1
|
Brovarets’ OO, Muradova A, Hovorun DM. Novel horizons of the conformationally-tautomeric transformations of the G·T base pairs: quantum-mechanical investigation. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2026510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alona Muradova
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
2
|
Jin L, Lv M, Shi S, Lu J, Wang Q, Yu X, Huang W. The C5‐substituent effects on the formic acid‐assisted tautomerization of protonated cytosine: A lower isomerization barrier and potential biological importance. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment Science Shaanxi University of Technology Hanzhong China
| | - Mengdan Lv
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment Science Shaanxi University of Technology Hanzhong China
| | - Shengnan Shi
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment Science Shaanxi University of Technology Hanzhong China
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment Science Shaanxi University of Technology Hanzhong China
| | - Qin Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment Science Shaanxi University of Technology Hanzhong China
| | - Xiaohu Yu
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment Science Shaanxi University of Technology Hanzhong China
| | - Wendeng Huang
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment Science Shaanxi University of Technology Hanzhong China
| |
Collapse
|
3
|
Brovarets' OO, Muradova A, Hovorun DM. A Quantum-Mechanical Looking Behind the Scene of the Classic G·C Nucleobase Pairs Tautomerization. Front Chem 2020; 8:574454. [PMID: 33330362 PMCID: PMC7732530 DOI: 10.3389/fchem.2020.574454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
For the first time, at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory, a comprehensive quantum-mechanical investigation of the physico-chemical mechanism of the tautomeric wobblization of the four biologically-important G·C nucleobase pairs by the participation of the monomers in rare, in particular mutagenic, tautomeric forms (marked with an asterisk) was provided. These novel tautomeric transformations (wobblization or shifting of the bases within the pair) are intrinsically inherent properties of the G·C nucleobase pairs. In this study, we have obtained intriguing results, lying far beyond the existing representations. Thus, it was shown that Löwdin's G*·C*(WC) base pair does not tautomerize according to the wobblization mechanism. Tautomeric wobblization of the G*·C*(rWC) (relative Gibbs free energy ΔG = 0.00/relative electronic energy ΔE = 0.00 kcal·mol-1) ("r"-means the configuration of the base pair in reverse position; "WC"-the classic Watson-Crick configuration) and G*t·C*(H) (ΔG = -0.19/ΔE = 0.29 kcal·mol-1) ("H"-Hoogsteen configuration;"t" denotes the O6H hydroxyl group in the trans position) base pairs are preceded by the stages of the base pairs tautomerization by the single proton transfer (SPT). It was established that the G*t·C*(rH) (ΔG = 2.21/ΔE = 2.81 kcal·mol-1) base pair can be wobbled through two different pathways via the traditional one-stage mechanism through the TSs, which are tight G+·C- ion pairs, stabilized by the participation of only two intermolecular H-bonds. It was found out that the G·C base pair is most likely incorporated into the DNA/RNA double helix with parallel strands in the G*·C*(rWC), G·C*(rwwc), and G*·C(rwwc) ("w"-wobble configuration of the pair) tautomeric forms, which are in rapid tautomeric equilibrium with each other. It was proven that the G*·C*(rWC) nucleobase pair is also in rapid tautomeric equilibrium with the eight tautomeric forms of the so-called Levitt base pair. It was revealed that a few cases of tautomerization via the DPT of the nucleobase pairs by the participation of the C8H group of the guanine had occurred. The biological role of the obtained results was also made apparent.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alona Muradova
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
4
|
Jin L, Shi S, Song X, Zhao C, Lu J, An C, Xu P, Wang Z, Qin G. The deamination mechanism of 5,6‐dihydrocytosine and 5,6‐dihydro‐5‐methylcytosine under typical bisulfite condition. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.3990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Shengnan Shi
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Xiaoling Song
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Chen An
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Pingping Xu
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Zhengguo Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| | - Gongwei Qin
- Shaanxi Key Laboratory of Catalysis, School of Chemical and Environment ScienceShaanxi University of Technology Hanzhong China
| |
Collapse
|
5
|
Brovarets' OO, Oliynyk TA, Hovorun DM. Novel Tautomerisation Mechanisms of the Biologically Important Conformers of the Reverse Löwdin, Hoogsteen, and Reverse Hoogsteen G *·C * DNA Base Pairs via Proton Transfer: A Quantum-Mechanical Survey. Front Chem 2019; 7:597. [PMID: 31620420 PMCID: PMC6759773 DOI: 10.3389/fchem.2019.00597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022] Open
Abstract
For the first time, in this study with the use of QM/QTAIM methods we have exhaustively investigated the tautomerization of the biologically-important conformers of the G*·C* DNA base pair-reverse Löwdin G*·C*(rWC), Hoogsteen G*'·C*(H), and reverse Hoogsteen G*'·C*(rH) DNA base pairs-via the single (SPT) or double (DPT) proton transfer along the neighboring intermolecular H-bonds. These tautomeric reactions finally lead to the formation of the novel G· C O 2 * (rWC), G N 2 * · C(rWC), G*'N2·C(rWC), G N 7 * · C(H), and G*'N7·C(rH) DNA base mispairs. Gibbs free energies of activation for these reactions are within the range 3.64-31.65 kcal·mol-1 in vacuum under normal conditions. All TSs are planar structures (Cs symmetry) with a single exception-the essentially non-planar transition state TSG*·C*(rWC)↔G+·C-(rWC) (C1 symmetry). Analysis of the kinetic parameters of the considered tautomerization reactions indicates that in reality only the reverse Hoogsteen G*'·C*(rH) base pair undergoes tautomerization. However, the population of its tautomerised state G*'N7·C(rH) amounts to an insignificant value-2.3·10-17. So, the G*·C*(rWC), G*'·C*(H), and G*'·C*(rH) base pairs possess a permanent tautomeric status, which does not depend on proton mobility along the neighboring H-bonds. The investigated tautomerization processes were analyzed in details by applying the author's unique methodology-sweeps of the main physical and chemical parameters along the intrinsic reaction coordinate (IRC). In general, the obtained data demonstrate the tautomeric mobility and diversity of the G*·C* DNA base pair.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Pharmacology, Bohomolets National Medical University, Kyiv, Ukraine
| | - Timothy A. Oliynyk
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- Department of Pathophysiology, Bohomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
6
|
Jin L, Qin G, Zhao C, Yu X, Lu J, Meng H. The deamination mechanism of the 5,6-dihydro-6-hydro-6-hydroxylcytosine and 5,6-dihydro-5-methyl-6-hydroxylcytosine under typical bisulfite conditions. Mol Phys 2019. [DOI: 10.1080/00268976.2018.1541105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Gongwei Qin
- Bioresources Key Laboratory of Shaanxi Province, College of Biological Science and Technology, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Xiaohu Yu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Hao Meng
- College of Physics and Telecom Engineering, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| |
Collapse
|
7
|
Brovarets’ OO, Hovorun DM. Key microstructural mechanisms of the 2-aminopurine mutagenicity: Results of extensive quantum-chemical research. J Biomol Struct Dyn 2019; 37:2716-2732. [DOI: 10.1080/07391102.2018.1495577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| |
Collapse
|
8
|
Shi WJ, Ren FD. Cooperativity effect of the ππ interaction between drug and DNA on intercalative binding induced by H-bonds: a QM/QTAIM investigation of the curcuminadenineH 2O model system. Phys Chem Chem Phys 2019; 21:11871-11882. [PMID: 31119251 DOI: 10.1039/c9cp01667h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In order to reveal the nature of intercalative binding of drug to DNA, the cooperativity effect of the ππ interaction was investigated in the curcuminadenineH2O model system by applying a combined QM and QTAIM computational approach. The H-bonds between the electron-donating group of curcumin and adenine induce the formation of the ππ stacking. The introduction of H2O weakens the H-bonding and ππ interactions, leading to an anti-cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that the anti-cooperative effect is the main driving force for the intercalative binding of drug to DNA bases, which is in agreement with many experimental phenomena. Therefore, the designed DNA-targeted intercalating drugs should possess not only hydrophobic moieties, but also strong electron-donating groups bound to the DNA bases with H-bonds, which can slow the variation rates of the strengths of the H-bonding and ππ interactions between drug and DNA bases in the anti-cooperative process, leading to the intercalation formation. The enthalpy change is the major factor driving the positive thermodynamic cooperativity.
Collapse
Affiliation(s)
- Wen-Jing Shi
- The Second Hospital of Shanxi Medical University, Taiyuan 030053, China.
| | | |
Collapse
|
9
|
Pan J, Cao DL, Ren FD, Wang JL, Yang L. Theoretical investigation into the cooperativity effect between the intermolecular π∙π and H-bonding interactions in the curcumin∙cytosine∙H2O system. J Mol Model 2018; 24:298. [DOI: 10.1007/s00894-018-3836-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022]
|
10
|
Tolosa S, Sansón J, Hidalgo A. Theoretical study of mechanisms for double proton transfer in adenine–uracil base pair via steered molecular dynamic simulations. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Jin L, Lv M, Zhao M, Wang R, Zhao C, Lu J, Wang L, Wang W, Wei Y. Formic acid catalyzed isomerization of protonated cytosine: a lower barrier reaction for tautomer production of potential biological importance. Phys Chem Chem Phys 2018; 19:13515-13523. [PMID: 28497833 DOI: 10.1039/c7cp01008g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tautomerism in nucleotide bases is one of the possible mechanisms of DNA mutation. In spite of numerous studies on the structure and energy of protonated cytosine tautomers, little information is available on the process of their intra- and intermolecular tautomerizations. The catalytic ability of H2O, HCOOH, and the HCOOHH2O group to facilitate the tautomerism of the Cyt2t+ to CytN3+ isomer has been studied. It is shown that the activation free energies of tautomerism in the gas phase are 161.17, 58.96, 26.06, and 15.69 kJ mol-1, respectively, when the reaction is carried out in the absence and presence of H2O, HCOOH, or the HCOOHH2O group. The formation of a doubly hydrogen bonded transition state is central to lowering the activation free energy and facilitating the intramolecular hydrogen atom transfer that is required for isomerization. In the aqueous phase, although the solvent effects of water significantly decrease the activation free energy of intramolecular tautomerization, the isomerization of the Cyt2t+ to CytN3+ isomer remains unfavorable, and the HCOOH and HCOOHH2O group mediated mechanisms are still more favorable. Meanwhile, conventional transition state theory (CTST) followed by Wigner tunneling correction is then applied to estimate the rate constants. The rate constant with Wigner tunneling correction for direct tautomerization is obviously smaller than that of HCOOH-mediated tautomerization, which is the most plausible mechanism. Finally, another important finding is that the product complex (CytN3+HCOOH) is in the rapid tautomeric equilibrium with the reaction complex (Cyt2t+HCOOH) (τ99.9% = 3.84 × 10-12 s), which is implemented by the mechanism of the concerted synchronous double proton transfer. Its lifetime of the formed CytN3+HCOOH complex (τ = 8.33 × 10-9 s) is almost one order of magnitude larger than the time required for the replication machinery to forcibly dissociate a base pair into the monomers during DNA replication (several ns), which is further dissociated into the CytN3+ and HCOOH monomers. The results of the present study demonstrate the feasibility of acid catalysis for DNA base isomerization reactions that would otherwise be forbidden.
Collapse
Affiliation(s)
- Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Mengdan Lv
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Mengting Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Rui Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Ling Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi Sci-Tech University, Hanzhong 723001, China.
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yawen Wei
- Institute of publication Science, Chang'an University, Xi'an 710064, China
| |
Collapse
|
12
|
Brovarets’ OO, Hovorun DM. Atomistic mechanisms of the double proton transfer in the H-bonded nucleobase pairs: QM/QTAIM computational lessons. J Biomol Struct Dyn 2018; 37:1880-1907. [DOI: 10.1080/07391102.2018.1467795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv , Kyiv, Ukraine
| |
Collapse
|
13
|
Masoodi HR, Bagheri S, Ghaderi Z. The influence of Cu + binding to hypoxanthine on stabilization of mismatches involving hypoxanthine and DNA bases: a DFT study. J Biomol Struct Dyn 2018; 37:1923-1934. [PMID: 29757083 DOI: 10.1080/07391102.2018.1475256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the present work, the influence of Cu+ binding to N3- and N7-positions of hypoxanthine on energetic, geometrical and topological properties of hypoxanthine-guanine, hypoxanthine-adenine, hypoxanthine-cytosine, hypoxanthine-thymine and hypoxanthine-hypoxanthine mismatches is theoretically investigated. The calculations, in gas phase, are performed at B3LYP/6-311++G(3df,3pd) level of theory. Unlike the other mispairs, Cu+ binding to N3-position of hypoxanthine causes the proton transfer process from enol form of hypoxanthine to imino forms of adenine and cytosine. This process also occurs in all mismatches having enol form of hypoxanthine when Cu+ binds to N7-position of hypoxanthine. The mismatches are stabilized by hydrogen bonds. The influence of Cu+ on hydrogen bonds is also examined by atoms in molecules (AIM) and natural bond orbital (NBO) analyses. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Reza Masoodi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| | - Sotoodeh Bagheri
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| | - Zahra Ghaderi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , Rafsanjan , Iran
| |
Collapse
|
14
|
Jin L, Song X, Cao Z, Luo L, Zhao C, Lu J, Zhang Q. The isomerization of cytosine: Intramolecular hydrogen atom transfer mediated through formic acid. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - Xiaoling Song
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - Zhe Cao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - LiYang Luo
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - Jiufu Lu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science; Shaanxi University of Technology; Hanzhong China
| |
Collapse
|
15
|
Olasunkanmi LO, Moloto BP, Obot IB, Ebenso EE. Anticorrosion studies of some hydantoin derivatives for mild steel in 0.5 M HCl solution: Experimental, quantum chemical, Monte Carlo simulations and QSAR studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.169] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Brovarets' OO, Tsiupa KS, Hovorun DM. The A·T(rWC)/A·T(H)/A·T(rH) ↔ A·T*(rwWC)/A·T*(wH)/A·T*(rwH) mutagenic tautomerization via sequential proton transfer: a QM/QTAIM study. RSC Adv 2018; 8:13433-13445. [PMID: 35542561 PMCID: PMC9079753 DOI: 10.1039/c8ra01446a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
In this study for the first time we have revealed by QM and QTAIM calculations at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory the novel routes of the mutagenic tautomerization of three biologically important A·T DNA base pairs – reverse Watson–Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) – followed by their rebuilding into the wobble (w) A·T*(rwWC), A·T*(wH) and A·T*(rwH) base mispairs by the participation of the mutagenic tautomers of the DNA bases (denoted by asterisk) and vice versa, thus complementing the physico-chemical property of the canonical A·T(WC) Watson–Crick DNA base pair reported earlier (Brovarets' et al., RSC Adv., 2015, 5, 99594–99605). These non-dissociative tautomeric transformations in the classical A·T(rWC), A·T(H) and A·T(rH) DNA base pairs proceed similarly to the canonical A·T(WC) DNA base pair via the intrapair sequential proton transfer with shifting towards major or minor grooves of DNA followed by further double proton transfer along the intermolecular H-bonds and are controlled by the plane symmetric and highly stable transition states – tight ion pairs formed by the A+ nucleobase, protonated by the N1/N7 nitrogen atoms, and T− nucleobase, deprotonated by the N3H imino group. Comparison of the estimated populations of the tautomerised states (10−21 to 10−14) with similar characteristics for the canonical A·T(WC) DNA base pair (10−8 to 10−7) leads authors to the conclusion, that only a base pair with WC architecture can be a building block of the DNA macromolecule as a genetic material, which is able for the evolutionary self-development. Among all four classical DNA base pairs, only A·T(WC) DNA base pair can ensure the proper rate of the spontaneous point errors of replication in DNA. We discovered tautomeric wobbling of the classical A·T DNA base pairs. This data evidence, that only a base pair with Watson–Crick architecture can be a building block of the DNA macromolecule as a genetic material, which is able for the evolutionary self-development.![]()
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Kostiantyn S. Tsiupa
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
17
|
Zhen JP, Wei XC, Shi WJ, Huang ZY, Jin B, Zhou YK. Cooperativity effect involving drug-DNA/RNA intermolecular interaction: A B3LYP-D3 and MP2 theoretical investigation on ketoprofen⋯cytosine⋯H 2O system. J Biomol Struct Dyn 2017; 36:3587-3606. [PMID: 29092677 DOI: 10.1080/07391102.2017.1400469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to examine the origin of the drug action and design new DNA/RNA-targeted drugs, the cooperativity effect involving drug-DNA/RNA intermolecular interaction in ketoprofen⋯cytosine⋯H2O ternary system were investigated by the B3LYP, B3LYP-D3, and MP2 methods with the 6-311++G(2d,p) basis set. The thermodynamic cooperativity was also evaluated at 310.15 K. The N-H⋯O, O-H⋯O, O-H⋯N, C-H⋯N, and C-H⋯O H bonds coexist in ternary complexes. The intermolecular interactions obtained by B3LYP-D3 are close to those calculated by MP2. The steric effects and van der Waals interactions have little influence on the cooperativity effects. The anti-cooperativity effect in ket⋯cyt⋯H2O is far more notable than the cooperativity effect, and the stability of the cyclic structure with anti-cooperativity effect is higher than that of the linear structure with cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that, in the presence of H2O, the anti-cooperativity effect plays a dominant role in the drug-DNA/RNA interaction, and the nature of the hydration in the binding of drugs to DNA/RNA bases is the H-bonding anti-cooperativity effect. Furthermore, the drug always links simultaneously with DNA/RNA base and H2O, and only in this way can the biological activity of drugs play a role. In most cases, the enthalpy change is the major factor driving the cooperativity, as is different from most of biomacromolecule complexes.
Collapse
Affiliation(s)
- Jun-Ping Zhen
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Xiao-Chun Wei
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Wen-Jing Shi
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Zhu-Yuan Huang
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Bo Jin
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| | - Yu-Kun Zhou
- a Molecular Imaging Laboratory, Department of Radiology , The Second Hospital of Shanxi Medical University , Taiyuan 030053 , China
| |
Collapse
|
18
|
Pan F, Man VH, Roland C, Sagui C. Structure and Dynamics of DNA and RNA Double Helices of CAG and GAC Trinucleotide Repeats. Biophys J 2017; 113:19-36. [PMID: 28700917 DOI: 10.1016/j.bpj.2017.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
CAG trinucleotide repeats are known to cause 10 late-onset progressive neurodegenerative disorders as the repeats expand beyond a threshold, whereas GAC repeats are associated with skeletal dysplasias and expand from the normal five to a maximum of seven repeats. The TR secondary structure is believed to play a role in CAG expansions. We have carried out free energy and molecular dynamics studies to determine the preferred conformations of the A-A noncanonical pairs in (CAG)n and (GAC)n trinucleotide repeats (n = 1, 4) and the consequent changes in the overall structure of the RNA and DNA duplexes. We find that the global free energy minimum corresponds to A-A pairs stacked inside the core of the helix with anti-anti conformations in RNA and (high-anti)-(high-anti) conformations in DNA. The next minimum corresponds to anti-syn conformations, whereas syn-syn conformations are higher in energy. Transition rates of the A-A conformations are higher for RNA than DNA. Mechanisms for these various transitions are identified. Additional structural and dynamical aspects of the helical conformations are explored, with a focus on contrasting CAG and GAC duplexes. The neutralizing ion distribution around the noncanonical pairs is described.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Viet Hoang Man
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
19
|
Srivastava R. Complexes of DNA bases and Watson–Crick base pairs interaction with neutral silver Agn (n = 8, 10, 12) clusters: a DFT and TDDFT study. J Biomol Struct Dyn 2017; 36:1050-1062. [DOI: 10.1080/07391102.2017.1310059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ruby Srivastava
- Center for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Hyderabad 500607, India
| |
Collapse
|
20
|
Azarhazin E, Izadyar M, Housaindokht MR. Molecular dynamic simulation and DFT study on the Drug-DNA interaction; Crocetin as an anti-cancer and DNA nanostructure model. J Biomol Struct Dyn 2017; 36:1063-1074. [PMID: 28330413 DOI: 10.1080/07391102.2017.1310060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this research, the interaction of Crocetin as an anti-cancer drug and a Dickerson DNA has been investigated. 25 ns molecular dynamic simulations of Crocetin and DNA composed of 12 base pairs and a sequence of d(CGCGAATTCGCG)2 were done in water. Three definite parts of the B-DNA were considered in analyzing the best interactive site from the thermodynamic point of view. Binding energy analysis showed that van der Waals interaction is the most important part related to the reciprocal O and H atoms of the Crocetin and DNA. Stabilizing interactions, obtained by ΔG calculations, showed that maximum and minimum interactions are related to the S1 and S3 regions, respectively. This means that the most probable van der Waals interaction site of the Dickerson B-DNA and Crocetin is located in the minor groove of DNA. Two sharp peaks at 2.55 and 1.75 Å in radial distribution functions of the PO⋯HO and NH⋯OC parts are related to new hydrogen bonds between the Crocetin and DNA in the complex which can be considered as the driving force of the anti-cancer mechanism of the Crocetin. Average values of 0.3 au and zero for the electron densities of the H⋯O bonds for DNA and complex, obtained by Quantum theory of atoms in molecules (QTAIM), means that the origin of DNA instability after complexation may be related to the H-bond denaturation by Crocetin. Finally, the evaluation of the dispersion interactions using the dispersion functional, -148.76 kcal.mol-1, confirmed the importance of the dispersion interaction in drug-DNA complex.
Collapse
Affiliation(s)
- Ebrahim Azarhazin
- a Faculty of Sciences, Department of Chemistry , Ferdowsi University of Mashhad , Mashhad , Iran
| | - Mohammad Izadyar
- a Faculty of Sciences, Department of Chemistry , Ferdowsi University of Mashhad , Mashhad , Iran
| | | |
Collapse
|
21
|
Brovarets' OO, Voiteshenko IS, Pérez-Sánchez H, Hovorun DM. A QM/QTAIM research under the magnifying glass of the DPT tautomerisation of the wobble mispairs involving 2-aminopurine. NEW J CHEM 2017. [DOI: 10.1039/c7nj00717e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a comprehensive survey of the changes of the physico-chemical parameters at each point of the IRC for the biologically important T·2AP*(w) ↔ T*·2AP(w) and G·2AP*(w) ↔ G*·2AP(w) DPT tautomerisation reactions involved in the point mutations (transitions and transversions) induced by 2-aminopurine (2AP) in DNA is provided.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Ivan S. Voiteshenko
- Department of Molecular Biotechnology and Bioinformatics
- Institute of High Technologies
- Taras Shevchenko National University of Kyiv
- 03022 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- 30107 Guadalupe (Murcia)
- Spain
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
22
|
Brovarets' OO, Pérez-Sánchez H. Whether 2-aminopurine induces incorporation errors at the DNA replication? A quantum-mechanical answer on the actual biological issue. J Biomol Struct Dyn 2016; 35:3398-3411. [PMID: 27794627 DOI: 10.1080/07391102.2016.1253504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper, we consider the mutagenic properties of the 2-aminopurine (2AP), which has intrigued molecular biologists, biophysicists and physical chemists for a long time and been widely studied by both experimentalists and theorists. We have shown for the first time using QM calculations, that 2AP very effectively produces incorporation errors binding with cytosine (C) into the wobble (w) C·2AP(w) mispair, which is supported by the N4H⋯N1 and N2H⋯N3 H-bonds and is tautomerized into the Watson-Crick (WC)-like base mispair C*·2AP(WC) (asterisk denotes the mutagenic tautomer of the base), that quite easily in the process of the thermal fluctuations acquires enzymatically competent conformation. 2AP less effectively produces transversions forming the wobble mispair with A base - A·2AP(w), stabilized by the participation of the N6H⋯N1 and N2H⋯N1 H-bonds, followed by further tautomerization A·2AP(w) → A*·2AP(WC) and subsequent conformational transition A*·2AP(WC) → A*·2APsyn thus acquiring enzymatically competent structure. In this case, incorporation errors occur only in those case, when 2AP belongs to the incoming nucleotide. Thus, answering the question posed in the title of the article, we affirm for certain that 2AP induces incorporation errors at the DNA replication. Obtained results are consistent well with numerous experimental data.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Horacio Pérez-Sánchez
- c Computer Science Department, Bioinformatics and High Performance Computing (BIO-HPC) Research Group , Universidad Católica San Antonio de Murcia (UCAM) , Murcia 30107 , Spain
| |
Collapse
|
23
|
Palanivel U, Lakshmipathi S. Hydrogen bonds in Zif268 proteins – a theoretical perspective. J Biomol Struct Dyn 2016; 34:1607-24. [DOI: 10.1080/07391102.2015.1085903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Umadevi Palanivel
- Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
24
|
Vega-Rodríguez S, Jiménez-Cataño R, Leyva E. Tautomerism in substituted pyridofuroxans: A theoretical study. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Vital DG, Damasceno FS, Rapado LN, Silber AM, Vilella FS, Ferreira RS, Maltarollo VG, Trossini GHG. Application of bioisosterism in design of the semicarbazone derivatives as cruzain inhibitors: a theoretical and experimental study. J Biomol Struct Dyn 2016; 35:1244-1259. [DOI: 10.1080/07391102.2016.1176603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Drielli G. Vital
- Department of Pharmacy, University of Sao Paulo, Sao Paulo, Brazil
| | - Flávia S. Damasceno
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ludmila N. Rapado
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ariel M. Silber
- Laboratory of Biochemistry of Tryps - LaBTryps - Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Filipe S. Vilella
- Department of Biochemistry and Immunology, University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafaela S. Ferreira
- Department of Biochemistry and Immunology, University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
26
|
Yesudass S, Olasunkanmi L, Bahadur I, Kabanda MM, Obot I, Ebenso E. Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.04.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Markova N, Pejov L, Stoyanova N, Enchev V. Hybrid MC/QC simulations of water-assisted proton transfer in nucleosides. Guanosine and its analog acyclovir. J Biomol Struct Dyn 2016; 35:1168-1188. [PMID: 27092850 DOI: 10.1080/07391102.2016.1179594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To provide an in-depth insight into the molecular basis of spontaneous tautomerism in DNA and RNA base pairs, a hybrid Monte Carlo (MC)-quantum chemical (QC) methodology is implemented to map two-dimensional potential energy surfaces along the reaction coordinates of solvent-assisted proton transfer processes in guanosine and its analog acyclovir in aqueous solution. The solvent effects were simulated by explicit inclusion of water molecules that model the relevant part of the first hydration shell around the solute. The position of these water molecules was estimated by carrying out a classical Metropolis Monte Carlo simulation of dilute water solutions of the guanosine (Gs) and acyclovir (ACV) and subsequently analyzing solute-solvent intermolecular interactions in the statistically-independent MC-generated configurations. The solvent-assisted proton transfer processes were further investigated using two different ab initio MP2 quantum chemical approaches. In the first one, potential energy surfaces of the 'bare' finite solute-solvent clusters containing Gs/ACV and four water molecules (MP2/6-31+G(d,p) level) were explored, while within the second approach, these clusters were embedded in 'bulk' solvent treated as polarizable continuum (C-PCM/MP2/6-31+G(d,p) level of theory). It was found that in the gas phase and in water solution, the most stable tautomer for guanosine and acyclovir is the 1H-2-amino-6-oxo form followed by the 2-amino-6-(sZ)-hydroxy form. The energy barriers of the water-assisted proton transfer reaction in guanosine and in acyclovir are found to be very similar - 11.74 kcal mol-1 for guanosine and 11.16 kcal mol-1 for acyclovir, and the respective rate constants (k = 1.5 × 101 s-1, guanosine and k = 4.09 × 101 s-1, acyclovir), are sufficiently large to generate the 2-amino-6-(sZ)-hydroxy tautomer. The analysis of the reaction profiles in both compounds shows that the proton transfer processes occur through the asynchronous concerted mechanism.
Collapse
Affiliation(s)
- Nadezhda Markova
- a Institute of Organic Chemistry , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| | - Ljupco Pejov
- b Faculty of Natural Sciences and Mathematics , Institute of Chemistry , Skopje , Macedonia.,c Research Centre for Environment and Materials , Macedonian Academy of Sciences and Arts , Krste Misirkov 2, 1000 Skopje , Macedonia
| | - Nina Stoyanova
- a Institute of Organic Chemistry , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| | - Venelin Enchev
- a Institute of Organic Chemistry , Bulgarian Academy of Sciences , 1113 Sofia , Bulgaria
| |
Collapse
|
28
|
Brovarets' OO, Hovorun DM. A novel conception for spontaneous transversions caused by homo-pyrimidine DNA mismatches: a QM/QTAIM highlight. Phys Chem Chem Phys 2016. [PMID: 26219928 DOI: 10.1039/c5cp03211c] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have firstly shown that the T·T(w) and C·C(w) DNA mismatches with wobble (w) geometry stay in slow tautomeric equilibrium with short T·T*(WC) and C·C*(WC) Watson-Crick (WC) mispairs. These non-dissociative tautomeric rearrangements are controlled by the plane-symmetric, highly stable, highly polar and zwitterionic transition states. The obtained results allow us to understand in what way the T·T(w) and C·C(w) mismatches acquire enzymatically competent T·T*(WC) and C·C*(WC) conformations directly in the hydrophobic recognition pocket of a high-fidelity DNA-polymerase, thereby producing thermodynamically non-equilibrium spontaneous transversions. The simplest numerical estimation of the frequency ratio of the TT to CC spontaneous transversions satisfactorily agrees with experimental data.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | |
Collapse
|
29
|
Brovarets' OO, Hovorun DM. Tautomeric transition between wobble A·C DNA base mispair and Watson-Crick-like A·C* mismatch: microstructural mechanism and biological significance. Phys Chem Chem Phys 2016; 17:15103-10. [PMID: 25994250 DOI: 10.1039/c5cp01568e] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we use MP2/DFT quantum-chemical methods combined with Quantum Theory of Atoms in Molecules to study the tautomeric transition between wobble A·C(w) mismatch and Watson-Crick-like A·C*(WC) base mispair, proceeding non-dissociatively via sequential proton transfer between bases through the planar, highly stable and zwitterionic TS(A∙C-)(A∙C(W)<-->A∙C&(WC)) transition state joined by the participation of (A)N6(+)H∙∙∙N4(-)(C), (A)N1(+)H∙∙∙N4(-)(C) and (A)C2(+)H∙∙∙N3(-)(C) H-bonds. Notably, the A·C(w) ↔ A·C*(WC) tautomerization reaction is accompanied by 10 unique patterns of the specific intermolecular interactions that consistently replace each other. Our data suggest that biologically significant A·C(w) → A·C*(WC) tautomerization is a kinetically controlled pathway for formation of the enzymatically competent Watson-Crick-like A·C*(WC) DNA base mispair in the essentially hydrophobic recognition pocket of the high-fidelity DNA-polymerase, responsible for the occurrence of spontaneous point AC/CA incorporation errors during DNA biosynthesis.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | |
Collapse
|
30
|
Tolosa S, Hidalgo A, Sansón JA. Theoretical study of enzymatically catalyzed tautomerization of carbon acids in aqueous solution: quantum calculations and steered molecular dynamics simulations. J Mol Model 2016; 22:44. [PMID: 26815031 DOI: 10.1007/s00894-016-2914-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
The thermodynamics and kinetics of enzymatically assisted reactions of carbon acids were studied theoretically in this work. Quantum electronic (QE) structure calculations and steered molecular dynamics (SMD) simulations were carried out. Three 3-butenal tautomerization reactions that proceed from the β,γ-unsaturated reactant (R) to the α,β-unsaturated carbon acid product (P) and occur in two elementary steps through an intermediate (I) were studied, ignoring or including the surrounding aqueous medium in the calculations. The Gibbs free energies of activation of the R ⇆ I enolization and I ⇆ P ketonization steps were found to decrease considerably when residues simulating enzymes were introduced into these processes. Although the processes became slightly more favorable thermodynamically when the solution was included in the simulations, they became less favorable kinetically. The results from SMD simulations of these reactions were qualitatively consistent with the values we obtained using QE as well as those found by other authors in similar studies. Our simulations also allowed us to perform a detailed study of these reactions in solution.
Collapse
Affiliation(s)
- Santiago Tolosa
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06071, Badajoz, Spain.
| | - Antonio Hidalgo
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06071, Badajoz, Spain
| | - Jorge A Sansón
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Avda. Elvas s/n, 06071, Badajoz, Spain
| |
Collapse
|
31
|
Olasunkanmi LO, Obot IB, Ebenso EE. Adsorption and corrosion inhibition properties of N-{n-[1-R-5-(quinoxalin-6-yl)-4,5-dihydropyrazol-3-yl]phenyl}methanesulfonamides on mild steel in 1 M HCl: experimental and theoretical studies. RSC Adv 2016. [DOI: 10.1039/c6ra11373g] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The experimental corrosion inhibition properties were supported by detailed theoretical studies that revealed the dependence of protection efficiency on proton affinity.
Collapse
Affiliation(s)
- Lukman O. Olasunkanmi
- Department of Chemistry
- School of Mathematical and Physical Sciences
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
| | - Ime B. Obot
- Centre of Research Excellence in Corrosion
- Research Institute
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Kingdom of Saudi Arabia
| | - Eno E. Ebenso
- Department of Chemistry
- School of Mathematical and Physical Sciences
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
| |
Collapse
|
32
|
Brovarets' OO, Pérez-Sánchez H. Whether the amino–imino tautomerism of 2-aminopurine is involved into its mutagenicity? Results of a thorough QM investigation. RSC Adv 2016. [DOI: 10.1039/c6ra24277d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2AP* mutagenic tautomer is able to induce only one incorporation error – transversion – by pairing through the H-bonds into the G·2AP* mispair.
Collapse
Affiliation(s)
- Ol'ha O. Brovarets'
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Horacio Pérez-Sánchez
- Computer Science Department
- Bioinformatics and High Performance Computing (BIO-HPC) Research Group
- Universidad Católica San Antonio de Murcia (UCAM)
- Murcia
- Spain
| |
Collapse
|
33
|
Brovarets' OO, Hovorun DM. Wobble↔Watson-Crick tautomeric transitions in the homo-purine DNA mismatches: a key to the intimate mechanisms of the spontaneous transversions. J Biomol Struct Dyn 2015; 33:2710-5. [PMID: 26237090 DOI: 10.1080/07391102.2015.1077737] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The intrinsic capability of the homo-purine DNA base mispairs to perform wobble↔Watson-Crick/Topal-Fresco tautomeric transitions via the sequential intrapair double proton transfer was discovered for the first time using QM (MP2/DFT) and QTAIM methodologies that are crucial for understanding the microstructural mechanisms of the spontaneous transversions.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., 03680 Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., 03022 Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., 03680 Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., 03022 Kyiv , Ukraine
| |
Collapse
|
34
|
By how many tautomerisation routes the Watson–Crick-like A·C* DNA base mispair is linked with the wobble mismatches? A QM/QTAIM vision from a biological point of view. Struct Chem 2015. [DOI: 10.1007/s11224-015-0687-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Das D, Dutta A, Mondal P. Interaction of aquated form of ruthenium(III) anticancer complexes with normal and mismatch base pairs: A density functional theoretical study. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Brovarets' OO, Hovorun DM. Proton tunneling in the A∙T Watson-Crick DNA base pair: myth or reality? J Biomol Struct Dyn 2015; 33:2716-20. [PMID: 26362836 DOI: 10.1080/07391102.2015.1092886] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The results and conclusions reached by Godbeer et al. in their recent work, that proton tunneling in the A∙T(WC) Watson-Crick (WC) DNA base pair occurs according to the Löwdin's (L) model, but with a small (~10(-9)) probability were critically analyzed. Here, it was shown that this finding overestimates the possibility of the proton tunneling at the A∙T(WC)↔A*∙T*(L) tautomerization, because this process cannot be implemented as a chemical reaction. Furthermore, it was outlined those biologically important nucleobase mispairs (A∙A*↔A*∙A, G∙G*↔G*∙G, T∙T*↔T*∙T, C∙C*↔C*∙C, H∙H*↔H*∙H (H - hypoxanthine)) - the players in the field of the spontaneous point mutagenesis - where the tunneling of protons is expected and for which the application of the model proposed by Godbeer et al. can be productive.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., 03680 Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., 03022 Kyiv , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., 03680 Kyiv , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., 03022 Kyiv , Ukraine
| |
Collapse
|
37
|
Dibetsoe M, Olasunkanmi LO, Fayemi OE, Yesudass S, Ramaganthan B, Bahadur I, Adekunle AS, Kabanda MM, Ebenso EE. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: Experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions. Molecules 2015; 20:15701-34. [PMID: 26343626 PMCID: PMC6332286 DOI: 10.3390/molecules200915701] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022] Open
Abstract
The effects of seven macrocyclic compounds comprising four phthalocyanines (Pcs) namely 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (Pc1), 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (Pc2), 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (Pc3) and 29H,31H-phthalocyanine (Pc4), and three naphthalocyanines namely 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine (nPc1), 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (nPc2) and 2,3-naphthalocyanine (nP3) were investigated on the corrosion of aluminium (Al) in 1 M HCl using a gravimetric method, potentiodynamic polarization technique, quantum chemical calculations and quantitative structure activity relationship (QSAR). Synergistic effects of KI on the corrosion inhibition properties of the compounds were also investigated. All the studied compounds showed appreciable inhibition efficiencies, which decrease with increasing temperature from 30 °C to 70 °C. At each concentration of the inhibitor, addition of 0.1% KI increased the inhibition efficiency compared to the absence of KI indicating the occurrence of synergistic interactions between the studied molecules and I(-) ions. From the potentiodynamic polarization studies, the studied Pcs and nPcs are mixed type corrosion inhibitors both without and with addition of KI. The adsorption of the studied molecules on Al surface obeys the Langmuir adsorption isotherm, while the thermodynamic and kinetic parameters revealed that the adsorption of the studied compounds on Al surface is spontaneous and involves competitive physisorption and chemisorption mechanisms. The experimental results revealed the aggregated interactions between the inhibitor molecules and the results further indicated that the peripheral groups on the compounds affect these interactions. The calculated quantum chemical parameters and the QSAR results revealed the possibility of strong interactions between the studied inhibitors and metal surface. QSAR analysis on the quantum chemical parameters obtained with B3LYP/6-31G (d,p) method show that a combination of two quantum chemical parameters to form a composite index provides the best correlation with the experimental data.
Collapse
Affiliation(s)
- Masego Dibetsoe
- Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
| | - Lukman O Olasunkanmi
- Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife 220005, Nigeria.
| | - Omolola E Fayemi
- Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
| | - Sasikumar Yesudass
- Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
| | - Baskar Ramaganthan
- Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
| | - Indra Bahadur
- Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
| | - Abolanle S Adekunle
- Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife 220005, Nigeria.
| | - Mwadham M Kabanda
- Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
| | - Eno E Ebenso
- Department of Chemistry, School of Mathematical & Physical Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
- Material Science Innovation & Modelling (MaSIM) Research Focus Area, Faculty of Agriculture, Science and Technology, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
38
|
Masoodi HR, Bagheri S, Abareghi M. The effects of tautomerization and protonation on the adenine-cytosine mismatches: a density functional theory study. J Biomol Struct Dyn 2015. [PMID: 26198186 DOI: 10.1080/07391102.2015.1072734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In the present work, we demonstrate the results of a theoretical study concerned with the question how tautomerization and protonation of adenine affect the various properties of adenine-cytosine mismatches. The calculations, in gas phase and in water, are performed at B3LYP/6-311++G(d,p) level. In gas phase, it is observed that any tautomeric form of investigated mismatches is more stabilized when adenine is protonated. As for the neutral mismatches, the mismatches containing amino form of cytosine and imino form of protonated adenine are more stable. The role of aromaticity on the stability of tautomeric forms of mismatches is investigated by NICS(1)ZZ index. The stability of mispairs decreases by going from gas phase to water. It can be explained using dipole moment parameter. The influence of hydrogen bonds on the stability of mismatches is examined by atoms in molecules and natural bond orbital analyses. In addition to geometrical parameters and binding energies, the study of the topological properties of electron charge density aids in better understanding of these mispairs.
Collapse
Affiliation(s)
- Hamid Reza Masoodi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , P.O. Box 77176, Rafsanjan , Iran
| | - Sotoodeh Bagheri
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , P.O. Box 77176, Rafsanjan , Iran
| | - Mahsa Abareghi
- a Faculty of Science, Department of Chemistry , Vali-e-Asr University of Rafsanjan , P.O. Box 77176, Rafsanjan , Iran
| |
Collapse
|
39
|
Structural significance of modified nucleoside 5-taurinomethyl-2-thiouridine, τm5s2U, found at ‘wobble’ position in anticodon loop of human mitochondrial tRNALys. Struct Chem 2015. [DOI: 10.1007/s11224-015-0642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
|
41
|
Brovarets' OO, Hovorun DM. How many tautomerization pathways connect Watson-Crick-like G*·T DNA base mispair and wobble mismatches? J Biomol Struct Dyn 2015; 33:2297-315. [PMID: 25932960 DOI: 10.1080/07391102.2015.1046936] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, we have theoretically demonstrated the intrinsic ability of the wobble G·T(w)/G*·T*(w)/G·T(w1)/G·T(w2) and Watson-Crick-like G*·T(WC) DNA base mispairs to interconvert into each other via the DPT tautomerization. We have established that among all these transitions, only one single G·T(w) ↔ G*·T(WC) pathway is eligible from a biological perspective. It involves short-lived intermediate - the G·T*(WC) base mispair - and is governed by the planar, highly stable, and zwitterionic [Formula: see text] transition state stabilized by the participation of the unique pattern of the five intermolecular O6(+)H⋯O4(-), O6(+)H⋯N3(-), N1(+)H⋯N3(-), N1(+)H⋯O2(-), and N2(+)H⋯O2(-) H-bonds. This non-dissociative G·T(w) ↔ G*·T(WC) tautomerization occurs without opening of the pair: Bases within mispair remain connected by 14 different patterns of the specific intermolecular interactions that successively change each other along the IRC. Novel kinetically controlled mechanism of the thermodynamically non-equilibrium spontaneous point GT/TG incorporation errors has been suggested. The mutagenic effect of the analogues of the nucleotide bases, in particular 5-bromouracil, can be attributed to the decreasing of the barrier of the acquisition by the wobble pair containing these compounds of the enzymatically competent Watson-Crick's geometry via the intrapair mutagenic tautomerization directly in the essentially hydrophobic recognition pocket of the replication DNA-polymerase machinery. Proposed approaches are able to explain experimental data, namely growth of the rate of the spontaneous point incorporation errors during DNA biosynthesis with increasing temperature.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| |
Collapse
|
42
|
Brovarets' OO, Hovorun DM. How does the long G·G* Watson-Crick DNA base mispair comprising keto and enol tautomers of the guanine tautomerise? The results of a QM/QTAIM investigation. Phys Chem Chem Phys 2015; 16:15886-99. [PMID: 24964351 DOI: 10.1039/c4cp01241k] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The double proton transfer (DPT) in the long G·G* Watson-Crick base mispair (|C6N1(G*)N1C6(G)| = 36.4°; C1 symmetry), involving keto and enol tautomers of the guanine (G) nucleobase, along two intermolecular neighboring O6H···O6 (8.39) and N1···HN1 (6.14 kcal mol(-1)) H-bonds that were established to be slightly anti-cooperative, leads to its transformation into the G*·G base mispair through a single transition state (|C6N1N1C6| = 37.1°; C1), namely to the interconversion into itself. It was shown that the G·G* ↔ G*·G tautomerisation via the DPT is assisted by the third specific contact, that sequentially switches along the intrinsic reaction coordinate (IRC) in an original way: (G)N2H···N2(G*) H-bond (-25.13 to -10.37) → N2···N2 van der Waals contact (-10.37 to -9.23) → (G)N2···HN2(G*) H-bond (-9.23 to 0.79) → (G*)N2···HN2(G) H-bond (0.79 to 7.35 Bohr). The DPT tautomerisation was found to proceed through the asynchronous concerted mechanism by employing the QM/QTAIM approach and the methodology of the scans of the geometric, electron-topological, energetic, polar and NBO properties along the IRC. Nine key points, that can be considered as part of the tautomerisation repertoire, have been established and analyzed in detail. Furthermore, it was shown that the G·G* or G*·G base mispair is a thermodynamically and dynamically stable structure with a lifetime of 8.22 × 10(-10) s and all 6 low-frequency intermolecular vibrations are able to develop during this time span. Lastly, our results highlight the importance of the G·G* ↔ G*·G DPT tautomerisation, which can have implications for biological and chemical sensing applications.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | |
Collapse
|
43
|
Brovarets' OO, Hovorun DM. DPT tautomerisation of the G·A(syn) and A*·G*(syn) DNA mismatches: a QM/QTAIM combined atomistic investigation. Phys Chem Chem Phys 2015; 16:9074-85. [PMID: 24695821 DOI: 10.1039/c4cp00488d] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
By applying a combined QM and QTAIM atomistic computational approach we have established for the first time that the G·A(syn) and A*·G*(syn) DNA mismatches (rare tautomers are marked with an asterisk), causing spontaneous transversions with substantially various probabilities, radically differ from each other in their ability to tautomerise through the double proton transfer (DPT). The A*·G*(syn) mismatch tautomerises quite easily (ΔΔG(TS) ≈ 4·kT at room temperature) into the A·G*(syn) mismatch through the asynchronous concerted mechanism, whereas the G·A(syn) base mispair does not tautomerise via the DPT at all, since there is no local minimum corresponding to the tautomerised G*·A*(syn) mismatch on the potential energy surface. It was established that the A·G*(syn) base mispair is a dynamically unstable H-bonded complex with an extremely short lifetime of 2.17 × 10(-13) s. Consequently, the obtained results allow us to believe that spontaneous or forced dissociation of both the G·A(syn) and A*·G*(syn) DNA mismatches by the DNA-polymerase occurs with the preservation of the tautomeric status of the bases.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str., 03680 Kyiv, Ukraine.
| | | |
Collapse
|
44
|
Chi S, Xie W, Zhang J, Xu S. Theoretical insight into the structural mechanism for the binding of vinblastine with tubulin. J Biomol Struct Dyn 2015; 33:2234-54. [PMID: 25588192 DOI: 10.1080/07391102.2014.999256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vinblastine (VLB) is one of vinca alkaloids with high cytotoxicity toward cancer cells approved for clinical use. However, because of drug resistance, toxicity, and other side effects caused from the use of VLB, new vinca alkaloids with higher cytotoxicity toward cancer cells and other good qualities need to develop. One strategy is to further study and better understand the essence why VLB possesses the high cytotoxicity toward cancer cells. In present work, by using molecular simulation, molecular docking, density functional calculation, and the crystal structure of α,β-tubulin complex, we find two modes labeled in catharanthine moiety (CM) and vindoline moiety (VM) modes of VLB bound with the interface of α,β-tubulin to probe the essence why VLB has the high cytotoxicity toward cancer cells. In the CM mode, nine key residues B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, C-Lys336, and C-Lys352 from the α,β-tubulin complex are determined as the active sites for the interaction of VLB with α,β-tubulin. Some of them such as B-Ser178, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 are newly identified as the active sites in present work. The affinity between VLB and the active pocket within the interface of α,β-tubulin is -60.8 kJ mol(-1) in the CM mode. In the VM mode, that is a new mode established in present paper, nine similar key residues B-Lys176, B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 from the α,β-tubulin complex are found as the active sites for the interaction with VLB. The difference is from one key residue C-Lys352 in the CM mode changed to the key residue B-Lys176 in the VM mode. The affinity between VLB and the active pocket within the interface of α,β-tubulin is -96.3 kJ mol(-1) in the VM mode. Based on the results obtained in present work, and because VLB looks like two faces, composed of CM and VM both to have similar polar active groups, to interact with the active sites, we suggest double-faces sticking mechanism for the binding of VLB to the interface of α,β-tubulin. The double-faces sticking mechanism can be used to qualitatively explain high cytotoxicity toward cancer cells of vinca alkaloids including vinblastine, vincristine, vindestine, and vinorelbine approved for clinical use and vinflunine still in a phase III clinical trial. Furthermore, this mechanism will be applied to develop novel vinca alkaloids with much higher cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Shaoming Chi
- a Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource , College of Chemical Science and Technology, Yunnan University , Kunming 650091 , China
| | | | | | | |
Collapse
|
45
|
Allehyani BH, Elroby SA, Aziz SG, Hilal RH. Electronic structure of alloxan and its dimers: QM/QD simulations and quantum chemical topology analysis. J Biomol Struct Dyn 2015; 33:2121-32. [DOI: 10.1080/07391102.2014.997291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Basmah H. Allehyani
- Faculty of Science, Chemistry Department, King Abdul-Aziz University , Jeddah, Saudi Arabia
| | - Shaaban A. Elroby
- Faculty of Science, Chemistry Department, King Abdul-Aziz University , Jeddah, Saudi Arabia
- Faculty of Science, Chemistry Department, Beni Suef University , Beni Suef, Egypt
| | - Saadalluh G. Aziz
- Faculty of Science, Chemistry Department, King Abdul-Aziz University , Jeddah, Saudi Arabia
| | - Rifaat H. Hilal
- Faculty of Science, Chemistry Department, King Abdul-Aziz University , Jeddah, Saudi Arabia
- Faculty of Science, Chemistry Department, Cairo University , Cairo, Egypt
| |
Collapse
|
46
|
Kato RB, Silva FT, Pappa GL, Belchior JC. Genetic algorithms coupled with quantum mechanics for refinement of force fields for RNA simulation: a case study of glycosidic torsions in the canonical ribonucleosides. Phys Chem Chem Phys 2015; 17:2703-14. [DOI: 10.1039/c4cp03779k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the use of genetic algorithms (GA) as a method to refine force field parameters in order to determine RNA energy.
Collapse
Affiliation(s)
- Rodrigo B. Kato
- Department of Computer Science
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Frederico T. Silva
- Department of Chemistry
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Gisele L. Pappa
- Department of Computer Science
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Jadson C. Belchior
- Department of Chemistry
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| |
Collapse
|
47
|
Brovarets’ OO, Hovorun DM. Novel physico-chemical mechanism of the mutagenic tautomerisation of the Watson–Crick-like A·G and C·T DNA base mispairs: a quantum-chemical picture. RSC Adv 2015. [DOI: 10.1039/c5ra11773a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel routes for the mutagenic tautomerisation of the long A·G and short C·T Watson–Crick DNA base mispairs via sequential DPT are reported, pursuing the goal of an estimation of their contribution into spontaneous point replication errors in DNA.
Collapse
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
48
|
Brovarets’ OO, Hovorun DM. New structural hypostases of the A·T and G·C Watson–Crick DNA base pairs caused by their mutagenic tautomerisation in a wobble manner: a QM/QTAIM prediction. RSC Adv 2015. [DOI: 10.1039/c5ra19971a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our investigation reveals the hitherto unknown ability of the canonical Watson–Crick DNA base pairs to switch into wobble mismatches with mutagenic tautomers, clarifying the nature of genome instability.
Collapse
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics
- Institute of Molecular Biology and Genetics
- National Academy of Sciences of Ukraine
- 03680 Kyiv
- Ukraine
| |
Collapse
|
49
|
Cerón-Carrasco JP, Jacquemin D. DNA spontaneous mutation and its role in the evolution of GC-content: assessing the impact of the genetic sequence. Phys Chem Chem Phys 2015; 17:7754-60. [DOI: 10.1039/c4cp05806b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We use theoretical tools to investigate the possible role played by a DNA sequence in the base pair tautomerization phenomena.
Collapse
|
50
|
Brovarets’ OO, Yurenko YP, Hovorun DM. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. J Biomol Struct Dyn 2014; 33:1624-52. [DOI: 10.1080/07391102.2014.968623] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|