1
|
Qu C, Gong X, Sun Y, Gao H, Cai F, Zhao Y, Wu F, Shen Z. Synergistic meso-β regulation of porphyrins: squeezing the band gap into the near-infrared I/II region. Chem Sci 2024; 15:10491-10498. [PMID: 38994426 PMCID: PMC11234831 DOI: 10.1039/d4sc01806k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/01/2024] [Indexed: 07/13/2024] Open
Abstract
The development of novel near-infrared (NIR) materials with extremely small energy gaps and high stability is highly desirable in bioimaging and phototherapy. Here we report an effective strategy for narrowing the energy gaps of porphyrins by synergistic regulation of meso/β substituents. The novel NIR absorbing/emitting meso-alkynyl naphthoporphyrins (Zn-TNP and Pt-TNP) are synthesized via the retro-Diels-Alder reaction. X-ray crystallography analysis confirms the highly distorted structures of the complexes. Both compounds exhibit intense Q bands around 800 nm, while Zn-TNP shows deep NIR fluorescence at 847 nm. Pt-TNP displays NIR-II room temperature phosphorescence peaking at 1106 nm with an extremely large Stokes shift of 314 nm, which are the longest wavelengths observed among the reported platinum porphyrinoids. Furthermore, Pt-TNP shows remarkable photostability and a notable capacity for synchronous singlet oxygen and heat generation under NIR light irradiation, demonstrating potential in combined photodynamic/photothermal therapy. A theoretical analysis reveals the progressive lifting of the HOMO by the β-fused benzene ring, the decrease of the LUMO upon meso-alkynyl substitution, and energy-releasing pathways varying with metal ions. This dual regulation approach demonstrates great promise in designing innovative multifunctional NIR porphyrin materials.
Collapse
Affiliation(s)
- Chulin Qu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Xinxin Gong
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yufen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Fangjian Cai
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
2
|
Osadchuk I, Luts HE, Zahharova A, Tamm T, Borovkov V. Controlling Chirogenic Effects in Porphyrin Based Supramolecular Systems: Theoretical Analysis Versus Experimental Observations. Chemphyschem 2024; 25:e202400104. [PMID: 38693766 DOI: 10.1002/cphc.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Indexed: 05/03/2024]
Abstract
Electronic circular dichroism (ECD) spectroscopy is a widely employed method for studying chiral analysis, requiring the presence of a chromophore close to a chiral centre. Porphyrinoids are found to be one of the best chromophoric systems serving for this purpose and enabling the application of ECD spectroscopy for chirality determination across diverse classes of organic compounds. Consequently, it is crucial to understand the induction mechanisms of ECD in the porphyrin-based complexes. The present study explores systematically the influence of secondary chromophores, bonded to an achiral zinc porphyrin or to chiral guest molecules, on the B-region of ECD spectra using the time-dependent density functional theory (TD-DFT) calculations. The study analyses the impact of change in both the conformation of achiral porphyrin (host) and change in position and conformation of chiral organic molecule (guest) on the B-band of ECD spectra (energy, intensity, sign of Cotton effect). Finally, conclusions made on model complexes are applied to published experimental data, contributing to a deeper understanding of various factors influencing ECD spectra in chiral systems. In addition, a computer program aimed to help rationalise ECD spectra by visualizing corresponding orbital energies, rotatory strengths, electric and magnetic transition moments, and angles between them, is presented.
Collapse
Affiliation(s)
- Irina Osadchuk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Hanna-Eliisa Luts
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Aleksandra Zahharova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Toomas Tamm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Victor Borovkov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
3
|
Martins GM, Braga FC, de Castro PP, Brocksom TJ, de Oliveira KT. Continuous flow reactions in the preparation of active pharmaceutical ingredients and fine chemicals. Chem Commun (Camb) 2024; 60:3226-3239. [PMID: 38441166 DOI: 10.1039/d4cc00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Herein, we present an overview of continuous flow chemistry, including photoflow and electroflow technologies in the preparation of active pharmaceutical ingredients (APIs) and fine chemical intermediates. Examples highlighting the benefits and challenges associated with continuous flow processes, mainly involving continuous thermal, photo- and electrochemical transformations, are drawn from the relevant literature, especially our experience and collaborations in this area, with emphasis on the synthesis and prospective scale-up.
Collapse
Affiliation(s)
- Guilherme M Martins
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Felipe C Braga
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Pedro P de Castro
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Timothy J Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
4
|
Ganesh Moorthy S, Arvidson J, Meunier-Prest R, Wang H, Bouvet M. π-Extended Porphyrin-Phthalocyanine Heterojunction Devices Exhibiting High Ammonia Sensitivity with a Remarkable Light Effect. ACS Sens 2024; 9:883-894. [PMID: 38241640 DOI: 10.1021/acssensors.3c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
π-Extended porphyrins represent an attractive class of organic compounds because of their unique photophysical, optoelectronic, and physicochemical properties. Herein, cross-conjugated (Ace-PQ-Ni) and linear-conjugated (AM6) porphyrins are used to build double-layer heterojunction devices by combining them with a lutetium bisphthalocyanine complex (LuPc2). The heterojunction effect at the porphyrin-phthalocyanine interface plays a key role in the charge transport properties. Both devices exhibit exceptionally high ammonia sensitivity at room temperature and under ambient relative humidity, with limit of detection values of 156 and 115 ppb for Ace-PQ-Ni/LuPc2 and AM6/LuPc2 sensors, respectively. Interestingly, the Ace-PQ-Ni/LuPc2 and AM6/LuPc2 sensors display opposite effects upon light illumination. While the former sensors show largely decreased ammonia sensitivity under light illumination, the current variation of the latter under ammonia is remarkably enhanced with a multiplication factor of 13 and a limit of detection (LOD) of 83 ppb. The striking difference in their sensing properties upon light illumination is attributed to their different π-conjugation pathways (cross-conjugation versus linear conjugation).
Collapse
Affiliation(s)
- Sujithkumar Ganesh Moorthy
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Jacob Arvidson
- Department of Chemistry, University of North Texas, 1508 W. Mulberry Street, Denton, Texas 76203, United States
| | - Rita Meunier-Prest
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| | - Hong Wang
- Department of Chemistry, University of North Texas, 1508 W. Mulberry Street, Denton, Texas 76203, United States
| | - Marcel Bouvet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon Cedex, France
| |
Collapse
|
5
|
Han J, Liu Y, Peng D, Liu J, Wu D. Biomedical Application of Porphyrin-Based Amphiphiles and Their Self-Assembled Nanomaterials. Bioconjug Chem 2023; 34:2155-2180. [PMID: 37955349 DOI: 10.1021/acs.bioconjchem.3c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Porphyrins have been vastly explored and applied in many cutting-edge fields with plenty of encouraging achievements because of their excellent properties. As important derivatives of porphyrins, porphyrin-based amphiphiles (PBAs) not only maintain the advanced properties of porphyrins (catalysis, imaging, and energy transfer) but also possess self-assembly and encapsulation capability in aqueous solution. Accordingly, PBAs and their self-assembles have had important roles in diagnosing and treating tumors and inflammation lesions in vivo, but not limited to these. In this article, we introduce the research progress of PBAs, including their constitution, structure design strategies, and performances in tumor and inflammation lesion diagnosis and treatments. On that basis, the defects of synthesized PBAs during their application and the possible effective strategies to overcome the limitations are also proposed. Finally, perspectives on PBAs exploration are updated based on our knowledge. We hope this review will bring researchers from various domains insights about PBAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Danfeng Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong 518119, China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong 518107, China
| |
Collapse
|
6
|
Cooper C, Paul R, Alsaleh A, Washburn S, Rackers W, Kumar S, Nesterov VN, D'Souza F, Vinogradov SA, Wang H. Naphthodithiophene-Fused Porphyrins: Synthesis, Characterization, and Impact of Extended Conjugation on Aromaticity. Chemistry 2023; 29:e202302013. [PMID: 37467466 PMCID: PMC11490106 DOI: 10.1002/chem.202302013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
The fusion of tetrapyrroles with aromatic heterocycles constitutes a useful tool for manipulating their opto-electronic properties. In this work, the synthesis of naphthodithiophene-fused porphyrins was achieved through a Heck reaction-based cascade of steps followed by the Scholl reaction. The naphthodithiophene-fused porphyrins display a unique set of optical and electronic properties. Fusion of the naphtho[2,1-b:3,4-b']dithiophene to porphyrin (F2VTP) leads to a ~20% increase in the fluorescence lifetime, which is accompanied, unexpectedly, by a more than two-fold drop in the emission quantum yield (ϕ=0.018). In contrast, fusion of the isomeric naphtho[1,2-b:4,3-b']dithiophene to porphyrin (F3VPT) results in a ~1.5-fold increase in the fluorescence quantum yield (ϕ=0.13) with a concomitant ~30 % increase in the fluorescence lifetime. This behavior suggests that fusion of the porphyrin with the naphthodithiopheno-system mainly affects the radiative rate constant in the Q-state deactivation pathway, where the effects of the isomeric naphtho[2,1-b:3,4-b']dithiophene- versus naphtho[1,2-b:4,3-b']dithiophene-fusion are essentially the opposite. Interestingly, nucleus-independent chemical shifts analysis revealed a considerable difference between the aromaticities of these two isomeric systems. Our results demonstrate that subtle structural differences in the fused components of the porphyrin can be reflected in rather significant differences between the photophysical properties of the resulting systems.
Collapse
Affiliation(s)
- Courtney Cooper
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Ros Paul
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ajyal Alsaleh
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Spenser Washburn
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - William Rackers
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Siddhartha Kumar
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | | | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
7
|
Adhikari R, Brox J, Massicot S, Ruppel M, Jux N, Marbach H, Steinrück HP. Structure and Conformation of Individual Molecules upon Adsorption of a Mixture of Benzoporphyrins on Ag(111), Cu(111), and Cu(110) Surfaces. Chemphyschem 2023; 24:e202300355. [PMID: 37341973 DOI: 10.1002/cphc.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/22/2023]
Abstract
We investigated the adsorption behavior of a mixture of six 2H-tetrakis-(3, 5-di-tert-butylphenyl)(x)benzoporphyrins (2H-diTTBP(x)BPs, x=0, 1, 2-cis, 2-trans, 3, and 4) on Ag(111), Cu(111) and Cu(110) at room temperature by scanning tunneling microscopy (STM) under ultra-high vacuum conditions. On Ag(111), we observe an ordered two-dimensional square phase, which is stable up to 400 K. On Cu(111), the same square phase coexists with a stripe phase, which disappears at 400 K. In contrast, on Cu(110), 2H-diTTBP(x)BPs adsorb as immobile isolated molecules or dispersed short chains along the [11 ‾ ${\bar{1}}$ 0] substrate direction, which remain intact up to 450 K. The stabilization of the 2D supramolecular structures on Ag(111) and Cu(111), and of the 1D short chains on Cu(110) is attributed to van der Waals interactions between the tert-butyl and phenyl groups of neighboring molecules. From high-resolution STM, we can assign all six 2H-diTTBP(x)BPs within the ordered structures. Moreover, we deduce a crown shape quadratic conformation on Ag(111) and Cu(111), an additional saddle-shape on Cu(111), and an inverted structure and a quadratic appearance on Cu(110). The different conformations are attributed to the different degree of interaction of the iminic nitrogen atoms of the isoindole and pyrrole groups with the substrate atoms.
Collapse
Affiliation(s)
- Rajan Adhikari
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Jan Brox
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Stephen Massicot
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Michael Ruppel
- Lehrstuhl für Organische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Norbert Jux
- Lehrstuhl für Organische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Hubertus Marbach
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Hans-Peter Steinrück
- Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
8
|
Jiang X, Zhao Y, Sun S, Xiang Y, Yan J, Wang J, Pei R. Research development of porphyrin-based metal-organic frameworks: targeting modalities and cancer therapeutic applications. J Mater Chem B 2023. [PMID: 37305964 DOI: 10.1039/d3tb00632h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porphyrins are naturally occurring organic molecules that have attracted widespread attention for their potential in the field of biomedical research. Porphyrin-based metal-organic frameworks (MOFs) that utilize porphyrin molecules as organic ligands have gained attention from researchers due to their excellent results as photosensitizers in tumor photodynamic therapy (PDT). Additionally, MOFs hold significant promise and potential for other tumor therapeutic approaches due to their tunable size and pore size, excellent porosity, and ultra-high specific surface area. Active delivery of nanomaterials via targeted molecules for tumor therapy has demonstrated greater accumulation, lower drug doses, higher therapeutic efficacy, and reduced side effects relative to passive targeting through the enhanced permeation and retention effect (EPR). This paper presents a comprehensive review of the targeting methods employed by porphyrin-based MOFs in tumor targeting therapy over the past few years. It further discusses the applications of porphyrin-based MOFs for targeted cancer therapy through various therapeutic methods. The objective of this paper is to provide a valuable reference and source of ideas for targeted therapy using porphyrin-based MOF materials and to inspire further exploration of their potential in the field of cancer therapy.
Collapse
Affiliation(s)
- Xiang Jiang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ying Xiang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jincong Yan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
9
|
Higashino T, Iizumi R, Imahori H. Rational Synthesis of Benzoheterole-fused Porphyrins and π-System Switching by Central Metal Ion. CHEM LETT 2022. [DOI: 10.1246/cl.220277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Higashino
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Rikiya Iizumi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
Moss A, Jang Y, Arvidson J, Nesterov VN, D'Souza F, Wang H. Aromatic heterobicycle-fused porphyrins: impact on aromaticity and excited state electron transfer leading to long-lived charge separation. Chem Sci 2022; 13:9880-9890. [PMID: 36199634 PMCID: PMC9431455 DOI: 10.1039/d2sc03238d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
A new synthetic method to fuse benzo[4,5]imidazo[2,1-a]isoindole to the porphyrin periphery at the β,β-positions has been developed, and its impact on the aromaticity and electronic structures is investigated. Reactivity investigation of the fused benzoimidazo-isoindole component reveals fluorescence quenching of a zinc porphyrin (AMIm-2) upon treatment with a Brønsted acid. The reaction of the zinc porphyrin (AMIm-2) with methyl iodide initiated a new organic transformation, resulting in the ring-opening of isoindole with the formation of an aldehyde and dimethylation of the benzoimidazo component. The fused benzoimidazo-isoindole component acted as a good ligand to bind platinum(ii), forming novel homobimetallic and heterobimetallic porphyrin complexes. The fusion of benzoimidazo-isoindole on the porphyrin ring resulted in bathochromically shifted absorptions and emissions, reflecting the extended conjugation of the porphyrin π-system. Time-resolved emission and transient absorption spectroscopy revealed stable excited state species of the benzoimidazo-isoindole fused porphyrins. Zinc porphyrin AMIm-2 promoted excited state electron transfer upon coordinating with an electron acceptor, C60, generating a long-lived charge-separated state, in the order of 37.4 μs. The formation of the exceptionally long-lived charge-separated state is attributed to the involvement of both singlet and triplet excited states of AMIm-2, which is rarely reported in porphyrins.
Collapse
Affiliation(s)
- Austen Moss
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Youngwoo Jang
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Jacob Arvidson
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Hong Wang
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
11
|
Ishizuka T, Grover N, Kingsbury CJ, Kotani H, Senge MO, Kojima T. Nonplanar porphyrins: synthesis, properties, and unique functionalities. Chem Soc Rev 2022; 51:7560-7630. [PMID: 35959748 DOI: 10.1039/d2cs00391k] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porphyrins are variously substituted tetrapyrrolic macrocycles, with wide-ranging biological and chemical applications derived from metal chelation in the core and the 18π aromatic surface. Under suitable conditions, the porphyrin framework can deform significantly from regular planar shape, owing to steric overload on the porphyrin periphery or steric repulsion in the core, among other structure modulation strategies. Adopting this nonplanar porphyrin architecture allows guest molecules to interact directly with an exposed core, with guest-responsive and photoactive electronic states of the porphyrin allowing energy, information, atom and electron transfer within and between these species. This functionality can be incorporated and tuned by decoration of functional groups and electronic modifications, with individual deformation profiles adapted to specific key sensing and catalysis applications. Nonplanar porphyrins are assisting breakthroughs in molecular recognition, organo- and photoredox catalysis; simultaneously bio-inspired and distinctly synthetic, these molecules offer a new dimension in shape-responsive host-guest chemistry. In this review, we have summarized the synthetic methods and design aspects of nonplanar porphyrin formation, key properties, structure and functionality of the nonplanar aromatic framework, and the scope and utility of this emerging class towards outstanding scientific, industrial and environmental issues.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Nitika Grover
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Christopher J Kingsbury
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Mathias O Senge
- Institute for Advanced Study (TUM-IAS), Technical University of Munich, Focus Group - Molecular and Interfacial Engineering of Organic Nanosystems, Lichtenbergstrasse 2a, 85748 Garching, Germany.
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba and CREST (JST), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
12
|
Moss A, Nevonen DE, Hu Y, Nesterov VN, Nemykin VN, Wang H. Unsymmetric Pentacene- and Pentacenequinone-Fused Porphyrins: Understanding the Effect of Cross- and Linear-Conjugation. ACS PHYSICAL CHEMISTRY AU 2022; 2:468-481. [PMID: 36855607 PMCID: PMC9955193 DOI: 10.1021/acsphyschemau.2c00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Unsymmetric pentacenequinone-fused (cross-conjugated) and pentacene-fused (linear-conjugated) porphyrins were designed and synthesized. The cross-conjugated (AM 1 -AM 3 ) and linear-conjugated (AM 5 -AM 7 ) porphyrins displayed strikingly different sets of optical and electronic properties, both of which are unusual and nontypical of porphyrins. MCD, DFT, and TDDFT calculations suggest that multiple charge transfer states exist in both π-conjugated systems, which contributes to the complex absorption and MCD spectra of these molecular systems. The general Gouterman's four-orbital model used to explain porphyrin spectroscopy led to contradicting theoretical and experimental data, and is thus not applicable for these molecular systems. The "2 + 4" and "3 + 3" active spaces have been deduced and have proven effective to interpret the absorption and MCD spectra of the pentacenequinone-fused (cross-conjugated) and pentacene-fused (linear-conjugated) porphyrins, respectively. Spectroelectrochemistry of AM 5 -AM 7 revealed broad and intense IR absorptions in the range of 1500-2500 nm, illustrating the exceptional ability of these pentacene-fused systems to accommodate positive charges. A pronounced metal effect was observed for pentacene-fused porphyrins. While pentacene-fused Ni(II) porphyrin (AM6 ) demonstrated an abnormal ability to stabilize pentacene with a half-life of >28.3 days, the half-life of the free base and Zn(II) counterparts were normal, similar to those of pentacene analogues. This work provides important and useful information on guiding new material designs.
Collapse
Affiliation(s)
- Austen Moss
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Dustin E. Nevonen
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yi Hu
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Vladimir N. Nesterov
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Victor N. Nemykin
- Department
of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada,Department
of Chemistry, University of Tennessee, 552 Buehler Hall, 1420 Circle Dr., Knoxville, Tennessee 37996-1600, United States,
| | - Hong Wang
- Department
of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States,
| |
Collapse
|
13
|
Koifman OI, Ageeva TA. Main Strategies for the Synthesis of meso-Arylporphyrins. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [PMCID: PMC9156840 DOI: 10.1134/s1070428022040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
meso-Arylporphyrins as most accessible tetrapyrrole macroheterocycles have always been the focus of attention from researchers concerned with practically useful properties of these compounds. The first syntheses of meso-arylporphyrins date back to about 90 years ago. Up to now, the yields of these compounds have been improved from 5 to 80%. The present review analyzes different ways and strategies for the synthesis of meso-aryl-substituted porphyrins. The most efficient methods that can be scaled up to an industrial level have been identified.
Collapse
Affiliation(s)
- O. I. Koifman
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| | - T. A. Ageeva
- Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia
| |
Collapse
|
14
|
Sugano Y, Matsuo K, Hayashi H, Aratani N, Yamada H. Synthesis of 10,20-substituted tetrabenzo-5,15-diazaporphyrin copper complexes from soluble precursors. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621501194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report improved synthesis of the bicyclo[2.2.2]octadiene(BCOD)-fused 5,15-diazaporphyrin and meso-substituted derivatives by metal-template aza-annulation reaction. The obtained compounds act as the soluble precursors of tetrabenzo-5,15-diazaporphyrin (TBDAP) by thermal conversion. The substituents at meso-positions make significant differences in the optical properties and morphology in the thin film upon thermal conversion.
Collapse
Affiliation(s)
- Yuki Sugano
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Kyohei Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hironobu Hayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Naoki Aratani
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Hiroko Yamada
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
15
|
Nishimura I, Higashino T, Imahori H. Synthesis of thiophene-fused porphyrin dimers as effective π-extended helical chromophores. Chem Commun (Camb) 2021; 57:9606-9609. [PMID: 34546258 DOI: 10.1039/d1cc04215g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We synthesized thiophene-fused porphyrin dimers as effective π-extended helical chromophores. The porphyrin dimers exhibit a red-shifted absorption with the edge extending up to 1100 nm, implying strong electronic communication over the two porphyrin moieties through the thiophene-fused structure. Importantly, their racemic inversion barriers can be modulated by the central metal ions.
Collapse
Affiliation(s)
- Issei Nishimura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Tomohiro Higashino
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan. .,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Osadchuk I, Aav R, Borovkov V, Clot E. Chirogenesis in Zinc Porphyrins: Theoretical Evaluation of Electronic Transitions, Controlling Structural Factors and Axial Ligation. Chemphyschem 2021; 22:1817-1833. [PMID: 34213815 PMCID: PMC8457158 DOI: 10.1002/cphc.202100345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/24/2021] [Indexed: 12/15/2022]
Abstract
In the present work, sixteen different zinc porphyrins (possessing different meso substituents) with and without a chiral guest were modelled using DFT and TD-DFT approaches in order to understand the influence of various controlling factors on electronic circular dichroism (ECD) spectra. Two major aspects are influenced by these factors: excitation energy of the electronic transitions and their intensity. In the case of excitation energy, the influence increases in the following order: orientation of the peripheral substituents
Collapse
Affiliation(s)
- Irina Osadchuk
- Department of Chemistry and BiotechnologySchool of ScienceTallinn University of Technology AddressAkadeemia tee 1512618TallinnEstonia
- ICGMUniv MontpellierCNRS, ENSCMMontpellierFrance
| | - Riina Aav
- Department of Chemistry and BiotechnologySchool of ScienceTallinn University of Technology AddressAkadeemia tee 1512618TallinnEstonia
| | - Victor Borovkov
- Department of Chemistry and BiotechnologySchool of ScienceTallinn University of Technology AddressAkadeemia tee 1512618TallinnEstonia
| | - Eric Clot
- ICGMUniv MontpellierCNRS, ENSCMMontpellierFrance
| |
Collapse
|
17
|
The role of structural symmetry on proton tautomerization: A DFTB/Meta-Dynamics computational study. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Allu SR, Ravotto L, Troxler T, Vinogradov SA. syn-Diarylphthalimidoporphyrins: Effects of Symmetry Breaking on Two-Photon Absorption and Linear Photophysical Properties. J Phys Chem A 2021; 125:2977-2988. [PMID: 33822621 DOI: 10.1021/acs.jpca.1c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aromatically π-extended porphyrins possess exceptionally intense one-photon (1P) and sometimes two-photon (2P) absorption bands, presenting interest for construction of optical imaging probes and photodynamic agents. Here we investigated how breaking the molecular symmetry affects linear and 2PA properties of π-extended porphyrins. First, we developed the synthesis of porphyrins fused with two phthalimide fragments, termed syn-diarylphthalimidoporphyrins (DAPIP). Second, the photophysical properties of H2, Zn, Pd, and Pt DAPIP were measured and compared to those of fully symmetric tetraarylphthalimidoporphyrins (TAPIP). The data were interpreted using DFT/TDDFT calculations and sum-over-states (SOS) formalism. Overall, the picture of 2PA in DAPIP was found to resemble that in centrosymmetric porphyrins, indicating that symmetry breaking, even as significant as by syn-phthalimido-fusion, induces a relatively small perturbation to the porphyrin electronic structure. Collectively, the compact size, versatile synthesis, high 1PA and 2PA cross sections, and bright luminescence make DAPIP valuable chromophores for construction of imaging probes and other bioapplications.
Collapse
Affiliation(s)
- Srinivasa Rao Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Luca Ravotto
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas Troxler
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, and Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
A near infrared ratiometric platform based π-extended porphyrin metal-organic framework for O 2 imaging and cancer therapy. Biomaterials 2021; 272:120782. [PMID: 33819816 DOI: 10.1016/j.biomaterials.2021.120782] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/20/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) is widely researched in tumor treatment, but its therapeutic effect is affected by oxygen (O2) concentration of tumor site. Here, we developed a Pd-coordinated π-conjugated extended porphyrin doped porphyrin metal-organic-framework (named as PTP). PTP can achieve near infrared (NIR) O2 concentration ratiometric imaging, solving the problems of short detection wavelengths and influence of self-concentrations. With the NIR excitation wavelength and the ability of higher singlet oxygen (1O2) generation, PTP can induce PDT more effectively. The efficient PDT also mediates cancer immunogenic cell death (ICD), which combines with the immune checkpoint inhibitor αPD-1 to achieve obviously cancer suppression and anti-metastasis effect. This theranostic NIR ratiometric nanoprobe can be used as a pre-evaluation on the outcome of PDT and high-efficient cancer combined treatment system, which will find great potential in tumor diagnosis and treatment.
Collapse
|
20
|
Chahal MK, Liyanage A, Alsaleh AZ, Karr PA, Hill JP, D'Souza F. Anion-enhanced excited state charge separation in a spiro-locked N-heterocycle-fused push-pull zinc porphyrin. Chem Sci 2021; 12:4925-4930. [PMID: 34168764 PMCID: PMC8179616 DOI: 10.1039/d1sc00038a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A new type of push–pull charge transfer complex, viz., a spiro-locked N-heterocycle-fused zinc porphyrin, ZnP-SQ, is shown to undergo excited state charge separation, which is enhanced by axial F− binding to the Zn center. In this push–pull design, the spiro-quinone group acts as a ‘lock’ promoting charge transfer interactions by constraining mutual coplanarity of the meso-phenol-substituted electron-rich Zn(ii) porphyrin and an electron deficient N-heterocycle, as revealed by electrochemical and computational studies. Spectroelectrochemical studies have been used to identify the spectra of charge separated states, and charge separation upon photoexcitation of ZnP has been unequivocally established by using transient absorption spectroscopic techniques covering wide spatial and temporal regions. Further, global target analysis of the transient data using GloTarAn software is used to obtain the lifetimes of different photochemical events and reveal that fluoride anion complexation stabilizes the charge separated state to an appreciable extent. A new type of push–pull charge transfer complex, viz., a spiro-locked N-heterocycle-fused zinc porphyrin, ZnP-SQ, is shown to undergo excited state charge separation, which is enhanced by axial F− binding to the Zn center.![]()
Collapse
Affiliation(s)
- Mandeep K Chahal
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Namiki 1-1, Tsukuba Ibaraki 305-0044 Japan
| | - Anuradha Liyanage
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College 111 Main Street Wayne Nebraska 68787 USA
| | - Jonathan P Hill
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Namiki 1-1, Tsukuba Ibaraki 305-0044 Japan
| | - Francis D'Souza
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
21
|
Supramolecular Chirogenesis in Bis-Porphyrin: Crystallographic Structure and CD Spectra for a Complex with a Chiral Guanidine Derivative. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The complexation of (3aR,7aR)-N-(3,5-bis(trifluoromethyl)phenyl)octahydro-2H-benzo[d]imidazol-2-imine (BTI), as a guest, to ethane-bridged bis(zinc octaethylporphyrin), bis(ZnOEP), as a host, has been studied by means of ultraviolet-visible (UV-Vis) and circular dichroism (CD) absorption spectroscopies, single crystal X-ray diffraction, and computational simulation. The formation of 1:2 host-guest complex was established by X-ray diffraction and UV-Vis titration studies. Two guest BTI molecules are located at the opposite sides of two porphyrin subunits of bis(ZnOEP) host, which is resting in the anti-conformation. The complexation of BTI molecules proceed via coordination of the imine nitrogens to the zinc ions of each porphyrin subunit of the host. Such supramolecular organization of the complex results in a screw arrangement of the two porphyrin subunits, inducing a strong CD signal in the Soret (B) band region. The corresponding DFT computational studies are in a good agreement with the experimental results and prove the presence of 1:2 host-guest complex as the major component in the solution (97.7%), but its optimized geometry differs from that observed in the solid-state. The UV-Vis and CD spectra simulated by using the solution-state geometry and the TD-DFT/ωB97X-D/cc-pVDZ + SMD (CH2Cl2) level of theory reproduced the experimentally obtained UV-Vis and CD spectra and confirmed the difference between the solid-state and solution structures. Moreover, it was shown that CD spectrum is very sensitive to the spatial arrangement of porphyrin subunits.
Collapse
|
22
|
Maulbetsch T, Kunz D. Carbenaporphyrins: No Longer Missing Ligands in N-Heterocyclic Carbene Chemistry. Angew Chem Int Ed Engl 2021; 60:2007-2012. [PMID: 33078891 PMCID: PMC7898644 DOI: 10.1002/anie.202013434] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 11/09/2022]
Abstract
The synthesis of an NHC-containing porphyrinoid ligand is presented. The formally antiaromatic 20 πe- macrocyclic framework can be obtained via a 1,3-dipolar cycloaddition ("click-reaction") to form two triazole moieties which were alkylated to the respective triazolium macrocycle. Deprotonation of the ligand precursor with lithium bases to the respective dilithio carbenaporphyrin complex and transmetallation to scandium lead to complexes that exhibit orange fluorescence. Optical property combined with TD-DFT studies verify an aromatic character for each heterocyclic moiety rather than an antiaromatic macrocycle in the ligand precursor as well as in the complexes. While the geometric features of the carbenaporphyrin ligand strongly resemble those of porphyrin, DFT calculations reveal a stronger electron-donating ability of the new ligand.
Collapse
Affiliation(s)
- Theo Maulbetsch
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Doris Kunz
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
23
|
Maulbetsch T, Kunz D. Carbenaporphyrine: eine Lücke in der Chemie N‐heterocyclischer Carbene schließt sich. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Theo Maulbetsch
- Institut für Anorganische Chemie Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| | - Doris Kunz
- Institut für Anorganische Chemie Eberhard Karls Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Deutschland
| |
Collapse
|
24
|
Fan Y, Zeng Z, Shu H, Zhou M, Xu L, Rao Y, Gu T, Liang X, Zhu W, Song J. Two- and three-dimensional β,β′-N-heterocycle fused porphyrins: concise construction, singlet oxygen production and electro-catalytic hydrogen evolution reaction. Org Chem Front 2021. [DOI: 10.1039/d1qo01161h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A series of 2D and 3D porphyrins fused with N-heterocycles were prepared by palladium-catalyzed. Photophysical and electrochemical properties, 1O2 production and electrocatalytic HER behaviours of the representative porphyrins were investigated.
Collapse
Affiliation(s)
- Yan Fan
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhiming Zeng
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| | - Hui Shu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| | - Mingbo Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| | - Ling Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| | - Yutao Rao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| | - Tingting Gu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jianxin Song
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
25
|
Hu Y, Thomas MB, Webre WA, Moss A, Jinadasa RGW, Nesterov VN, D'Souza F, Wang H. Nickel(II) Bisporphyrin‐Fused Pentacenes Exhibiting Abnormal High Stability. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yi Hu
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203 USA
| | - Michael B. Thomas
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203 USA
| | - Whitney A. Webre
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203 USA
| | - Austen Moss
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203 USA
| | - R. G. Waruna Jinadasa
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203 USA
| | - Vladimir N. Nesterov
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203 USA
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203 USA
| | - Hong Wang
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203 USA
| |
Collapse
|
26
|
Yamada H, Kuzuhara D, Suzuki M, Hayashi H, Aratani N. Synthesis and Morphological Control of Organic Semiconducting Materials Using the Precursor Approach. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200130] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hiroko Yamada
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Mitsuharu Suzuki
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hironobu Hayashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Naoki Aratani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
27
|
Higashino T, Nishimura I, Imahori H. Unique Role of Heterole-Fused Structures in Aromaticity and Physicochemical Properties of 7,8-Dehydropurpurins. Chemistry 2020; 26:12043-12049. [PMID: 32338789 DOI: 10.1002/chem.202001361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 12/17/2022]
Abstract
Porphyrins with a fused five-membered ring, such as 7,8-dehydropurpurins, have appeared as an emerging class of unique porphyrinoids. Their altered absorption spectra, relatively short lifetimes of excited states, and small HOMO-LUMO gaps arise from the harmony of the antiaromatic 20π-circuit and the aromatic 18π-circuit. In this regard, the electronic properties of 7,8-dehydropurpurins are expected to be controlled by modulating the contribution of the antiaromatic π-circuit to the whole aromaticity. Here the comparison of pyrrole- and phosphole-fused 7,8-dehydropurpurins is reported in terms of their aromaticity and physicochemical properties. The spectroscopic investigation revealed the larger contribution of the antiaromatic 24π-circuit in pyrrole-fused 7,8-dehyrdopurpurins than in phosphole-fused 7,8-dehydropurpurins. The DFT calculations also supported the feasibility of tuning the aromaticity of 7,8-dehydropurpurins by heterole-fused structures. Thus, the introduction of heterole-fused structures into porphyrinoids is a universal strategy to get new insight into aromaticity and their intrinsic properties in cyclic π-conjugated molecules.
Collapse
Affiliation(s)
- Tomohiro Higashino
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Issei Nishimura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
28
|
Kumar S, Webre WA, Stewart C, D'Souza F, Wang H. A Synthetic Approach to β-Functionalized Naphtho[2,3]porphyrins. Org Lett 2020; 22:7078-7082. [PMID: 32898422 DOI: 10.1021/acs.orglett.0c02313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A concise synthetic method has been developed to access functionalized naphtho[2,3]porphyrins through combining two sequence reactions involving a Heck-electrocyclization-aromatization sequence and a Wittig-Knovenegal sequence. Using this method, mononaphtho[2,3]porphyrin (NP-1), opp-dinaphtho[2,3]porphyrin (NP-2), and push-pull naphtho[2,3]porphyrin (NP-3) have been prepared. These naphtho[2,3]porphyrins displayed interesting optical and electrochemical properties. Excellent efficiencies of singlet oxygen generation were obtained for these naphtho[2,3]porphyrins.
Collapse
Affiliation(s)
- Siddhartha Kumar
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203, United States
| | - Whitney A Webre
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203, United States
| | - Courtney Stewart
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203, United States
| | - Hong Wang
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203, United States
| |
Collapse
|
29
|
Hu Y, Thomas MB, Webre WA, Moss A, Jinadasa RGW, Nesterov VN, D'Souza F, Wang H. Nickel(II) Bisporphyrin-Fused Pentacenes Exhibiting Abnormal High Stability. Angew Chem Int Ed Engl 2020; 59:20075-20082. [PMID: 32725753 DOI: 10.1002/anie.202008076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Indexed: 11/12/2022]
Abstract
A series of largely π-extended multichromophoric molecules including cross-conjugated, half cross-conjugated, conjugation-interrupted and linearly conjugated systems were synthesized and characterized. These multichromophoric molecular systems revealed interesting structural-property relationships. Bisporphyrin-fused pentacenes Pen-1 b and Pen-2 a showed rich redox chemistry with 7 and 8 observable redox states, respectively. The linearly-conjugated bisporphyrin-fused pentacenes (Pen-1 b and Pen-2 a) possess much narrower HOMO-LUMO gaps (1.65 and 1.42 eV redox, respectively) and higher HOMO energy levels than those of their pentacene analogues (2.23 and 2.01 eV redox, respectively), similar to those of much less stable hexacenes and heptacenes. An estimated half-life of >945 h was obtained for bisporphyrin-fused pentacene Pen-2 a, which is much longer than that of its pentacene analogue (BPE-P, half-life, 33 h).
Collapse
Affiliation(s)
- Yi Hu
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203, USA
| | - Michael B Thomas
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203, USA
| | - Whitney A Webre
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203, USA
| | - Austen Moss
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203, USA
| | - R G Waruna Jinadasa
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203, USA
| | - Vladimir N Nesterov
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203, USA
| | - Hong Wang
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203, USA
| |
Collapse
|
30
|
Li Y, Zhou M, Xu L, Zhou B, Rao Y, Nie H, Gu T, Zhou J, Liang X, Yin B, Zhu W, Osuka A, Song J. Simultaneous Implementation of N-Heterocycle-Fused Bridge and Modified Pyrrole Unit on Ni(II) Porphyrin Dimers. Org Lett 2020; 22:6001-6005. [PMID: 32692918 DOI: 10.1021/acs.orglett.0c02084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of NiII-porphyrin dimer 10 with PbO2 or MnO2 resulted in the simultaneous implementation of an N-heterocycle-fused bridge and a modified pyrrole to give three unprecedented porphyrin dimers 11, 12, and 13. The reduction of 12 smoothly afforded 14. The structures of these dimers were all unambiguously confirmed by X-ray crystallographic analysis. These dimers show significantly red-shifted absorption bands and perturbed electrochemical properties with a decreasing HOMO-LUMO gap in the order of 14 > 13 > 11 > 12.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Bixiang Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Tingting Gu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jie Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| |
Collapse
|
31
|
Galstyan A, Maurya YK, Zhylitskaya H, Bae YJ, Wu YL, Wasielewski MR, Lis T, Dobrindt U, Stępień M. π-Extended Donor-Acceptor Porphyrins and Metalloporphyrins for Antimicrobial Photodynamic Inactivation. Chemistry 2020; 26:8262-8266. [PMID: 31968144 PMCID: PMC7384002 DOI: 10.1002/chem.201905372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 12/26/2022]
Abstract
Free base, zinc and palladium π‐extended porphyrins containing fused naphthalenediamide units were employed as photosensitizers in antimicrobial photodynamic therapy (aPDT). Their efficacy, assessed by photophysical and in vitro photobiological studies on Gram‐positive bacteria, was found to depend on metal coordination, showing a dramatic enhancement of photosensitizing activity for the palladium complex.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Yogesh Kumar Maurya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Halina Zhylitskaya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Youn Jue Bae
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA
| | - Yi-Lin Wu
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA.,Current address: School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois, 60208-3113, USA
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| | - Ulrich Dobrindt
- Institute of Hygiene, Westfälische Wilhelms-Universität Münster, Mendelstraße 7, 48149, Münster, Germany
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50383, Wrocław, Poland
| |
Collapse
|
32
|
Ruppel M, Gazetas LP, Lungerich D, Hampel F, Jux N. Investigations of Low-Symmetrical Tetraaryltetrabenzoporphyrins Produced by Mixed Condensation Reactions. J Org Chem 2020; 85:7781-7792. [PMID: 32408737 DOI: 10.1021/acs.joc.0c00293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Within the past decade, tetraaryltetrabenzoporphyrins (TATBPs) have gained rising attention due to their potential in various fields of materials science and medicinal chemistry. However, this class of compounds still lacks in structural diversity, especially in the case of low-symmetrical compounds. Herein, mixed condensations were utilized to generate TATBPs with different substituents either in the meso-positions or the periphery of the macrocycle with total yields of 55-58%. The separation of crude mixtures was achieved by feasible chromatographic purification. The influence of symmetry on the electronic properties of TATBPs was studied by optical spectroscopy, electrochemistry, and X-ray diffraction.
Collapse
Affiliation(s)
- Michael Ruppel
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Lampros-Pascal Gazetas
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Dominik Lungerich
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Frank Hampel
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| | - Norbert Jux
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany
| |
Collapse
|
33
|
Ruppel M, Lungerich D, Sturm S, Lippert R, Hampel F, Jux N. A Comprehensive Study on Tetraaryltetrabenzoporphyrins. Chemistry 2020; 26:3287-3296. [PMID: 31846109 PMCID: PMC7154557 DOI: 10.1002/chem.201904718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/09/2019] [Indexed: 12/20/2022]
Abstract
Tetraaryltetrabenzoporphyrins (TATBPs) show, due to their optoelectronic properties, rising potential as dyes in various fields of physical and biomedical sciences. However, unlike in the case of porphyrins, the potential structural diversity of TATBPs has been explored only to little extent, owed mainly to synthetic hurdles. Herein, we prepared a comprehensive library of 30 TATBPs and investigated their fundamental properties. We elucidated structural properties by X-ray crystallography and found explanations for physical properties such as solubility. Fundamental electronic aspects were studied by optical spectroscopy as well as by electrochemistry and brought in context to the stability of the molecules. Finally, we were able to develop a universal synthetic protocol, utilizing a readily established isoindole synthon, which gives TATBPs in high yields, regardless of the nature of the used arylaldehyde and without meticulous chromatographic purifications steps. This work serves as point of orientation for scientists, that aim to utilize these molecules in materials, nanotechnological, and biomedical applications.
Collapse
Affiliation(s)
- Michael Ruppel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for, Molecular Materials (ICMM)Organic Chemistry IIFriedrich-Alexander University Erlangen–NuernbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Dominik Lungerich
- Department of Chemistry and Pharmacy & Interdisciplinary Center for, Molecular Materials (ICMM)Organic Chemistry IIFriedrich-Alexander University Erlangen–NuernbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Sabrina Sturm
- Department of Chemistry and Pharmacy, Bioinorganic ChemistryFriedrich-Alexander University Erlangen-NuernbergEgerlandstr. 191058ErlangenGermany
| | - Rainer Lippert
- Department of Chemistry and Pharmacy, Bioinorganic ChemistryFriedrich-Alexander University Erlangen-NuernbergEgerlandstr. 191058ErlangenGermany
| | - Frank Hampel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for, Molecular Materials (ICMM)Organic Chemistry IIFriedrich-Alexander University Erlangen–NuernbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Norbert Jux
- Department of Chemistry and Pharmacy & Interdisciplinary Center for, Molecular Materials (ICMM)Organic Chemistry IIFriedrich-Alexander University Erlangen–NuernbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
34
|
Osadchuk I, Borovkov V, Aav R, Clot E. Benchmarking computational methods and influence of guest conformation on chirogenesis in zinc porphyrin complexes. Phys Chem Chem Phys 2020; 22:11025-11037. [DOI: 10.1039/d0cp00965b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different computational methods and influence of the guest conformation and solvent effect to analyze chirogenesis in zinc porphyrins by several chiral compounds have been investigated.
Collapse
Affiliation(s)
- Irina Osadchuk
- Department of Chemistry and Biotechnology
- Tallinn University of Technology
- Tallinn 12618
- Estonia
- ICGM, University of Montpellier
| | - Victor Borovkov
- Department of Chemistry and Biotechnology
- Tallinn University of Technology
- Tallinn 12618
- Estonia
- College of Chemistry and Materials Science
| | - Riina Aav
- Department of Chemistry and Biotechnology
- Tallinn University of Technology
- Tallinn 12618
- Estonia
| | - Eric Clot
- ICGM, University of Montpellier
- CNRS
- ENSCM
- Montpellier
- France
| |
Collapse
|
35
|
Jeong E, Takahashi K, Rajagopal SK, Koganezawa T, Hayashi H, Aratani N, Suzuki M, Nguyen TQ, Yamada H. Orbital-Energy Modulation of Tetrabenzoporphyrin-Derived Non-Fullerene Acceptors for Improved Open-Circuit Voltage in Organic Solar Cells. J Org Chem 2019; 85:168-178. [DOI: 10.1021/acs.joc.9b02386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Eunjeong Jeong
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Kohtaro Takahashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Shinaj K. Rajagopal
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Tomoyuki Koganezawa
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hironobu Hayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Naoki Aratani
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Mitsuharu Suzuki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Thuc-Quyen Nguyen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Hiroko Yamada
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
36
|
Wang L, Fang Y, Xu W, Ou Z, Kadish KM. Electrochemical and spectroelectrochemical characterization of Cu(II) and Mn(III) tetrabutano- and tetrabenzoporphyrins containing sterically hindered meso -(2,6-difluorophenyl) substituents in nonaqueous media. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619501013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Four tetrabutano and tetrabenzoporphyrins containing sterically hindered meso-(2,6-difluorophenyl) substituents and copper(II) or manganese(III) central metal ions were synthesized and characterized as to their electrochemical and spectroelectrochemical properties in nonaqueous media. The copper(II) derivatives exhibit the expected two one-electron reductions to give [Formula: see text]-anion radicals and dianions in CH2Cl2. Electrochemical and spectroelectrochemical data suggest that a Cu(II) phlorin anion is generated from the doubly reduced Cu(II) butanoporphyrin and it is this species which undergoes the third reduction in pyridine. The first one-electron reduction of the Mn(III) porphyrins is metal-centered to give a Mn(II) compound, while the second and third reductions are macrocycle-centered to give Mn(II) porphyrin [Formula: see text]-anion radicals and dianions in both CH2Cl2 and pyridine. A Mn(II) phlorin anion is also generated from the Mn(II) dianion on the spectroelectrochemical timescale under the given solution conditions. The [Formula: see text],[Formula: see text]-butano and benzo groups have a significant effect on the measured redox potentials. Steric hindrance of the meso-(2,6-difluorophenyl) substituents also has an effect on the potential separation between the first two oxidations of the benzoporphyrins.
Collapse
Affiliation(s)
- Liping Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Weijie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Zhongping Ou
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| |
Collapse
|
37
|
Okujima T, Hashimoto Y, Furuta T, Yamanaka R, Jin G, Otsubo S, Aramaki S, Mori S, Yamada H, Uno H, Ono N. Synthesis of the Soluble Precursors of Tetrabenzoporphyrin: Control of the Solubility and the Conversion Temperature. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tetsuo Okujima
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Research Unit for Power Generation and Storage Materials, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Yusuke Hashimoto
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tomoya Furuta
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Ritsuko Yamanaka
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Guangnan Jin
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Saika Otsubo
- Mitsubishi Chemical Corporation, Yokohama, Kanagawa 227-8502, Japan
| | - Shinji Aramaki
- Mitsubishi Chemical Corporation, Yokohama, Kanagawa 227-8502, Japan
| | - Shigeki Mori
- Research Unit for Power Generation and Storage Materials, Ehime University, Matsuyama, Ehime 790-8577, Japan
- Advanced Research Support Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Hiroko Yamada
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hidemitsu Uno
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Noboru Ono
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
38
|
Studies of the Catalytic Activity of Iron (III) Porphyrins for the Protection of Carbonyl Groups in Homogeneous Media. Catalysts 2019. [DOI: 10.3390/catal9040334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The protection of carbonyl groups that produce acetal products is a key reaction in fine chemistry due to the high reactivity of aldehydes and ketones in certain media. This process can be catalyzed by protic or Lewis acids. Since metalloporphyrins often possess free axial positions in the central metal, they can be applied as Lewis acid catalysts, allowing the additional coordination of substrates. Therefore, three ferric complexes were selected to be evaluated as catalysts for the acetalization of benzaldehyde with ethanol and triethyl orthoformate (TEOF) in the homogeneous phase: (i) 5,10,15,20-tetrakis(phenylporphyrin) iron (III) chloride (Fe0F); (ii) 5,10,15,20-tetrakis(2,6-difluorphenylporphyrin) iron (III) chloride (Fe2F); and (iii) 5,10,15,20-tetrakis(pentafluorphenylporphyrin) iron (III) chloride (Fe5F). The complex Fe5F showed the highest catalytic activity, and kinetic parameters were evaluated for this reaction, exhibiting an increasing rate of reaction of about 550-fold in comparison with the non-catalyzed reaction. The reaction scope was also investigated, and Fe5F was found to be active for the acetalization of benzaldehyde and acetophenone, with different protective agents such as alcohols, glycols, glycerol, and epoxide being selective for the formation of cyclic acetals. The protection of benzaldehyde with ethylene glycol and propylene glycol were also studied at different temperatures, and turnover frequency (TOF) values of up to 360 h−1 were determined at 40 °C in homogenous media without the need for solvent or drying agents.
Collapse
|
39
|
Tin(IV)-Porphyrin Tetracarbonyl Cobaltate: An Efficient Catalyst for the Carbonylation of Epoxides. Catalysts 2019. [DOI: 10.3390/catal9040311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cationic tin(IV) porphyrins with tetracarbonyl cobaltates were synthesized, exhibiting bifunctional catalytic reactivity. The Lewis acidic tin-porphyrin center activated epoxides; concurrently, cobalt carbonyl anions efficiently opened epoxides and delivered carbonyl moieties. Thus, a series of β-lactones with a high synthetic value were obtained. This catalytic system showed excellent efficiency exceeding a turnover number of one thousand with a broad substrate scope. In addition, the presented tin porphyrin-based catalyst exhibited exclusive chemoselectivity to terminal epoxides over internal ones. The selective carbonylation of di-epoxides demonstrated the usefulness of these catalysts in the synthesis of complex molecular structures.
Collapse
|
40
|
Ye L, Fang Y, Ou Z, Wang L, Xue S, Lu Y, Kadish KM. Axial coordination reactions with nitrogenous bases and determination of equilibrium constants for zinc tetraarylporphyrins containing four β,β′-fused butano and benzo groups in nonaqueous media. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The axial coordination properties of six zinc tetraarylporphyrins with seven different nitrogenous bases were examined in CH2Cl2 for derivatives containing four [Formula: see text],[Formula: see text]-fused butano or benzo groups and the equilibrium constants (log[Formula: see text] determined using spectral titration methods. The examined compounds are represented as butano(YPh)4PorZn and benzo(YPh)4PorZn, where Por is the porphyrin dianion and Y is a CH3, H or Cl substituent on the para-position of each meso-phenyl ring of the macrocycle. The initial four-coordinate butano- and benzoporphyrins will axially bind one nitrogenous base to form five-coordinate derivatives in CH2Cl2 and this leads to a 4–22 nm red-shift of the Soret and Q bands. The log[Formula: see text] values range from 1.98 to 4.69 for butano(YPh)4PorZn and from 3.42 to 5.36 for benzo(YPh)4PorZn, with the exact value depending upon the meso and [Formula: see text]-substituents of the porphyrin and the conjugate acid dissociation constants (p[Formula: see text] of the nitrogenous base.
Collapse
Affiliation(s)
- Lina Ye
- College of Computer, Jilin Normal University, Siping 136000, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhongping Ou
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Liping Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yang Lu
- College of Computer, Jilin Normal University, Siping 136000, P. R. China
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| |
Collapse
|
41
|
Fang Y, Wang L, Xu W, Ou Z, Chen M, Cong L, Shan W, Ke X, Kadish KM. Spectral, Electrochemical, and ESR Characterization of Manganese Tetraarylporphyrins Containing Four β,β'-Pyrrole Fused Butano and Benzo Groups in Nonaqueous Media. Inorg Chem 2019; 58:2576-2587. [PMID: 30721029 DOI: 10.1021/acs.inorgchem.8b03184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two series of β,β'-pyrrole butano- and benzo-substituted mangenese(III) tetraarylporphyrins were synthesized and characterized with regard to their spectral and electrochemical properties. The investigated compounds have the general formula butano(Ar)4PorMnCl and benzo(Ar)4PorMnCl, where Por is the dianion of the porphyrin and Ar is a p-CH3Ph, Ph or p-ClPh group on each of the four meso-positions of the macrocycle. Each manganese(III) butano- or benzoporphyrin was examined in CH2Cl2 and/or pyridine containing 0.1 M tetra- n-butylammonium perchlorate and the data then were compared to that of the parent tetraarylporphyrins having the same meso-substituents. Up to four reductions are observed for each compound, the first being metal-centered to generate a Mn(II) porphyrin, and the second and third being porphyrin ring-centered to give a Mn(II) porphyrin π-anion radical and dianion, respectively. The one-electron reduced manganese porphyrins have an ESR spectrum with signals at g⊥= 5.6-5.8 and g// = 2.0, indicating a mixture of the four- and five-coordinated Mn(II) complexes in a high-spin state (3d5, S = 5/2, I = 5/2). Data from cyclic voltammetry and spectroelectrochemistry both suggest that formation of the porphyrin dianion is followed by a chemical reaction at the electrode surface to give an electroactive phlorin anion. The effects of solvent and porphyrin substituents on ultraviolet-visible light (UV-vis) spectra, redox potentials, and electron transfer mechanisms are discussed.
Collapse
Affiliation(s)
- Yuanyuan Fang
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Liping Wang
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Weijie Xu
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Zhongping Ou
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Mingyuan Chen
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang , 212013 , China.,Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Lei Cong
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Wenqian Shan
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Xiangyi Ke
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Karl M Kadish
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
42
|
Grover N, Chaudhri N, Sankar M. β-Functionalized Dibenzoporphyrins with Mixed Substituents Pattern: Facile Synthesis, Structural, Spectral, and Electrochemical Redox Properties. Inorg Chem 2019; 58:2514-2522. [DOI: 10.1021/acs.inorgchem.8b03106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nitika Grover
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Nivedita Chaudhri
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
43
|
Volostnykh MV, Borisov SM, Konovalov MA, Sinelshchikova AA, Gorbunova YG, Tsivadze AY, Meyer M, Stern C, Bessmertnykh-Lemeune A. Platinum(ii) and palladium(ii) complexes with electron-deficient meso-diethoxyphosphorylporphyrins: synthesis, structure and tuning of photophysical properties by varying peripheral substituents. Dalton Trans 2019; 48:8882-8898. [DOI: 10.1039/c9dt01577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The luminescence quenching by O2 and photodegradation of Pt(ii) and Pd(ii) phosphorylporphyrins are reported.
Collapse
Affiliation(s)
- Marina V. Volostnykh
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Sergey M. Borisov
- Institute of Analytical Chemistry and Food Chemistry
- Graz University of Technology
- A-8010 Graz
- Austria
| | - Mikhail A. Konovalov
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
- Chemistry Department
| | - Anna A. Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
- Kurnakov Institute of General and Inorganic Chemistry
| | - Aslan Yu. Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry
- Russian Academy of Sciences
- Moscow
- Russia
- Kurnakov Institute of General and Inorganic Chemistry
| | - Michel Meyer
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302 CNRS
- Université Bourgogne Franche-Comté
- BP 47870, 21078 Dijon Cedex
- France
| | - Christine Stern
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302 CNRS
- Université Bourgogne Franche-Comté
- BP 47870, 21078 Dijon Cedex
- France
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB)
- UMR 6302 CNRS
- Université Bourgogne Franche-Comté
- BP 47870, 21078 Dijon Cedex
- France
| |
Collapse
|
44
|
Ye L, Fang Y, Ou Z, Wang L, Xue S, Sun J, Kadish KM. Electrochemistry of zinc tetraarylporphyrins containing fused butano and benzo groups. Effect of solvent and substituents on spectra, potentials and mechanism in nonaqueous media. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618501067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two series of zinc tetraarylporphyrins containing four [Formula: see text],[Formula: see text]′-pyrrole fused butano or benzo groups were synthesized and characterized as to their electrochemical and spectroelectrochemical properties in nonaqueous media. The examined compounds are represented as butano(Ar)4PorZn and benzo(Ar)4PorZn, where Por is the porphyrin dianion and Ar is a [Formula: see text]-CH3Ph, Ph or [Formula: see text]-ClPh substitutent on [Formula: see text]-positions of the macrocycle. Each Zn(II) butano- and benzoporphyrin undergoes two one-electron reductions to give a [Formula: see text]-anion radical and dianion in CH2Cl2. In contrast, three reductions were observed for the benzoporphyrin derivatives in pyridine, the third of which is assigned as electron addition to a benzophlorin anion generated from the doubly reduced benzoporphyrin. Two overlapped one-electron oxidations were observed for the butanoporphyrins in CH2Cl2, a result not previously observed for any other zinc porphyrin. The electrochemically measured HOMO-LUMO gap of the benzoporphyrins ranges from 1.89 to 1.90 V in CH2Cl2 and from 1.93 to 1.95 V in pyridine. Both values are smaller than the gaps of butanoporphyrins at 2.11-2.13 V in CH2Cl2 and 2.07.2.09 V in pyridine.
Collapse
Affiliation(s)
- Lina Ye
- College of Computer, Jilin Normal University, Siping 136000, P. R. China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhongping Ou
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Liping Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jing Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| |
Collapse
|
45
|
Zhang YC, Lee DY. Intercalating Single-Atom Metal Centers into an Organic Monolayer with a Full-Sample Coverage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13387-13394. [PMID: 30346778 DOI: 10.1021/acs.langmuir.8b02968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thiolate self-assembled monolayers (SAMs) have been widely used as a straightforward method to functionalize the surface of a common substrate with selective organic functional groups. Here we describe a process that further introduces isolated metal centers into an organic SAM using solutions of metallic porphyrin so that different organic groups and metal single-atoms can be simultaneously exposed on top of the surface. The entire process employs only common laboratory equipment and mild-temperature (<100 °C) incubation to create a full-sample (>cm2) SAM coverage. Each step in this process is closely monitored and discussed using nm-scale scanning tunneling microscopy (STM) images. This work can be straightforwardly adopted by research groups interested in such a diversely customizable surface but without access to a vacuum-based deposition technology. The porphyrin molecules are shown to intercalate among closely packed thiolate SAM domains, and STM characterization shows that the entire mixed monolayer is stable in an ambient condition. This process also does not involve any tip-assisted desorption or lithography procedure and can thus be applied toward substrates of other shapes beyond a flat surface.
Collapse
Affiliation(s)
- Yi C Zhang
- Department of Chemistry and Materials Science & Engineering Program , Washington State University , Pullman , Washington 99164 , United States
| | - David Y Lee
- Department of Chemistry and Materials Science & Engineering Program , Washington State University , Pullman , Washington 99164 , United States
| |
Collapse
|
46
|
Xu W, Fang Y, Ou Z, Chen M, Kadish KM. Synthesis, electrochemical and spectroelectrochemical characterization of iron(III) tetraarylporphyrins containing four β,β′-butano and β,β′-benzo fused rings. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Six iron(III) tetraarylporphyrins containing four [Formula: see text]-butano or [Formula: see text]-benzo fused rings were synthesized and characterized by electrochemistry and spectroelectrochemistry in nonaqueous media. The examined compounds are represented as butano(TpYPP)FeCl and benzo(TpYPP)FeCl, where TpYPP is a dianion of the meso-substituted porphyrin, Y is a CH[Formula: see text], H or Cl substituent on the para-position of the four meso-phenyl rings and butano and benzo are the [Formula: see text]-substituents on each of the four pyrrole rings of the compound. Up to three reductions are observed for each Fe(III) butano- and benzoporphyrin in CH[Formula: see text]Cl[Formula: see text] or pyridine containing 0.1 M TBAP, the first of which is assigned in each case to a metal-centered electron transfer. The second reduction is also metal-centered in CH[Formula: see text]Cl[Formula: see text] and leads to formation of an Fe(I) porphyrin, but it is porphyrin ring-centered and gives an Fe(II) porphyrin [Formula: see text]-anion radical reduction product when pyridine is used as the solvent. The effects of the solvent and type of fused ring system (butano or benzo) on the UV-vis spectra and electrochemical properties of the Fe(III) porphyrins are discussed and comparisons are made to both the structurally related non-[Formula: see text]-substituted iron porphyrins and earlier described butano- or benzotetraarylporphyrins containing Cu(II) or Co(II) central metal ions.
Collapse
Affiliation(s)
- Weijie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Mingyuan Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|
47
|
de Souza JM, Brocksom TJ, McQuade DT, de Oliveira KT. Continuous Endoperoxidation of Conjugated Dienes and Subsequent Rearrangements Leading to C-H Oxidized Synthons. J Org Chem 2018; 83:7574-7585. [PMID: 29860826 DOI: 10.1021/acs.joc.8b01307] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the continuous flow photooxidation of several conjugated dienes and subsequent rearrangement using a practical and safe continuous-flow homemade engineered setup. End-to-end approaches involving endoperoxidation, Kornblum-DeLaMare rearrangement, and additional rearrangements are comprehensively detailed with optimization, scope, and scale-up to obtain useful hydroxyenones, furans, and 1,4-dicarbonyl building blocks.
Collapse
Affiliation(s)
- Juliana M de Souza
- Departamento de Química , Universidade Federal de São Carlos , São Carlos , SP 13565-905 , Brazil
| | - Timothy J Brocksom
- Departamento de Química , Universidade Federal de São Carlos , São Carlos , SP 13565-905 , Brazil.,Centro de Ciências Naturais e Humanas , Universidade Federal do ABC , Santo André , SP 09210-580 , Brazil
| | - D Tyler McQuade
- Department of Chemical and Life Science Engineering , Virginia Commonwealth University , Richmond , Virginia 23284-3068 , United States
| | - Kleber T de Oliveira
- Departamento de Química , Universidade Federal de São Carlos , São Carlos , SP 13565-905 , Brazil
| |
Collapse
|
48
|
Zeng JY, Zou MZ, Zhang M, Wang XS, Zeng X, Cong H, Zhang XZ. π-Extended Benzoporphyrin-Based Metal-Organic Framework for Inhibition of Tumor Metastasis. ACS NANO 2018; 12:4630-4640. [PMID: 29584395 DOI: 10.1021/acsnano.8b01186] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report on the benzoporphyrin-based metal-organic framework (TBP-MOF), with 10-connected Zr6 cluster and much improved photophysical properties over the traditional porphyrin-based MOFs. It was found that TBP-MOF exhibited red-shifted absorption bands and strong near-infrared luminescence for bioimaging, whereas the π-extended benzoporphyrin-based linkers of TBP-MOF facilitated 1O2 generation to enhance O2-dependent photodynamic therapy (PDT). It was demonstrated that poly(ethylene glycol)-modified nanoscale TBP-MOF (TBP-nMOF) can be used as an effective PDT agent under hypoxic tumor microenvironment. We also elucidated that the low O2-dependent PDT of TBP-nMOF in combination with αPD-1 checkpoint blockade therapy can not only suppress the growth of primary tumor, but also stimulate an antitumor immune response for inhibiting metastatic tumor growth. We believe this TBP-nMOF has great potential to serve as an efficient photosensitizer for PDT and cancer immunotherapy.
Collapse
Affiliation(s)
- Jin-Yue Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Mei-Zhen Zou
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Mingkang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Xiao-Shuang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Hengjiang Cong
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Institute for Advanced Studies (IAS), Department of Chemistry , Wuhan University , Wuhan 430072 , PR China
| |
Collapse
|
49
|
Ye L, Fang Y, Ou Z, Xue S, Kadish KM. Cobalt Tetrabutano- and Tetrabenzotetraarylporphyrin Complexes: Effect of Substituents on the Electrochemical Properties and Catalytic Activity of Oxygen Reduction Reactions. Inorg Chem 2018; 56:13613-13626. [PMID: 29064238 DOI: 10.1021/acs.inorgchem.7b02405] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three series of cobalt tetraarylporphyrins were synthesized and characterized by electrochemistry and spectroelectrochemistry. The investigated compounds have the general formula (TpYPP)Co, butano(TpYPP)CoII, and benzo(TpYPP)CoII, where TpYPP represents the dianion of the meso-substituted porphyrin, Y is a CH3, H, or Cl substituent on the para position of the four phenyl rings, and butano and benzo are respectively the β- and β'-substituted groups on the four pyrrole rings of the compound. Each porphyrin undergoes one or two reductions depending upon the meso substituent and solvent utilized. Two irreversible reductions are observed for (TpYPP)CoII and butano(TpYPP)CoII in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate; the first leads to the formation of a highly reactive cobalt(I) porphyrin, which can then rapidly react with a solvent to give a CoIIICH2Cl as the product. Only one reversible reduction is seen for benzo(TpYPP)CoII under the same solution conditions, and the one-electron-reduction product is assigned as a cobalt(II) porphyrin π-anion radical. Three oxidations can be observed for each examined compound in CH2Cl2. The first oxidation is metal-centered for the (TpYPP)Co and benzo(TpYPP)CoII derivatives, leading to generation of a cobalt(III) porphyrin with an intact π-ring system, but this redox process is ring-centered in the case of butano(TpYPP)CoII and gives a CoII π-cation radical product. Each porphyrin was also examined as a catalyst for oxygen reduction reactions (ORRs) when adsorbed on a graphite electrode in 1.0 M HClO4. The number of electrons transferred (n) during ORRs is 2.0 for the butano(TpYPP)CoII derivatives, consistent with only H2O2 being produced as a product for the reaction with O2. However, the reduction of O2 using the cobalt benzoporphyrins as catalysts gave n values between 2.6 and 3.1 under the same solution conditions, thus producing a mixture of H2O and H2O2 as the reduction product. This result indicates that the β and β' substituents have a significant effect on the catalytic properties of the cobalt porphyrins for ORRs in acid media.
Collapse
Affiliation(s)
- Lina Ye
- School of Computer, Jilin Normal University , Siping 136000, China.,School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China.,Department of Chemistry, University of Houston , Houston, Texas 77204-5003, United States
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University , Zhenjiang 212013, China
| | - Karl M Kadish
- Department of Chemistry, University of Houston , Houston, Texas 77204-5003, United States
| |
Collapse
|
50
|
Xu L, Zhai MK, Wang F, Sun L, Du HB. A series of robust metal-porphyrinic frameworks based on rare earth clusters and their application in N-H carbene insertion. Dalton Trans 2018; 45:17108-17112. [PMID: 27761541 DOI: 10.1039/c6dt03678c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We herein report a series of microporous metal-porphyrinic frameworks (MPFs), denoted as NUPF-2M, based on rare earth (RE) clusters. NUPF-2M represent the first examples of RE cluster-based MPFs, possessing a rarely seen shp-a topology and exhibiting high thermal and thermal stabilities. After a post-metallization process with FeCl3, NUPF-2M is catalytically active as an efficient heterogeneous catalyst for intermolecular N-H carbene insertion.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Meng-Ke Zhai
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Fei Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Lin Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hong-Bin Du
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|