1
|
Li S, Qi Y, Wang J, Niu W, Ma W, Tang B, Zhang S. "Alkyl-Substituted Phenoxy" Spacer Strategy: Antiaggregated and Highly Soluble Zinc Phthalocyanines for Color Films. ACS OMEGA 2024; 9:50774-50785. [PMID: 39741825 PMCID: PMC11683594 DOI: 10.1021/acsomega.4c08931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
A series of zinc phthalocyanine derivatives (ZnPcs) were designed by introducing different volumes of steric hindrance groups (chlorine atom, n-propyloxy, isopropyloxy, n-butoxy, isobutoxy, tert-butoxy, 2,4-di-tert-butylphenoxy, 2,4-di-tert-pentylphenoxy) on the peripheral and nonperipheral positions of phthalocyanine. Density functional theory (DFT) calculations presented that the substitution of sterically hindered 2,4-di-tert-butylphenoxy or 2,4-di-tert-pentylphenoxy on the peripheral positions effectively reduced the aggregation of ZnPcs, improving the solubility of ZnPcs, and the simultaneous substitution on the peripheral and nonperipheral positions could achieve ZnPcs with different colors. From the calculation results, six low-aggregation ZnPcs were synthesized for the first time. The solubilities of the synthesized ZnPcs are above 6.0/100 g. Furthermore, their color films displayed excellent transmittance because of the introduction of sterically hindered 2,4-di-tert-butoxyphenoxy or 2,4-di-tert-pentylphenoxy moieties. Also, the color films exhibit great photo and thermal stability (ΔE < 3).
Collapse
Affiliation(s)
- Shi Li
- State Key Laboratory of Fine
Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Yong Qi
- State Key Laboratory of Fine
Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Jiahui Wang
- State Key Laboratory of Fine
Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wenbin Niu
- State Key Laboratory of Fine
Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Wei Ma
- State Key Laboratory of Fine
Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Bingtao Tang
- State Key Laboratory of Fine
Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine
Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Upoma N, Akter N, Ferdousi FK, Sultan MZ, Rahman S, Alodhayb A, Alibrahim KA, Habib A. Interactions of Co(II)- and Zn(II)porphyrin of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin with DNA in Aqueous Solution and Their Antimicrobial Activities. ACS OMEGA 2024; 9:22325-22335. [PMID: 38799349 PMCID: PMC11112571 DOI: 10.1021/acsomega.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Antibiotics are frequently used to treat, prevent, or control bacterial infections, but in recent years, infections resistant to all known classes of conventional antibiotics have significantly grown. The development of novel, nontoxic, and nonincursive antimicrobial methods that work more quickly and efficiently than the present antibiotics is required to combat this growing public health issue. Here, Co(II) and Zn(II) derivatives of tetrakis(1-methylpyridinium-4yl)porphyrin [H2TMPyP]4+ as a tetra(ρ-toluenesulfonate) were synthesized and purified to investigate their interactions with DNA (pH 7.40, 25 °C) using UV-vis, fluorescence techniques, and antimicrobial activity. UV-vis results showed that [H2TMPyP]4+ had a high hypochromicity (∼64%) and a substantial bathochromic shift (Δλ, 14 nm), while [Co(II)TMPyP]4+ and [Zn(II)TMPyP]4+ showed little hypochromicity (∼37%) and a small bathochromic shift (Δλ, 3-6 nm). Results reveal that [H2TMPyP]4+ interacts with DNA via intercalation, while Co(II)- and [Zn(II)TMPyP]4+ interact with DNA via outside self-stacking. Fluorescence results also confirmed the interaction of [H2TMPyP]4+ and the metalloporphyrins with DNA. Results of the antimicrobial activity assay revealed that the metalloporphyrins showed inhibitory effects on Gram-positive and Gram-negative bacteria and fungi, but that neither the counterions nor [H2TMPyP]4+ exhibited any inhibitory effects. Mechanism of antimicrobial activities of metalloporphyrins are discussed.
Collapse
Affiliation(s)
| | - Nazmin Akter
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Md. Zakir Sultan
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Shofiur Rahman
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khuloud A. Alibrahim
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahsan Habib
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
3
|
Wang T, Zhang W, Li T, Xia Q, Yang S, Weng J, Chen K, Chen W, Liu M, Du S, Zhang X, Song Y. Electrochromic Smart Window Based on Transition-Metal Phthalocyanine Derivatives. Inorg Chem 2024; 63:3181-3190. [PMID: 38294826 DOI: 10.1021/acs.inorgchem.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Phthalocyanines have been widely investigated as electrochromic materials because of their large conjugated structure. However, they have shown limited applicability due to their complex electrochromism mechanism and low solubility in common organic solvents. Replacement of central metal ions in phthalocyanines affects their stability and is responsible for various electrochromic phenomena, such as color change. Herein, the relationship between the electron d-orbital arrangement in the outermost layer of transition metals and the electrochromic stability of phthalocyanine derivatives has been investigated. An enhanced solubility of phthalocyanines in organic solvents was obtained through the introduction of quaternary tert-butyl substitution. Electrochromic devices fabricated with transition-metal phthalocyanine derivatives showed high response speeds and good stability. The fast color-switching feature between blue/green and blue/purple makes it a promising candidate for smart windows and adaptive camouflage applications.
Collapse
Affiliation(s)
- Taolve Wang
- College of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Advanced Energy Science and Technology Guangdong Laboratory, Hui Cheng District, Huizhou, Guangdong 516007, China
- Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou Bay District, Ningbo, Zhejiang 315336, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei Zhang
- College of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou Bay District, Ningbo, Zhejiang 315336, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tianhao Li
- Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou Bay District, Ningbo, Zhejiang 315336, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qing Xia
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong 100872, China
| | - Suting Yang
- Advanced Energy Science and Technology Guangdong Laboratory, Hui Cheng District, Huizhou, Guangdong 516007, China
- Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou Bay District, Ningbo, Zhejiang 315336, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianquan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ke Chen
- Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou Bay District, Ningbo, Zhejiang 315336, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wangqiao Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Ming Liu
- Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin 150001, China
| | - Shiyu Du
- College of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
| | - Xiao Zhang
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong 100872, China
| | - Yujie Song
- Advanced Energy Science and Technology Guangdong Laboratory, Hui Cheng District, Huizhou, Guangdong 516007, China
- Qianwan Institute of CNiTECH, Zhongchuangyi Road, Hangzhou Bay District, Ningbo, Zhejiang 315336, China
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
4
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
5
|
Shukaev AV, Ermakova EV, Fang Y, Kadish KM, Nefedov SE, Tafeenko VA, Michalak J, Bessmertnykh-Lemeune A. Synthesis and Self-Assembly of β-Octa[(4-Diethoxyphosphoryl)phenyl]porphyrins. Inorg Chem 2023; 62:3431-3444. [PMID: 36752761 DOI: 10.1021/acs.inorgchem.2c03466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The β-substituted porphyrinoids commonly used to form functional assembled systems in nature yet are still scarcely used in material chemistry probably due to the laborious synthesis of these compounds. In this work, β-octa[(4-diethoxyphosphoryl)phenyl]porphyrin (2HOPPP) and its metal (Zn(II), Cd(II), Cu(II), and Ni(II)) complexes were prepared in good yields. These highly soluble chromophores were characterized in solution using spectroscopic (NMR, UV-vis, fluorescence), electrochemical, and spectroelectrochemical methods. Attachment of the electron-deficient residue (ArP(O)(OEt)2) to the porphyrin macrocycle leads to easier reductions and harder oxidations of the macrocycle for all complexes studied as compared to corresponding meso-tetra[4-(diethoxyphosphoryl)phenyl]porphyrin derivatives reported previously. We demonstrated that the strong electron-deficient character of the MOPPP porphyrins results principally from the increase in the number of electron-withdrawing groups at the periphery of the tetrapyrrolic macrocycle. Electron-deficient porphyrins are highly required in supramolecular and material chemistry in part due to their ability to form supramolecular assemblies via the coordination of axial ligands to the central metal atom. According to single-crystal X-ray data, ZnOPPP forms in the crystalline phase dimers in which each of the two tetrapyrrolic macrocycles is connected through an unusual combination of hydrogen bonding of two phosphoryl groups and the water molecules axially coordinated to the zinc atom of the partner molecule. The involvement of water molecules in porphyrin binding allows for an increase of distance between two porphyrin mean N4 planes, up to 4.478 Å. The offset of phosphoryl groups attached to the macrocycle through a 1,4-phenylene spacer withdraws the whole porphyrin macrocycle of one molecule from spatial overlap with the macrocycle of a partner molecule and increases the Zn-Zn distance up to 10.372 Å. This still unknown type of porphyrin dimers allows one to get deeper insights into the organization of naturally occurring tetrapyrrolic macrocycles. ZnOPPP also forms a labile dimeric complex in 5.3 × 10-7-5.8 × 10-5 M chloroform solutions. In contrast, other complexes prepared in this work exist as monomeric species under these experimental conditions. The self-association constant of ZnOPPP has been determined by electronic absorption spectroscopy.
Collapse
Affiliation(s)
- Anton V Shukaev
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Elizaveta V Ermakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31-4, Moscow 119071, Russia
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Sergey E Nefedov
- N.S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russia
| | - Victor A Tafeenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia
| | - Julien Michalak
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France
| | - Alla Bessmertnykh-Lemeune
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université Bourgogne Franche-Comté, CNRS UMR 6302, 9 Avenue Alain Savary, BP 47870, Dijon 21078, France.,Laboratoire de Chimie, UMR 5182, CNRS, ENS de Lyon, 46 allée d'Italie, Lyon 69364, France
| |
Collapse
|
6
|
Zatsikha YV, Schrage BR, Blesener TS, Harrison LA, Ziegler CJ, Nemykin VN. Meso
‐Carbon Atom Nucleophilic Attack Susceptibility in the Sterically Strained Antiaromatic Bis‐BODIPY Macrocycle and Extended Electron‐Deficient BODIPY Precursor**. Chemistry 2022; 28:e202201261. [DOI: 10.1002/chem.202201261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuriy V. Zatsikha
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
- Enamine Ltd Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | - Briana R. Schrage
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | - Tanner S. Blesener
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | - Laurel A. Harrison
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| | | | - Victor N. Nemykin
- Department of Chemistry University of Tennessee – Knoxville Knoxville TN 37996 USA
| |
Collapse
|
7
|
Joseph J, Lourenço LMO, Tomé JPC, Torres T, Guldi DM. Unique multiphthalocyanine coordination systems: vibrationally hot excited states and charge transfer states that power high energy triplet charge separated states. NANOSCALE 2022; 14:13155-13165. [PMID: 36048027 DOI: 10.1039/d2nr03721a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling the molecular architecture of well-organized organic building blocks and linking their functionalities with the impact of solar-light converting systems constitutes a grand challenge in materials science. Strong absorption cross-sections across the visible range of the solar spectrum as well as a finely balanced energy- and redox-gradient are all important features that pave the way for either funneling excited state energy or transducing charges. In light of this, we used thiopyridyl-phthalocyanines (PcSPy) and ruthenium (tert-butyl)-phthalocyanines (RuPc) as versatile building blocks and demonstrated the realization of a family of multi-functional PcSPy-RuPc 1-4 by means of axial coordination. Sizeable electronic couplings between the electron donors and acceptors in PcSPy-RuPc 1-4 govern ground-state as well as excited-state reactivity. Time-resolved techniques, in general, and fluorescence and transient absorption spectroscopy, in particular, helped to corroborate a rapid charge separation next to a slow charge recombination. Key to these charge transfer characteristics are higher lying, vibrationally hot states of the singlet excited states in parallel with a charge transfer state and the presence of several heavy atom effects that are provided by ruthenium and sulfur. As such, our advanced investigations confirm that rapid charge separation evolves from both higher lying, vibrationally hot states as well as from a charge transfer state, populating charge separated states, whose energies exceed those of the singlet excited states. Charge recombination involves triplet rather than singlet charge separated states, which delays the charge recombination by one order of magnitude.
Collapse
Affiliation(s)
- Jan Joseph
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität, 91058 Erlangen, Germany.
| | - Leandro M O Lourenço
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João P C Tomé
- CQE, Institute of Molecular Sciences, and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| | - Tomás Torres
- Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autonoma de Madrid (UAM), 28049 Madrid, Spain
- IMDEA-Nanociencia, c/Faraday, 9, Cantoblanco, 28049 Madrid, Spain
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität, 91058 Erlangen, Germany.
| |
Collapse
|
8
|
Hazari AS, Chandra S, Kar S, Sarkar B. Metal Complexes of Singly, Doubly and Triply Linked Porphyrins and Corroles: An Insight into the Physicochemical Properties. Chemistry 2022; 28:e202104550. [PMID: 35088477 PMCID: PMC9311859 DOI: 10.1002/chem.202104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/19/2022]
Abstract
Metal complexes of multi-porphyrins and multi-corroles are unique systems that display a host of extremely interesting properties. Availability of free meso and β positions allow formation of different types of directly linked bis-porphyrins giving rise to intriguing optical and electronic properties. While the fields of metalloporphyrin and corroles monomer have seen exponential growth in the last decades, the chemistry of metal complexes of bis-porphyrins and bis-corroles remain rather underexplored. Therefore, the impact of covalent linkages on the optical, electronic, (spectro)electrochemical, magnetic and electrocatalytic activities of metal complexes of bis-porphyrins and -corroles has been summarized in this review article. This article shows that despite the (still) somewhat difficult synthetic access to these molecules, their extremely exciting properties do make a strong case for pursuing research on these classes of compounds.
Collapse
Affiliation(s)
- Arijit Singha Hazari
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Shubhadeep Chandra
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sanjib Kar
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)Bhubaneswar752050India
- Homi Bhabha National InstituteTraining School ComplexMumbai400094(India)
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
9
|
Vargas-Zúñiga GI, Boreen MA, Mangel DN, Arnold J, Sessler JL. Porphyrinoid actinide complexes. Chem Soc Rev 2022; 51:3735-3758. [PMID: 35451437 DOI: 10.1039/d2cs00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diverse coordination modes and electronic features of actinide complexes of porphyrins and related oligopyrrolic systems (referred to as "porpyrinoids") have been the subject of interest since the 1960s. Given their stability and accessibility, most work with actinides has focused on thorium and uranium. This trend is also seen in the case of porphyrinoid-based complexation studies. Nevertheless, the diversity of ligand environments provided by porphyrinoids has led to the stabilization of a number of unique complexes with the early actinides that are often without structural parallel within the broader coordination chemical lexicon. This review summarizes key examples of prophyrinoid actinide complexes reported to date, including the limited number of porphyrinoid systems involving transuranic elements. The emphasis will be on synthesis and structure; however, the electronic features and reactivity pattern of representative systems will be detailed as well. Coverage is through December of 2021.
Collapse
Affiliation(s)
- Gabriela I Vargas-Zúñiga
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - Michael A Boreen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Daniel N Mangel
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, USA.
| |
Collapse
|
10
|
Fan XZ, Du X, Pang QQ, Zhang S, Liu ZY, Yue XZ. In Situ Construction of Bifunctional N-Doped Carbon-Anchored Co Nanoparticles for OER and ORR. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8549-8556. [PMID: 35129345 DOI: 10.1021/acsami.1c21445] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Designing highly active and more durable oxygen electrocatalysts for regenerative metal-air batteries and water splitting is of practical significance. Herein, an advanced Co/N-C-800 catalyst composed of abundant Co-Nx structures and carbon defects derived from cobalt phthalocyanine is synthesized. Remarkably, this catalyst exhibits favorable catalytic performance toward the oxygen evolution reaction (OER) with a receivable overpotential of 274 mV in an alkaline medium achieving a current density of 10 mA cm-2 and a Tafel slope of 43.6 mV decade-1, outperforming the commercial RuO2 catalyst. It further displays a high half-wave potential (0.82 V) for the oxygen reduction reaction in 0.1 M KOH. Theoretical calculations reveal that the Co-Nx active sites along with the carbon defects can decrease the adsorption energy of intermediates (OH*, O*, and OOH*) and enhance the electron-transfer ability, thus boosting the OER process.
Collapse
Affiliation(s)
- Xi-Zheng Fan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qing-Qing Pang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuo Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhong-Yi Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xin-Zheng Yue
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Rusanov AI, Dmitrieva OA, Mamardashvili NZ, Tetko IV. More Is Not Always Better: Local Models Provide Accurate Predictions of Spectral Properties of Porphyrins. Int J Mol Sci 2022. [DOI: https://doi.org/10.3390/ijms23031201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The development of new functional materials based on porphyrins requires fast and accurate prediction of their spectral properties. The available models in the literature for absorption wavelength and extinction coefficient of the Soret band have low accuracy for this class of compounds. We collected spectral data for porphyrins to extend the literature set and compared the performance of global and local models for their modelling using different machine learning methods. Interestingly, extension of the public database contributed models with lower accuracies compared to the models, which we built using porphyrins only. The later model calculated acceptable RMSE = 2.61 for prediction of the absorption band of 335 porphyrins synthesized in our laboratory, but had a low accuracy (RMSE = 0.52) for extinction coefficient. A development of models using only compounds from our laboratory significantly decreased errors for these compounds (RMSE = 0.5 and 0.042 for absorption band and extinction coefficient, respectively), but limited their applicability only to these homologous series. When developing models, one should clearly keep in mind their potential use and select a strategy that could contribute the most accurate predictions for the target application. The models and data are publicly available.
Collapse
|
12
|
Rusanov AI, Dmitrieva OA, Mamardashvili NZ, Tetko IV. More Is Not Always Better: Local Models Provide Accurate Predictions of Spectral Properties of Porphyrins. Int J Mol Sci 2022; 23:ijms23031201. [PMID: 35163123 PMCID: PMC8835262 DOI: 10.3390/ijms23031201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The development of new functional materials based on porphyrins requires fast and accurate prediction of their spectral properties. The available models in the literature for absorption wavelength and extinction coefficient of the Soret band have low accuracy for this class of compounds. We collected spectral data for porphyrins to extend the literature set and compared the performance of global and local models for their modelling using different machine learning methods. Interestingly, extension of the public database contributed models with lower accuracies compared to the models, which we built using porphyrins only. The later model calculated acceptable RMSE = 2.61 for prediction of the absorption band of 335 porphyrins synthesized in our laboratory, but had a low accuracy (RMSE = 0.52) for extinction coefficient. A development of models using only compounds from our laboratory significantly decreased errors for these compounds (RMSE = 0.5 and 0.042 for absorption band and extinction coefficient, respectively), but limited their applicability only to these homologous series. When developing models, one should clearly keep in mind their potential use and select a strategy that could contribute the most accurate predictions for the target application. The models and data are publicly available.
Collapse
Affiliation(s)
- Aleksey I. Rusanov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia; (A.I.R.); (O.A.D.); (N.Z.M.)
| | - Olga A. Dmitrieva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia; (A.I.R.); (O.A.D.); (N.Z.M.)
| | - Nugzar Zh. Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia; (A.I.R.); (O.A.D.); (N.Z.M.)
| | - Igor V. Tetko
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045 Ivanovo, Russia; (A.I.R.); (O.A.D.); (N.Z.M.)
- Helmholtz Munich, Institute of Structural Biology, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), D-85764 Neuherberg, Germany
- BIGCHEM GmbH, D-85716 Unterschleißheim, Germany
- Correspondence: ; Tel.: +49-89-3187-3575
| |
Collapse
|
13
|
Rusanov AI, Dmitrieva OA, Mamardashvili NZ, Tetko IV. More Is Not Always Better: Local Models Provide Accurate Predictions of Spectral Properties of Porphyrins. Int J Mol Sci 2022. [DOI: https:/doi.org/10.3390/ijms23031201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The development of new functional materials based on porphyrins requires fast and accurate prediction of their spectral properties. The available models in the literature for absorption wavelength and extinction coefficient of the Soret band have low accuracy for this class of compounds. We collected spectral data for porphyrins to extend the literature set and compared the performance of global and local models for their modelling using different machine learning methods. Interestingly, extension of the public database contributed models with lower accuracies compared to the models, which we built using porphyrins only. The later model calculated acceptable RMSE = 2.61 for prediction of the absorption band of 335 porphyrins synthesized in our laboratory, but had a low accuracy (RMSE = 0.52) for extinction coefficient. A development of models using only compounds from our laboratory significantly decreased errors for these compounds (RMSE = 0.5 and 0.042 for absorption band and extinction coefficient, respectively), but limited their applicability only to these homologous series. When developing models, one should clearly keep in mind their potential use and select a strategy that could contribute the most accurate predictions for the target application. The models and data are publicly available.
Collapse
|
14
|
Lavarda G, Labella J, Martínez-Díaz MV, Rodríguez-Morgade MS, Osuka A, Torres T. Recent advances in subphthalocyanines and related subporphyrinoids. Chem Soc Rev 2022; 51:9482-9619. [DOI: 10.1039/d2cs00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subporphyrinoids constitute a class of extremely versatile and attractive compounds. Herein, a comprehensive review of the most recent advances in the fundamentals and applications of these cone-shaped aromatic macrocycles is presented.
Collapse
Affiliation(s)
- Giulia Lavarda
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Victoria Martínez-Díaz
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Salomé Rodríguez-Morgade
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Atsuhiro Osuka
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
15
|
Mchiri C, Gassoumi B, Acherar S, Sh. El-Sharief MA, Nasri H. Synthesis, X-ray molecular structure and QTAIM and NCI-RDG theoretic studies of a new cadmium (II) (4′4 diaminodiphenylmethane) (meso-arylporphyrin) coordination compound. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Singh AK, Usman M, Sarkar S, Sciortino G, Kumar D, Garribba E, Rath SP. Ferromagnetic Coupling in Oxidovanadium(IV)-Porphyrin Radical Dimers. Inorg Chem 2021; 60:16492-16506. [PMID: 34664950 DOI: 10.1021/acs.inorgchem.1c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three different oxidovanadium(IV) porphyrin dimers with anti, cis, and trans arrangements of the two rings have been synthesized by changing the bridge between the porphyrin macrocycles. This provides a unique opportunity to investigate the role of the bridge and spatial arrangement between the two VIVO centers for their electronic communication and magnetic coupling. They were characterized by the combined application of XRD analysis, UV-vis and electron paramagnetic resonance (EPR) spectroscopy, cyclic voltammetry, magnetic susceptibility, and DFT calculations. One- and two-electron oxidations produce mono- and dication diradical species, respectively, which display an unusual ferromagnetic interaction between the unpaired spins of vanadium(IV) and porphyrin π-cation radical, in contrast to other metalloporphyrin dimers. The oxidized species show a dissimilar behavior between cis and trans isomers. The ferromagnetic coupling occurs between the porphyrin π-cation radical and the unpaired electron of the VIVO ion on the dxy orbital, orthogonal to the porphyrin-based molecular orbitals a1u and a2u.
Collapse
Affiliation(s)
- Akhil Kumar Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sabyasachi Sarkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Giuseppe Sciortino
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy.,Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), 43007 Tarragona, Spain
| | - Devesh Kumar
- Department of Physics, School for Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Eugenio Garribba
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
17
|
Rauhalahti M, Sundholm D, Johansson MP. Magnetically induced ring currents in naphthalene-fused heteroporphyrinoids. Phys Chem Chem Phys 2021; 23:16629-16634. [PMID: 34338707 DOI: 10.1039/d1cp02381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetically induced current density of an intriguing naphthalene-fused heteroporphyrin has been studied, using the quantum-chemical, gauge-including magnetically induced currents (GIMIC) method. The ring-current strengths and current-density pathways for the heteroporphyrin, its Pd complex, and the analogous quinoline-fused heteroporphyrin provide detailed information about their aromatic properties. The three porphyrinoids have similar current-density pathways and are almost as aromatic as free-base porphyrin. Notably, we show that the global ring current makes a branch at three specific points. Thus, the global current is composed of a total of eight pathways that include 22 π-electrons, with no contributions from 18-electron pathways.
Collapse
Affiliation(s)
- Markus Rauhalahti
- University of Helsinki, Department of Chemistry, Faculty of Science, P.O. Box 55 (A.I. Virtanens Plats 1), FI-00014 Helsinki, Finland.
| | | | | |
Collapse
|
18
|
Kumar A, Usman M, Samanta D, Rath SP. Through Bridge Spin Coupling in Homo- and Heterobimetallic Porphyrin Dimers upon Stepwise Oxidations: A Spectroscopic and Theoretical Investigation. Chemistry 2021; 27:11428-11441. [PMID: 34061401 DOI: 10.1002/chem.202101384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 12/16/2022]
Abstract
We have described copper(II)-iron(III) and copper(II)-manganese(III) heterobimetallic porphyrin dimers and compared them with the corresponding homobimetallic analogs. UV-visible spectra are very distinct in the heterometallic species while electrochemical studies demonstrate that these species, as compared to the homobimetallic analog, are much easier to oxidize. Combined Mössbauer, EPR, NMR, magnetic and UV-visible spectroscopic studies show that upon 2e-oxidation of the heterobimetallic complexes only ring-centered oxidation occurs. The energy differences between HOMO and LUMO are linearly dependent with the low-energy NIR band obtained for the 2e-oxidized complexes. Also, strong electronic communication between two porphyrin rings through the bridge facilitates coupling between various unpaired spins present while the coupling model depends on the nature of metal ions used. While unpaired spins of Fe(III) and the porphyrin π-cation radical are strongly antiferromagnetically coupled, such coupling is rather weak between Mn(III) and a porphyrin π-cation radical. Moreover, the coupling between two π-cation radicals are much stronger in the 2e-oxidized complexes of dimanganese(III) and copper(II)-manganese(III) porphyrin dimers as compared to their diiron(III) and copper(II)-iron(III) analogs. Furthermore, coupling between the unpaired spins of a π-cation radical and copper(II) is much stronger in the 2e-oxidized complex of copper(II)-iron(III) porphyrin dimer as compared to its copper(II)-manganese(III) analog. The Mulliken spin density distributions in 2e-oxidized homo- and heterobimetallic complexes show symmetric and asymmetric spread between the two macrocycles, respectively. In both the 2e-oxidized heterobimetallic complexes, the Cu(II) porphyrin center acts as a charge donor while Fe(III)/Mn(III) porphyrin center act as a charge acceptor. The experimental observations are also strongly supported by DFT calculations.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Mohammad Usman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Deepannita Samanta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
19
|
Abstract
Buckybowls have concave and convex surfaces with distinct π-electron cloud distribution, and consequently they show unique structural and electronic features as compared to planar aromatic polycycles. Doping the π-framework of buckybowls with heteroatoms is an efficient scheme to tailor inherent properties, because the nature of heteroatoms plays a pivotal role in the structural and electronic characteristics of the resulting hetera-buckybowls. The design, synthesis, and derivatization of hetera-buckybowls open an avenue for obtaining fascinating organic entities not only of fundamental importance but also of promising applications in optoelectronics. In this review, we summarize the advances in hetera-buckybowl chemistry, particularly the synthetic strategies toward these scaffolds.
Collapse
Affiliation(s)
- Wenbo Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| | | |
Collapse
|
20
|
Canlica M. A Study on Ball-Types Phthalocyanines Substituted for Carboxyl Groups: Spectroscopic, Photophysical and Photochemical Properties. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Bottari G, de la Torre G, Guldi DM, Torres T. An exciting twenty-year journey exploring porphyrinoid-based photo- and electro-active systems. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213605] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Lee JS, Warkad SD, Shinde PB, Kuwar A, Nimse SB. A highly selective fluorescent probe for nanomolar detection of ferric ions in the living cells and aqueous media. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Canlıca M, Topçul MR, Çetin İ. In vitro antiproliferative effect of four ball-type phthalocyanines linked by t-butylcatechol and high singlet oxygen production. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1845320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Mevlüde Canlıca
- Chemistry Department, Faculty of Science and Art, Yildiz Technical University Davutpasa Campus, Istanbul, Turkey
| | - Mehmet Rifki Topçul
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - İdil Çetin
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| |
Collapse
|
24
|
Keijer T, Bouwens T, Hessels J, Reek JNH. Supramolecular strategies in artificial photosynthesis. Chem Sci 2020; 12:50-70. [PMID: 34168739 PMCID: PMC8179670 DOI: 10.1039/d0sc03715j] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Artificial photosynthesis is a major scientific endeavor aimed at converting solar power into a chemical fuel as a viable approach to sustainable energy production and storage. Photosynthesis requires three fundamental actions performed in order; light harvesting, charge-separation and redox catalysis. These actions span different timescales and require the integration of functional architectures developed in different fields of study. The development of artificial photosynthetic devices is therefore inherently complex and requires an interdisciplinary approach. Supramolecular chemistry has evolved to a mature scientific field in which programmed molecular components form larger functional structures by self-assembly processes. Supramolecular chemistry could provide important tools in preparing, integrating and optimizing artificial photosynthetic devices as it allows precise control over molecular components within such a device. This is illustrated in this perspective by discussing state-of-the-art devices and the current limiting factors - such as recombination and low stability of reactive intermediates - and providing exemplary supramolecular approaches to alleviate some of those problems. Inspiring supramolecular solutions such as those discussed herein will incite expansion of the supramolecular toolbox, which eventually may be needed for the development of applied artificial photosynthesis.
Collapse
Affiliation(s)
- Tom Keijer
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tessel Bouwens
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joeri Hessels
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Joost N H Reek
- Homogeneous Supramolecular and Bio-inspired Catalysis, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
25
|
Ishikawa S, Shimasaki F, Maeda H, Segi M, Furuyama T. Synthesis of Low-symmetry Ball-shaped Ruthenium Complexes and Fine-tuning of Their Optical Properties in the Visible and NIR Region. CHEM LETT 2020. [DOI: 10.1246/cl.200557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sari Ishikawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Fumika Shimasaki
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Taniyuki Furuyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
26
|
Berna BB, Platzer B, Wolf M, Lavarda G, Nardis S, Galloni P, Torres T, Guldi DM, Paolesse R. Panchromatic Light Harvesting and Stabilizing Charge-Separated States in Corrole-Phthalocyanine Conjugates through Coordinating a Subphthalocyanine. Chemistry 2020; 26:13451-13461. [PMID: 32293078 PMCID: PMC7693288 DOI: 10.1002/chem.202001442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 01/09/2023]
Abstract
Owing to the electron-donating and -accepting nature of corroles (Corr) and phthalocyanines (Pc), respectively, we designed and developed two novel covalently linked Corr-Pc conjugates. The synthetic route allows the preparation of the target conjugates in satisfying yields. Comprehensive steady-state absorption, fluorescence, and electrochemical assays enabled insights into energy and electron-transfer processes upon photoexcitation. Coordinating a pyridine-appended subphthalocyanine (SubPc) to the Pc of the conjugate sets up the ways and means to realize the first example of an array composed by three different porphyrinoids, which drives a cascade of energy and charge-transfer processes. Importantly, the SubPc assists in stabilizing the charge-separated state, that is, one-electron oxidized Corr and the one electron-reduced Pc, upon photoexcitation by means of a reductive charge transfer to the SubPc. To the best of our knowledge, this is the first case of an intramolecular oxidation of a Corr within electron-donor-acceptor conjugates by means of just photoexcitation. Moreover, the combination of Corr, Pc, and SubPc guarantees panchromatic absorption across the visible range of the solar spectrum, with the SubPc covering the "green gap" that usually affects porphyrinoids.
Collapse
Affiliation(s)
- Beatrice Berionni Berna
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
- Departamento de Química OrgánicaUniversidad Autónoma de Madrid, Campus de CantoblancoC/ Francisco TomásyValiente 728049MadridSpain
- IMDEA—NanocienciaC/Faraday, 9. Campus de Cantoblanco28049MadridSpain
| | - Benedikt Platzer
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universitat Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Maximiliam Wolf
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universitat Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Giulia Lavarda
- Departamento de Química OrgánicaUniversidad Autónoma de Madrid, Campus de CantoblancoC/ Francisco TomásyValiente 728049MadridSpain
- IMDEA—NanocienciaC/Faraday, 9. Campus de Cantoblanco28049MadridSpain
| | - Sara Nardis
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| | - Pierluca Galloni
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| | - Tomás Torres
- Departamento de Química OrgánicaUniversidad Autónoma de Madrid, Campus de CantoblancoC/ Francisco TomásyValiente 728049MadridSpain
- IMDEA—NanocienciaC/Faraday, 9. Campus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| | - Dirk M. Guldi
- Department of Chemistry and PharmacyInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universitat Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Roberto Paolesse
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataVia della Ricerca Scientifica00133RomeItaly
| |
Collapse
|
27
|
Yamasumi K, Notsuka Y, Yamaoka Y, Mori S, Ishida M, Furuta H. Synthesis of Helically π‐Extended N‐Confused Porphyrin Dimer via
meso
‐Bipyrrole‐Bridge with Near‐Infrared‐II Absorption Capability. Chemistry 2020; 26:13590-13594. [DOI: 10.1002/chem.202002406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Kazuhisa Yamasumi
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Yusuke Notsuka
- Graduate School of Advanced Health Sciences Saga University Saga 840-8502 Japan
| | - Yoshihisa Yamaoka
- Graduate School of Advanced Health Sciences Saga University Saga 840-8502 Japan
| | - Shigeki Mori
- Advanced Research Support Center Ehime University Matsuyama 790-8577 Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry Graduate School of Engineering Center for Molecular Systems Kyushu University Fukuoka 819-0395 Japan
| |
Collapse
|
28
|
Canlıca M. Photo-physico-chemical properties of 1,3-benzenediol-substituted face-to-face phthalocyanines. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Chang Y, Qin H, Wang X, Li X, Li M, Yang H, Xu K, Qing G. Visible and Reversible Restrict of Molecular Configuration by Copper Ion and Pyrophosphate. ACS Sens 2020; 5:2438-2447. [PMID: 32648441 DOI: 10.1021/acssensors.0c00619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular configuration strongly impacts on its functions; however, due to complicated and diverse configuration as well as easy and rapid conversion among various configurations, research of molecular configuration is extremely difficult. If the free rotation of a molecule could be "slowed down" or even "frozen" by an external stimulus, such as ultralow temperature, then one configuration of the molecule could be captured and characterized relatively easily. Here, we show that the rotation of a hemicyanine-labeled 2-(2'-hydroxyphenyl)-4-methyloxazole (H-HPMO) molecule could be specifically and reversibly restricted by sequential additions of copper ion (Cu2+) and pyrophosphate (P2O74-), reflecting as remarkable fluorescence quenching and recovery, which could be directly observed by naked eyes. Binding affinity tests and cryogenic 1H NMR indicate that Cu2+ forms intensive coordinate bonds with phenolic hydroxyl, oxazole, and methoxyl groups of HPMO, which strongly restricts the free rotations of these groups and blocks charge transfer. This study provides a precise, rapid, visible, reversible, and low-cost method to monitor the molecular configuration, indicating the broad application prospects of near-infrared fluorescent sensors in configuration analysis, biosensing, and drug-substrate complexation.
Collapse
Affiliation(s)
- Yongxin Chang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, No. 29, 13th. Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, P. R. China
| | - Xue Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xiaopei Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Minmin Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Hang Yang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Kuoxi Xu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- College of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Sunshine Road, Wuhan 430200, P. R. China
| |
Collapse
|
30
|
Cacioppo M, Scharl T, Đorđević L, Cadranel A, Arcudi F, Guldi DM, Prato M. Symmetry-Breaking Charge-Transfer Chromophore Interactions Supported by Carbon Nanodots. Angew Chem Int Ed Engl 2020; 59:12779-12784. [PMID: 32282973 PMCID: PMC7496469 DOI: 10.1002/anie.202004638] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 11/10/2022]
Abstract
Carbon dots (CDs) and their derivatives are useful platforms for studying electron-donor/acceptor interactions and dynamics therein. Herein, we couple amorphous CDs with phthalocyanines (Pcs) that act as electron donors with a large extended π-surface and intense absorption across the visible range of the solar spectrum. Investigations of the intercomponent interactions by means of steady-state and pump-probe transient absorption spectroscopy reveal symmetry-breaking charge transfer/separation and recombination dynamics within pairs of phthalocyanines. The CDs facilitate the electronic interactions between the phthalocyanines. Thus, our findings suggest that CDs could be used to support electronic couplings in multichromophoric systems and further increase their applicability in organic electronics, photonics, and artificial photosynthesis.
Collapse
Affiliation(s)
- Michele Cacioppo
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste, and INSTM, unit of TriesteVia Licio Giorgieri 134127TriesteItaly
| | - Tobias Scharl
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste, and INSTM, unit of TriesteVia Licio Giorgieri 134127TriesteItaly
- Present address: Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
- Present address: Simpson Querrey InstituteNorthwestern University303 E. SuperiorChicagoIL60611USA
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
- Universidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesDepartamento de Química Inorgánica, Analítica y Química FísicaPabellón 2, Ciudad UniversitariaC1428EHABuenos AiresArgentina
- CONICET—Universidad de Buenos AiresInstituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE)Pabellón 2, Ciudad UniversitariaC1428EHA BuenosAiresArgentina
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste, and INSTM, unit of TriesteVia Licio Giorgieri 134127TriesteItaly
- Present address: Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular MaterialsFriedrich-Alexander Universität Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical SciencesUniversity of Trieste, and INSTM, unit of TriesteVia Licio Giorgieri 134127TriesteItaly
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA)Paseo de Miramon 18220014Donostia San SebastiánSpain
- Basque Foundation for ScienceIkerbasqueBilbao48013Spain
| |
Collapse
|
31
|
Majumder S, Borah BP, Bhuyan J. Rhenium in the core of porphyrin and rhenium bound to the periphery of porphyrin: synthesis and applications. Dalton Trans 2020; 49:8419-8432. [PMID: 32515453 DOI: 10.1039/d0dt00813c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An overview of most of the well known rhenium porphyrins (rhenium in the core of porphyrins) is presented here reviewing their synthesis, coordination chemistry, and applications. The important features of oxorhenium(v) porphyrins are discussed elaborately taking into account their application in epoxidation reaction. Moreover, the chemistry of some recently known porphyrin-Re conjugates (rhenium bound to the periphery of porphyrin) is reported considering their applications in the photochemical carbon dioxide reduction process and photodynamic therapy. The number of well characterized rhenium porphyrinoids are limited but they show interesting diverse properties, some of which are also discussed in this review.
Collapse
Affiliation(s)
- Smita Majumder
- Department of Chemistry, North Eastern Regional Institute of Science and Technology Nirjuli, Arunachal Pradesh, India.
| | | | | |
Collapse
|
32
|
Kumar A, Sanfui S, Sciortino G, Maréchal J, Garribba E, Rath SP. Stepwise Oxidations in a Cofacial Copper(II) Porphyrin Dimer: Through‐Space Spin‐Coupling and Interplay between Metal and Radical Spins. Chemistry 2020; 26:7869-7880. [DOI: 10.1002/chem.202000348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Amit Kumar
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Sarnali Sanfui
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Giuseppe Sciortino
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
- Departament de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés Barcelona Spain
| | - Jean‐Didier Maréchal
- Departament de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés Barcelona Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Sankar Prasad Rath
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
33
|
Cacioppo M, Scharl T, Đorđević L, Cadranel A, Arcudi F, Guldi DM, Prato M. Symmetry‐Breaking Charge‐Transfer Chromophore Interactions Supported by Carbon Nanodots. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michele Cacioppo
- Department of Chemical and Pharmaceutical Sciences University of Trieste, and INSTM, unit of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
| | - Tobias Scharl
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials Friedrich-Alexander Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical Sciences University of Trieste, and INSTM, unit of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Present address: Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Present address: Simpson Querrey Institute Northwestern University 303 E. Superior Chicago IL 60611 USA
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials Friedrich-Alexander Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Inorgánica, Analítica y Química Física Pabellón 2, Ciudad Universitaria C1428EHA Buenos Aires Argentina
- CONICET— Universidad de Buenos Aires Instituto de Química-Física de Materiales, Medio Ambiente y Energía (INQUIMAE) Pabellón 2, Ciudad Universitaria C1428EHA Buenos Aires Argentina
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences University of Trieste, and INSTM, unit of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Present address: Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials Friedrich-Alexander Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences University of Trieste, and INSTM, unit of Trieste Via Licio Giorgieri 1 34127 Trieste Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE) Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Basque Foundation for Science Ikerbasque Bilbao 48013 Spain
| |
Collapse
|
34
|
Deda DK, Iglesias BA, Alves E, Araki K, Garcia CRS. Porphyrin Derivative Nanoformulations for Therapy and Antiparasitic Agents. Molecules 2020; 25:molecules25092080. [PMID: 32365664 PMCID: PMC7249045 DOI: 10.3390/molecules25092080] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Porphyrins and analogous macrocycles exhibit interesting photochemical, catalytic, and luminescence properties demonstrating high potential in the treatment of several diseases. Among them can be highlighted the possibility of application in photodynamic therapy and antimicrobial/antiparasitic PDT, for example, of malaria parasite. However, the low efficiency generally associated with their low solubility in water and bioavailability have precluded biomedical applications. Nanotechnology can provide efficient strategies to enhance bioavailability and incorporate targeted delivery properties to conventional pharmaceuticals, enhancing the effectiveness and reducing the toxicity, thus improving the adhesion to the treatment. In this way, those limitations can be overcome by using two main strategies: (1) Incorporation of hydrophilic substituents into the macrocycle ring while controlling the interaction with biological systems and (2) by including them in nanocarriers and delivery nanosystems. This review will focus on antiparasitic drugs based on porphyrin derivatives developed according to these two strategies, considering their vast and increasing applications befitting the multiple roles of these compounds in nature.
Collapse
Affiliation(s)
- Daiana K. Deda
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Bernardo A. Iglesias
- Bioinorganic and Porphyrinoid Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900, Brazil;
| | - Eduardo Alves
- Department of Life Science, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK;
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Celia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Sao Paulo, SP 05508-900, Brazil
- Correspondence: ; Tel.: +55-11-2648-0954
| |
Collapse
|
35
|
Zhang X, Liu H, An P, Shi Y, Han J, Yang Z, Long C, Guo J, Zhao S, Zhao K, Yin H, Zheng L, Zhang B, Liu X, Zhang L, Li G, Tang Z. Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO 2 cycloaddition. SCIENCE ADVANCES 2020; 6:eaaz4824. [PMID: 32426463 PMCID: PMC7182427 DOI: 10.1126/sciadv.aaz4824] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/24/2020] [Indexed: 05/15/2023]
Abstract
CO2 cycloaddition with epoxides at low temperature and pressure has been broadly recognized as an ambitious but challenging goal, which requires the catalysts to have precisely controlled Lewis acid sites. Here, we demonstrate that both stereochemical environment and oxidation state of single cobalt active sites in cobalt tetraaminophthalocyanine [CoPc(NH2)4] are finely tuned via molecular engineering with 2,5-di-tert-butyl-1,4-benzoquinone (DTBBQ). Notably, DTBBQ incorporation not only enables formation of 5-nm-thick conjugated microporous polymer (CMP) nanosheets due to the steric hindrance effect of tert-butyl groups but also makes isolated cobalt sites with high oxidation state due to the presence of delocalized electron-withdrawing effect of alkene groups in DTBBQ via conjugated skeleton. Notably, when used as heterogeneous catalysts for CO2 cycloaddition with different epoxides, single cobalt active sites on the ultrathin CMP nanosheets exhibit unprecedentedly high activity and excellent stability under mild reaction conditions.
Collapse
Affiliation(s)
- Xiaofei Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Haitao Liu
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanan Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jianyu Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhongjie Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chang Long
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jun Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Kun Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Huajie Yin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Binhao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiaoping Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Lijuan Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
36
|
Liu T, Yang L, Feng W, Liu K, Ran Q, Wang W, Liu Q, Peng H, Ding L, Fang Y. Dual-Mode Photonic Sensor Array for Detecting and Discriminating Hydrazine and Aliphatic Amines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11084-11093. [PMID: 32031775 DOI: 10.1021/acsami.0c00568] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Colorimetric chemosensors have attracted tremendous interest for sensing hazardous substances in an uncomplicated and economical manner. Herein, a series of push-pull dicyanovinyl-substituted oligothiophene derivatives were designed, and the impacts of different end-cappers on their photophysical properties were comprehensively investigated. Interestingly, combined with a zinc porphyrin derivative (Zn-TPP), one dicyanovinyl-substituted oligothiophene derivative (NA-3T-CN) can be further developed into colorimetric and fluorescent sensor array for dual-mode detection of aliphatic amines and hydrazine. The obtained sensors showed satisfactory results between optical response and analyte's concentration both in selective single-sensor type and in enhanced multisensory mode. Based on the fluorescence change of the NA-3T-CN system, the detection limit for N2H4 was calculated to be around 1.22 × 10-5 mol/L in THF. The stained TLC-supported sensor array offers obvious optical changes for down to 0.5 wt % hydrazine solution for naked-eye sensing. An aromatic amine like aniline has no obvious effect on the dicyanovinyl-substituted oligothiophene derivatives. We also found that a zinc porphyrin derivative has an obvious colorimetric response to the presence of hydrazine, ethanolamine, and aniline. Furthermore, smartphone-enabled readout system and data treatment based on RGB changes of the sensor array were performed, and the discrimination capability among hydrazine, aliphatic amines, and aromatic amine was satisfactory. In this regard, related push-pull oligothiophene derivatives not only can be regarded as models for a fundamental understanding of the relationship between molecular structure and photophysical properties but also present potential applications in the field of real-time and visual detection of hazardous chemicals.
Collapse
Affiliation(s)
- Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Lüjie Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Wan Feng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qian Ran
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Weina Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Quan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
37
|
Ma Y, Zhang Y, Li X, Yang P, Yue JY, Jiang Y, Tang B. Linker-Eliminated Nano Metal-Organic Framework Fluorescent Probe for Highly Selective and Sensitive Phosphate Ratiometric Detection in Water and Body Fluids. Anal Chem 2020; 92:3722-3727. [PMID: 32022542 DOI: 10.1021/acs.analchem.9b04958] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Phosphate is an important anion in both the aquatic environment and biological systems. The search for a selective and sensitive phosphate ratiometric fluorescent probe to quantify the phosphate level in water samples and body fluids is of great significance for the protection of the ecological environment and human health. Here, a porphyrin-based nano metal-organic framework (NMOF), PCN-224, was successfully exploited as a simple but highly sensitive and selective single-component ratiometric fluorescent probe with accurate composition and measurable structure for the quantitative determination of phosphate, based on the interesting double-emission fluorescence of the porphyrin ligand itself. Compared with other zirconium-based NMOF probes for phosphate, the reduced number of connections for ZrO clusters with the ligand in PCN-224 obtained by a linker-elimination strategy simultaneously provides more active recognition sites for phosphate, which effectively improves the sensitivity of the zirconium-based NMOF probes. The detection limit of the probe is only 54 nM. Additionally, the accuracy of the ratiometric detection based on this probe was further proved by the detection of phosphate in human serum and drinking water.
Collapse
Affiliation(s)
- Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yingqiu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xiangyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yu Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| |
Collapse
|
38
|
Ray A, Bhattacharya S. Study of alloyed quantum dots-porphyrazine interaction in solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Development of functional molecular assemblies based on programmable construction of face-to-face assemblies of metallo-porphyrinoids. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-019-00969-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Kuznetsov AE. Stacks of Metalloporphyrins: Comparison of Experimental and Computational Results. J Phys Chem B 2019; 123:10044-10060. [PMID: 31687817 DOI: 10.1021/acs.jpcb.9b07629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous metalloporphyrin stacks have been synthesized and studied. Electronic interactions between constituent metalloporphyrins are able to determine the structures and properties of porphyrin arrays. In 2016, Co(II)-, Cu(II)-, Pt(II)-, and Zn(II)-porphyrins were shown to pack to form dimers as well as trimers. Porphyrin rings were found to strongly overlap with lateral shifts between ring centers. However, no binding energies and electronic structures of these stacks have been reported. We have performed first computational study of the dimers of Co(II)-, Cu(II)-, and Zn(II)-porphyrins, both in vacuum and in two implicit solvents. For all three stacks the configurations with strong overlap of the metalloporphyrin rings with lateral shifts between ring centers were found to be the global minimum structures, 1A for [ZnP]2 and 3A for [CuP]2 and [CoP]2. Also, open-shell singlets with the same energy or close-lying in energy were found for [CuP]2 and [CoP]2. The binding energies were calculated to be significant, from ca. -13 to -39 kcal/mol (gas phase, depending on the computational approach). The computational results showed quite good agreement with the experimental data. The dimers were found to be bound by strong bonding combinations of the monomer MOs which explained significant binding energies computed for the dimers. The shifted dimer configurations could be explained by the way how the monomer MOs preferably overlap.
Collapse
Affiliation(s)
- Aleksey E Kuznetsov
- Departamento de Química , Universidad Técnica Federico Santa María , Av. Santa María 6400 Vitacura , 7660251 , Santiago , Chile
| |
Collapse
|
41
|
La Porte NT, Moravec DB, Schaller RD, Hopkins MD. Light-Driven Redox Activation of CO2- and H2-Activating Complexes in a Self-Assembled Triad. J Phys Chem B 2019; 123:10980-10989. [DOI: 10.1021/acs.jpcb.9b07830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nathan T. La Porte
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Davis B. Moravec
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Richard D. Schaller
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Michael D. Hopkins
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
42
|
Canlıca M. Synthesis, photophysics, and photochemistry of ball-type phthalocyanines. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Aster A, Licari G, Zinna F, Brun E, Kumpulainen T, Tajkhorshid E, Lacour J, Vauthey E. Tuning symmetry breaking charge separation in perylene bichromophores by conformational control. Chem Sci 2019; 10:10629-10639. [PMID: 34040711 PMCID: PMC8133027 DOI: 10.1039/c9sc03913a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding structure-property relationships in multichromophoric molecular architectures is a crucial step in establishing new design principles in organic electronics as well as to fully understand how nature exploits solar energy. Here, we study the excited state dynamics of three bichromophores consisting of two perylene chromophores linked to three different crown-ether backbones, using stationary and ultrafast electronic spectroscopy combined with molecular dynamics simulations. The conformational space available to the bichromophores depends on the structure and geometry of the crown-ether and can be significantly changed upon cation binding, strongly affecting the excited-state dynamics. We show that, depending on the conformational restrictions and the local environment, the nature of the excited state varies greatly, going from an excimer to a symmetry-broken charge separated state. These results can be rationalised in terms of a structure-property relationship that includes the effect of the local environment.
Collapse
Affiliation(s)
- Alexander Aster
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Giuseppe Licari
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois USA.,Department of Biochemistry, Center for Biophysics and Quantitative Biology Urbana Illinois USA
| | - Francesco Zinna
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Elodie Brun
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Tatu Kumpulainen
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana Illinois USA.,Department of Biochemistry, Center for Biophysics and Quantitative Biology Urbana Illinois USA
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| |
Collapse
|
44
|
Yalazan H, Barut B, Sarkı G, Ertem B, Ünver Y, Özel A, Kantekin H. Syntheses, structural characterization, DNA-cleavage and antioxidant features of the new tetra-substituted organo-soluble non-peripherally CoII, CuII, ZnII and MgII phthalocyanines. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1648795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Halise Yalazan
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Burak Barut
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Gülpınar Sarkı
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Beytullah Ertem
- Vocational School of Health Services, Karadeniz Technical University, Trabzon, Turkey
| | - Yasemin Ünver
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Arzu Özel
- Faculty of Pharmacy, Department of Biochemistry, Karadeniz Technical University, Trabzon, Turkey
- Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Halit Kantekin
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
45
|
Singh AK, Usman M, Sciortino G, Garribba E, Rath SP. Through‐Space Spin Coupling in a Silver(II) Porphyrin Dimer upon Stepwise Oxidations: Ag
II
⋅⋅⋅Ag
II
, Ag
II
⋅⋅⋅Ag
III
, and Ag
III
⋅⋅⋅Ag
III
Metallophilic Interactions. Chemistry 2019; 25:10098-10110. [DOI: 10.1002/chem.201901731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/17/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Akhil Kumar Singh
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Mohammad Usman
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Giuseppe Sciortino
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
- Departament de QuímicaUniversitat Autònoma de Barcelona 08193 Cerdanyola del Vallés Barcelona Spain
| | - Eugenio Garribba
- Dipartimento di Chimica e FarmaciaUniversità di Sassari Via Vienna 2 07100 Sassari Italy
| | - Sankar Prasad Rath
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
46
|
Bazhina ES, Gogoleva NV, Zorina-Tikhonova EN, Kiskin MA, Sidorov AA, Eremenko IL. Homo- and Heteronuclear Architectures of Polynuclear Complexes Containing Anions of Substituted Malonic Acids: Synthetic Approaches and Analysis of Molecular and Crystal Structures. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619060015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Göl EY, Karabudak E. Mini-Review: “Ball-Type Phthalocyanines”: Similarities and Differences from Mono Phthalocyanines. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666181025110759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ball-type phthalocyanines are recently synthesized binuclear derivatives of the widely
known phthalocyanine molecule. In the ball-type Pc molecule, two cofacially arranged Pc rings have
four bridged substituents on the peripheral positions of benzenes. Due to their cofacially arranged
phthalocyanine rings and, strong intramolecular and intermolecular interactions, ball-type phthalocyanines
have different properties than their parent molecule and these structures have many potential
application areas. This review describes three different synthesis methods of ball-type phthalocyanines;
synthesis in the solvent, synthesis in solid, and synthesis under microwave irradiation. The
synthesis that occurs in the shortest time with the highest yield is the synthesis in the solid phase.
General differences between a ball-type phthalocyanine and a monophthalocyanine, such as differences
in electronic spectra and effects of cofacial arrangement and central metal atoms, are also discussed.
The shape of the Q-bands indicates the differences in electronic spectra. In ball-type Pcs, the
Q-bands are broad and have poor resolution. Some potential applications, such as gas sensors, NLO
devices, potential usage in photodynamic therapy and artificial photosynthesis of ball-type phthalocyanines
are also mentioned. Ball-type Pcs can be used as a sensor for gases such as; CO2, CO, SO2,
VOC. A novel water-soluble ball-type Pc may have potential application in PDT. Finally, we consider
future prospects of these molecules.
Collapse
Affiliation(s)
- Emre Y. Göl
- Department of Chemistry, İzmir Institute of Technology, Izmir, Turkey
| | - Engin Karabudak
- Department of Chemistry, İzmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
48
|
Sorokin AB. Recent progress on exploring µ-oxo bridged binuclear porphyrinoid complexes in catalysis and material science. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Zatsikha YV, Swedin RK, Healy AT, Goff PC, Didukh NO, Blesener TS, Kayser M, Kovtun YP, Blank DA, Nemykin VN. Synthesis, Characterization, and Electron‐Transfer Properties of Ferrocene–BODIPY–Fullerene Near‐Infrared‐Absorbing Triads: Are Catecholopyrrolidine‐Linked Fullerenes a Good Architecture to Facilitate Electron‐Transfer? Chemistry 2019; 25:8401-8414. [DOI: 10.1002/chem.201901225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/16/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Yuriy V. Zatsikha
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
- Department of Chemistry & Biochemistry University of Minnesota Duluth Duluth MN 55812 USA
| | - Rachel K. Swedin
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Andrew T. Healy
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Philip C. Goff
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Natalia O. Didukh
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
- Institute of Organic Chemistry National Academy of Sciences Kyiv 02660 Ukraine
| | - Tanner S. Blesener
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Mathew Kayser
- Department of Chemistry & Biochemistry University of Minnesota Duluth Duluth MN 55812 USA
| | - Yuriy P. Kovtun
- Institute of Organic Chemistry National Academy of Sciences Kyiv 02660 Ukraine
| | - David A. Blank
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Victor N. Nemykin
- Department of Chemistry University of Manitoba Winnipeg MB R3T 2N2 Canada
- Department of Chemistry & Biochemistry University of Minnesota Duluth Duluth MN 55812 USA
| |
Collapse
|
50
|
Tikhomirova T, Nalimova K, Kerner A, Vashurin A, Znoyko S. Er(III) and Lu(III) complexes of 2(3),9(10),16(17),23(24)-tetrakis- and 2,3,9,10,16,17,23,24-octakis-[4-(1-methyl-1-phenylethyl)phenoxy]phthalocyaninato. Synthesis and spectroscopic properties. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
4-[4-(1-Methyl-1-penylethyl)phenoxy]- and 4,5-di-[4-(1-methyl-1-phenylethyl)phenoxy]phthalonitriles are obtained by nucleophilic substitution. Mono- and double-decker lutetium and erbium complexes of 2(3),9(10),16(17),23(24)-tetrakis- and 2,3,9,10,16,17,23,24-octakis-[4-(1-methyl-1-phenylethyl)phenoxy]phthalocyanines are synthesized based on the phthalonitriles. Synthesized complexes are studied spectrophotometrically.
Collapse
Affiliation(s)
- Tatyana Tikhomirova
- Department of Technology of Fine Organic Synthesis, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Kseniya Nalimova
- Department of Technology of Fine Organic Synthesis, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Anastasiya Kerner
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Artur Vashurin
- Department of Inorganic Chemistry, Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
- Research Institute of Macroheterocycles of Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| | - Serafima Znoyko
- Research Institute of Macroheterocycles of Ivanovo State University of Chemistry and Technology, Ivanovo 153000, Russia
| |
Collapse
|