-17487 Greifswald, Germany
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Nirmal Goswami
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Mohammad M Rahman
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia. and Global Centre for Environmental Remediation, the University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Jock G Churchman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, NG25 0QF, UK
| | - Ravi Naidu
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia. and Global Centre for Environmental Remediation, the University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
48
|
Abukhadra MR, Bakry BM, Adlii A, Yakout SM, El-Zaidy ME. Facile conversion of kaolinite into clay nanotubes (KNTs) of enhanced adsorption properties for toxic heavy metals (Zn 2+, Cd 2+, Pb 2+, and Cr 6+) from water. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:296-308. [PMID: 31009894 DOI: 10.1016/j.jhazmat.2019.04.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Accepted: 04/14/2019] [Indexed: 05/18/2023]
Abstract
Kaolinite nanotubes (KNTs) were synthesized from kaolinite by ultrasonic scrolling and characterized using X-ray diffractometer, scanning and transmission electron microscopes; and FTIR-FT Raman spectrometer. The synthetic KNTs appear as multi-walled scrolls of 12 nm average pore diameter and 50-600 nm particle length; and exhibit surface area of 105 m2/g. KNTs were used as adsorbents for Zn2+, Cd2+, Pb2+, and Cr6+ with uptake capacities of 103 mg/g, 116 mg/g, 89 mg/g, and 91 mg/g, respectively. The equilibration time of Cd2+ and Pb2+ adsorption is 360 min and for Cr6+ and Zn2+ area 120 min and 240 min, respectively. KNTs adsorption systems can be described mainly by Lagergren-second order and Freundlich models (R2> 0.95) as kinetic and isotherm models. This reflected multilayer adsorption forms with chemical sharing or ion exchange processes. KNTs exhibits high reusability and used for five cycles in the removal of the studied metals (100 mg/L). The removal percentages declined by 20.5%, 15.12%, 22.8% and 23.16% with repeating the reused cycles from cycle 1 to cycle 5 for Zn2+, Cd2+, Pb2+, and Cr6+, respectively. KNTs were applied successfully in realistic purification of tap water, groundwater, and sewage water from the inspected metals.
Collapse
Affiliation(s)
| | - Belal Mohamed Bakry
- Department of Chemistry, Faculty of Science, Beni-Suef University, 62514, Beni-Suef City, Egypt
| | - Alyaa Adlii
- Department of Chemistry, Faculty of Education, Beni-Suef University, 62514, Beni-Suef City, Egypt
| | - Sobhy M Yakout
- Biochemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Hot Laboratories and Waste Management Center, Atomic Energy Authority, Cairo, 13759, Egypt
| | - Mohamed E El-Zaidy
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
49
|
Wang L, Bahnemann DW, Bian L, Dong G, Zhao J, Wang C. Two‐Dimensional Layered Zinc Silicate Nanosheets with Excellent Photocatalytic Performance for Organic Pollutant Degradation and CO
2
Conversion. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lan Wang
- Laboratory of Environmental Sciences and Technology Xinjiang Technical Institute of Physics and Chemistry Key Laboratory of Functional Materials and Devices for Special Environments Chinese Academy of Sciences Urumqi 830011 China
| | - Detlef W. Bahnemann
- Laboratorium für Nano- und Quantenengineering Leibniz Universität Hannover Schneiderberg 39 30167 Hannover Germany
| | - Liang Bian
- Key Laboratory of Solid Waste Treatment and Resource Recycle South West University of Science and Technology Mianyang 621010 China
| | - Guohui Dong
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xian 710021 China
| | - Jie Zhao
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xian 710021 China
| | - Chuanyi Wang
- School of Environmental Science and Engineering Shaanxi University of Science and Technology Xian 710021 China
| |
Collapse
|
50
|
Ruiz-Hitzky E, Aranda P, Akkari M, Khaorapapong N, Ogawa M. Photoactive nanoarchitectures based on clays incorporating TiO 2 and ZnO nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1140-1156. [PMID: 31293852 PMCID: PMC6604728 DOI: 10.3762/bjnano.10.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 05/20/2023]
Abstract
Thought as raw materials clay minerals are often disregarded in the development of advanced materials. However, clays of natural and synthetic origin constitute excellent platforms for developing nanostructured functional materials for numerous applications. They can be easily assembled to diverse types of nanoparticles provided with magnetic, electronic, photoactive or bioactive properties, allowing to overcome drawbacks of other types of substrates in the design of functional nanoarchitectures. Within this scope, clays can be of special relevance in the production of photoactive materials as they offer an advantageous way for the stabilization and immobilization of diverse metal-oxide nanoparticles. The controlled assembly under mild conditions of titanium dioxide and zinc oxide nanoparticles with clay minerals to give diverse clay-semiconductor nanoarchitectures are summarized and critically discussed in this review article. The possibility to use clay minerals as starting components showing different morphologies, such as layered, fibrous, or tubular morphologies, to immobilize these types of nanoparticles mainly plays a role in i) the control of their size and size distribution on the solid surface, ii) the mitigation or suppression of the nanoparticle aggregation, and iii) the hierarchical design for selectivity enhancements in the catalytic transformation and for improved overall reaction efficiency. This article tries also to present new steps towards more sophisticated but efficient and highly selective functional nanoarchitectures incorporating photosensitizer elements for tuning the semiconductor-clay photoactivity.
Collapse
Affiliation(s)
- Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28027 Madrid, Spain
| | - Pilar Aranda
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28027 Madrid, Spain
| | - Marwa Akkari
- Materials Science Institute of Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco, 28027 Madrid, Spain
- Laboratory of Nanomaterials and Renewable Energy Systems. Research and Technology Center of Energy, Borj-Cedria Science and Technology Park, BP 95, 2050 Hammam-Lif, Tunisia
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|