1
|
Chen P, Wang J, Xue Y, Wang C, Sun W, Yu J, Guo H. From challenge to opportunity: Revolutionizing the monitoring of emerging contaminants in water with advanced sensors. WATER RESEARCH 2024; 265:122297. [PMID: 39208686 DOI: 10.1016/j.watres.2024.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Emerging contaminants in water represent long-term and unpredictable threats to both environmental and human health due to their persistence and bioaccumulation. Current research predominantly focuses on their removal rather than sustained monitoring. This review comprehensively investigates advanced sensor technologies for detecting these contaminants in water, critically evaluating biosensors, optical sensors, electrochemical sensors, and nanomaterial sensors. Elucidating the operational principles, performance metrics such as detection thresholds, and the pros and cons of their practical applications, the review addresses a significant research gap in environmental monitoring. Moreover, it enhances understanding of sensor effectiveness, which in turn guides researchers in selecting the right sensor types for various environmental scenarios. Furthermore, by emphasizing the integration of nanotechnology and the standardization of evaluation protocols, it promotes the development of robust, deployable sensing solutions. Ultimately, this leads to the proposal of a strategic framework aimed at significantly improving the detection capabilities of emerging contaminants and supporting the preservation of environmental health.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chunmiao Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianwei Yu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Vrážel M, Ismail RK, Courson R, Hammouti A, Bouška M, Larrodé A, Baillieul M, Giraud W, Le Floch S, Bodiou L, Charrier J, Boukerma K, Michel K, Němec P, Nazabal V. Surface functionalization of a chalcogenide IR photonic sensor by means of a polymer membrane for water pollution remediation. Analyst 2024; 149:4723-4735. [PMID: 39105485 DOI: 10.1039/d4an00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Rapid, simultaneous detection of organic chemical pollutants in water is an important issue to solve for protecting human health. This study investigated the possibility of developing an in situ reusable optical sensor capable of selective measurements utilizing a chalcogenide transducer supplemented by a hydrophobic polymer membrane with detection based on evanescent waves in the mid-infrared spectrum. In order to optimise a polyisobutylene hydrophobic film deposited on a chalcogenide waveguide, a zinc selenide prism was utilized as a testbed for performing attenuated total reflection with Fourier-transform infrared spectroscopy. To comply with the levels mentioned in health guidelines, the target detection range in this study was kept rather low, with the concentration range extended from 50 ppb to 100 ppm to cover accidental pollution problems, while targeted hydrocarbons (benzene, toluene, and xylene) were still detected at a concentration of 100 ppb. Infrared measurements in the selected range showed a linear behaviour, with the exception of two constantly reproducible plateau phases around 25 and 80 ppm, which were observable for two polymer film thicknesses of 5 and 10 μm. The polymer was also found to be reusable by regenerating it with water between individual measurements by increasing the water temperature and flow to facilitate reverse exchange kinetics. Given the good conformability of the hydrophobic polymer when coated on chalcogenide photonic circuits and its demonstrated ability to detect organic pollutants in water and to be regenerated afterwards, a microfluidic channel utilising water flow over an evanescent wave optical transducer based on a chalcogenide waveguide and a polyisobutylene (PIB) hydrophobic layer deposited on its surface was successfully fabricated from polydimethylsiloxane by filling a mold prepared via CAD and 3D printing techniques.
Collapse
Affiliation(s)
- Martin Vrážel
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Raïssa Kadar Ismail
- Univ Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
- BRGM, Direction Eau, Environnement et Ecotechnologies, 45100 Orleans, France
| | - Rémi Courson
- IFREMER, Laboratoire Détection, Capteurs et Mesures, 29280 Plouzané, France
| | - Abdelali Hammouti
- Univ Rennes, CNRS, Institut Foton - UMR 6082, F-22305 Lannion, France
| | - Marek Bouška
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Amélie Larrodé
- Univ Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
| | - Marion Baillieul
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | | | | | - Loïc Bodiou
- Univ Rennes, CNRS, Institut Foton - UMR 6082, F-22305 Lannion, France
| | - Joël Charrier
- Univ Rennes, CNRS, Institut Foton - UMR 6082, F-22305 Lannion, France
| | - Kada Boukerma
- IFREMER, Laboratoire Détection, Capteurs et Mesures, 29280 Plouzané, France
| | - Karine Michel
- BRGM, Direction Eau, Environnement et Ecotechnologies, 45100 Orleans, France
| | - Petr Němec
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Virginie Nazabal
- Univ Rennes, CNRS, ISCR - UMR6226, F-35000 Rennes, France.
- Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| |
Collapse
|
3
|
Liu X, Zhang Z, Zhou J, Liu W, Zhou G, Lee C. Development of Photonic In-Sensor Computing Based on a Mid-Infrared Silicon Waveguide Platform. ACS NANO 2024; 18:22938-22948. [PMID: 39133149 DOI: 10.1021/acsnano.4c04052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Neuromorphic in-sensor computing has provided an energy-efficient solution to smart sensor design and on-chip data processing. In recent years, various free-space-configured optoelectronic chips have been demonstrated for on-chip neuromorphic vision processing. However, on-chip waveguide-based in-sensor computing with different data modalities is still lacking. Here, by integrating a responsivity-tunable graphene photodetector onto the silicon waveguide, an on-chip waveguide-based in-sensor processing unit is realized in the mid-infrared wavelength range. The weighting operation is achieved by dynamically tuning the bias of the photodetector, which could reach 4 bit weighting precision. Three different neural network tasks are performed to demonstrate the capabilities of our device. First, image preprocessing is performed for handwritten digits and fashion product classification as a general task. Next, resistive-type glove sensor signals are reversed and applied to the photodetector as an input for gesture recognition. Finally, spectroscopic data processing for binary gas mixture classification is demonstrated by utilizing the broadband performance of the device from 3.65 to 3.8 μm. By extending the wavelength from near-infrared to mid-infrared, our work shows the capability of a waveguide-integrated tunable graphene photodetector as a viable weighting solution for photonic in-sensor computing. Furthermore, such a solution could be used for large-scale neuromorphic in-sensor computing in photonic integrated circuits at the edge.
Collapse
Affiliation(s)
- Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Guangya Zhou
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu 215123, China
- NUS Graduate School's Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
4
|
Liu X, Zhang Z, Zhou J, Liu W, Zhou G, Lee C. Artificial Intelligence-Enhanced Waveguide "Photonic Nose"- Augmented Sensing Platform for VOC Gases in Mid-Infrared. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400035. [PMID: 38576121 DOI: 10.1002/smll.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/17/2024] [Indexed: 04/06/2024]
Abstract
On-chip nanophotonic waveguide sensor is a promising solution for miniaturization and label-free detection of gas mixtures utilizing the absorption fingerprints in the mid-infrared (MIR) region. However, the quantitative detection and analysis of organic gas mixtures is still challenging and less reported due to the overlapping of the absorption spectrum. Here,an Artificial-Intelligence (AI) assisted waveguide "Photonic nose" is presented as an augmented sensing platform for gas mixture analysis in MIR. With the subwavelength grating cladding supported waveguide design and the help of machine learning algorithms, the MIR absorption spectrum of the binary organic gas mixture is distinguished from arbitrary mixing ratio and decomposed to the single-component spectra for concentration prediction. As a result, the classification of 93.57% for 19 mixing ratios is realized. In addition, the gas mixture spectrum decomposition and concentration prediction show an average root-mean-square error of 2.44 vol%. The work proves the potential for broader sensing and analytical capabilities of the MIR waveguide platform for multiple organic gas components toward MIR on-chip spectroscopy.
Collapse
Affiliation(s)
- Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
| | - Guangya Zhou
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, Jiangsu, 215123, China
- NUS Graduate School's Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
5
|
Huang W, Pereira D, Sun J, Zeisberger M, Schmidt MA. Fiber-interfaced hollow-core light cage: a platform for on-fiber-integrated waveguides. OPTICS LETTERS 2024; 49:3194-3197. [PMID: 38824361 DOI: 10.1364/ol.525328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Here, we demonstrate the realization of hollow-core light cages (LCs) on commercial step-index fibers using 3D nanoprinting, resulting in fully fiber-integrated devices. Two different light cage geometries with record-high aspect ratio strands and unique sidewise access to the core have been implemented, exhibiting excellent optical and mechanical properties. These achievements are based on the use of 3D nanoprinting to fabricate light cages and stabilize them with customized support elements. Overall, this approach results in novel, to the best of our knowledge, fiber-interfaced hollow-core devices that combine several advantages in a lab-on-a-fiber platform that is particularly useful for diffusion-related applications in environmental sciences, nanosciences, and quantum technologies.
Collapse
|
6
|
Marschick G, Pelini J, Gabbrielli T, Cappelli F, Weih R, Knötig H, Koeth J, Höfling S, De Natale P, Strasser G, Borri S, Hinkov B. Mid-infrared Ring Interband Cascade Laser: Operation at the Standard Quantum Limit. ACS PHOTONICS 2024; 11:395-403. [PMID: 38405392 PMCID: PMC10885206 DOI: 10.1021/acsphotonics.3c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024]
Abstract
Many precision applications in the mid-infrared spectral range have strong constraints based on quantum effects that are expressed in particular noise characteristics. They limit, e.g., sensitivity and resolution of mid-infrared imaging and spectroscopic systems as well as the bit-error rate in optical free-space communication. Interband cascade lasers (ICLs) are a class of mid-infrared lasers exploiting interband transitions in type-II band alignment geometry. They are currently gaining significant importance for mid-infrared applications from < 3 to > 6 μm wavelength, enabled by novel types of high-performance ICLs such as ring-cavity devices. Their noise behavior is an important feature that still needs to be thoroughly analyzed, including its potential reduction with respect to the shot-noise limit. In this work, we provide a comprehensive characterization of λ = 3.8 μm-emitting, continuous-wave ring ICLs operating at room temperature. It is based on an in-depth study of their main physical intensity noise features such as their bias-dependent intensity noise power spectral density and relative intensity noise. We obtained shot-noise-limited statistics for Fourier frequencies above 100 kHz. This is an important result for precision applications, e.g., interferometry or advanced spectroscopy, which benefit from exploiting the advantage of using such a shot-noise-limited source, enhancing the setup sensitivity. Moreover, it is an important feature for novel quantum optics schemes, including testing specific light states below the shot-noise level, such as squeezed states.
Collapse
Affiliation(s)
- Georg Marschick
- TU
Wien—Institute of Solid State Electronics & Center for
Micro- and Nanostructures, Gußhausstraße 25-25a, Vienna 1040, Austria
| | - Jacopo Pelini
- University
of Naples Federico II, Corso Umberto I 40, Napoli 80138, Italy
- CNR-INO—Istituto
Nazionale di Ottica, Largo Fermi, 6, Firenze, FI 50125, Italy
| | - Tecla Gabbrielli
- CNR-INO—Istituto
Nazionale di Ottica, Via Carrara, 1, Sesto Fiorentino, Florence 50019, Italy
- LENS—European
Laboratory for Non-Linear Spectroscopy, Via Carrara, 1, Sesto Fiorentino, Florence 50019, Italy
| | - Francesco Cappelli
- CNR-INO—Istituto
Nazionale di Ottica, Via Carrara, 1, Sesto Fiorentino, Florence 50019, Italy
- LENS—European
Laboratory for Non-Linear Spectroscopy, Via Carrara, 1, Sesto Fiorentino, Florence 50019, Italy
| | - Robert Weih
- nanoplus
Nanosystems and Technologies GmbH, Oberer Kirschberg 4, Gerbrunn 97218, Germany
| | - Hedwig Knötig
- TU
Wien—Institute of Solid State Electronics & Center for
Micro- and Nanostructures, Gußhausstraße 25-25a, Vienna 1040, Austria
| | - Johannes Koeth
- nanoplus
Nanosystems and Technologies GmbH, Oberer Kirschberg 4, Gerbrunn 97218, Germany
| | - Sven Höfling
- Julius-Maximilians-Universität
Würzburg—Physikalisches Institut, Lehrstuhl für Technische Physik, Am Hubland, Würzburg 97074, Germany
| | - Paolo De Natale
- CNR-INO—Istituto
Nazionale di Ottica, Largo Fermi, 6, Firenze, FI 50125, Italy
- CNR-INO—Istituto
Nazionale di Ottica, Via Carrara, 1, Sesto Fiorentino, Florence 50019, Italy
- LENS—European
Laboratory for Non-Linear Spectroscopy, Via Carrara, 1, Sesto Fiorentino, Florence 50019, Italy
- INFN—Istituto
Nazionale di Fisica Nucleare, Via Sansone, 1, Sesto Fiorentino, Florence 50019, Italy
| | - Gottfried Strasser
- TU
Wien—Institute of Solid State Electronics & Center for
Micro- and Nanostructures, Gußhausstraße 25-25a, Vienna 1040, Austria
| | - Simone Borri
- CNR-INO—Istituto
Nazionale di Ottica, Via Carrara, 1, Sesto Fiorentino, Florence 50019, Italy
- LENS—European
Laboratory for Non-Linear Spectroscopy, Via Carrara, 1, Sesto Fiorentino, Florence 50019, Italy
- INFN—Istituto
Nazionale di Fisica Nucleare, Via Sansone, 1, Sesto Fiorentino, Florence 50019, Italy
| | - Borislav Hinkov
- TU
Wien—Institute of Solid State Electronics & Center for
Micro- and Nanostructures, Gußhausstraße 25-25a, Vienna 1040, Austria
| |
Collapse
|
7
|
Hlavatsch M, Teuber A, Eisele M, Mizaikoff B. Sensing Liquid- and Gas-Phase Hydrocarbons via Mid-Infrared Broadband Femtosecond Laser Source Spectroscopy. ACS MEASUREMENT SCIENCE AU 2023; 3:452-458. [PMID: 38145022 PMCID: PMC10740123 DOI: 10.1021/acsmeasuresciau.3c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 12/26/2023]
Abstract
In this study, we demonstrate the combination of a tunable broadband mid-infrared (MIR) femtosecond laser source separately coupled to a ZnSe crystal horizontal attenuated total reflection (ATR) sensor cell for liquid phase samples and to a substrate-integrated hollow waveguide (iHWG) for gas phase samples. Utilizing this emerging light source technology as an alternative MIR radiation source for Fourier transform infrared (FTIR) spectroscopy opens interesting opportunities for analytical applications. In a first approach, we demonstrate the quantitative analysis of three individual samples, ethanol (liquid), methane (gas), and 2-methyl-1-propene (gas), with limits of detection of 0.3% (ethanol) and 22 ppmv and 74 ppmv (methane and isobutylene), respectively, determined at selected emission wavelengths of the MIR laser source (i.e., 890 cm-1, 1046 and 1305 cm-1). Hence, the applicability of a broadband MIR femtosecond laser source as a bright alternative light source for quantitative analysis via FTIR spectroscopy in various sensing configurations has been demonstrated.
Collapse
Affiliation(s)
- Michael Hlavatsch
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Andrea Teuber
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Max Eisele
- TOPTICA
Photonics AG, Lochhamer Schlag 19, D-82166 Graefelfing (Munich), Germany
| | - Boris Mizaikoff
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
- Hahn-Schickard, Sedanstraße
4, D-89077 Ulm, Germany
| |
Collapse
|
8
|
Teuber A, Caniglia G, Wild M, Godejohann M, Kranz C, Mizaikoff B. Espresso Science: Laser-Based Diamond Thin-Film Waveguide Sensors for the Quantification of Caffeine. ACS Sens 2023; 8:1871-1881. [PMID: 37125943 DOI: 10.1021/acssensors.2c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Diamond thin-film waveguides with a nanocrystalline diamond layer of approximately 20 μm thickness were used in the mid-infrared regime in combination with quantum cascade lasers to detect the IR signature of caffeine. The diamond thin-film waveguides were fundamentally characterized with respect to their morphological properties via AFM and SEM. Theoretical simulations confirmed the feasibility of using a larger sensing area of approximately 50 mm2 compared to conventionally used strip waveguides. A comprehensive and comparative analysis confirmed the performance of the diamond thin-film-waveguide-based sensing system vs data obtained via conventional attenuated total reflection Fourier transform infrared spectroscopy using a single-bounce diamond internal reflection element. Hence, the utility of innovative diamond thin-film-waveguide-based sensors coupled with quantum cascade laser light sources has been confirmed as an innovative analytical tool, which may be used in a wide range of application scenarios, ranging from environmental to medical sensing, taking advantage of the robustness and inertness of nanocrystalline diamond.
Collapse
Affiliation(s)
- Andrea Teuber
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm 89081, Germany
| | - Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm 89081, Germany
| | | | | | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm 89081, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm 89081, Germany
- Hahn-Schickard, Ulm 89077, Germany
| |
Collapse
|
9
|
Bagchi D, Sarkar S, Singh AK, Vinod CP, Peter SC. Potential- and Time-Dependent Dynamic Nature of an Oxide-Derived PdIn Nanocatalyst during Electrochemical CO 2 Reduction. ACS NANO 2022; 16:6185-6196. [PMID: 35377140 DOI: 10.1021/acsnano.1c11664] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrochemical reduction of CO2 into valuable fuels and chemicals is a promising route of replacing fossil fuels by reducing CO2 emissions and minimizing its adverse effects on the climate. Tremendous efforts have been carried out for designing efficient catalyst materials to selectively produce the desired product in high yield from CO2 by the electrochemical process. In this work, a strategy is reported to enhance the electrochemical CO2 reduction reaction (ECO2RR) by constructing an interface between a metal-based alloy (PdIn) nanoparticle and an oxide (In2O3), which was synthesized by a facile solution method. The oxide-derived PdIn surface has shown excellent eCO2RR activity and enhanced CO selectivity with a Faradaic efficiency (FE) of 92.13% at -0.9 V (vs RHE). On the other hand, surface PdO formation due to charge transfer on the bare PdIn alloy reduces the CO2RR activity. With the support of in situ (EXAFS and IR) and ex situ (XPS, Raman) spectroscopic techniques, the optimum presence of the Pd-In-O interface has been identified as a crucial parameter for enhancing eCO2RR toward CO in a reducing atmosphere. The influence of eCO2RR duration is reported to affect the overall performance by switching the product selectivity from H2 (from water reduction) to CO (from eCO2RR) on the oxide-derived alloy surface. This work also succeeded in the multifold enhancement of the current density by employing the gas diffusion electrode (GDE) and optimizing its process parameters in a flow cell configuration.
Collapse
Affiliation(s)
- Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Shreya Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Ashutosh Kumar Singh
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| | - Chathakudath P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064, India
| |
Collapse
|
10
|
Klingler S, Hniopek J, Stach R, Schmitt M, Popp J, Mizaikoff B. Simultaneous Infrared Spectroscopy, Raman Spectroscopy, and Luminescence Sensing: A Multispectroscopic Analytical Platform. ACS MEASUREMENT SCIENCE AU 2022; 2:157-166. [PMID: 36785721 PMCID: PMC9838817 DOI: 10.1021/acsmeasuresciau.1c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Scientific questions in fields such as catalysis, monitoring of biological processes, or environmental chemistry demand analytical technologies combining orthogonal spectroscopies. Combined spectroscopic concepts facilitate in situ online monitoring of dynamic processes providing a better understanding of the involved reaction pathways. In the present study, a low-liquid-volume multispectroscopic platform was developed based on infrared attenuated total reflection (IR-ATR) spectroscopy combined with Raman spectroscopy and luminescence sensing. To demonstrate the measurement capabilities, exemplary analyte systems including water/heavy water and aqueous solutions of ammonium sulfate were analyzed as proof-of-principle studies. It was successfully demonstrated that three optical techniques may be integrated into a single analytical platform without interference providing synchronized and complementary data sets by probing the same minute sample volume. In addition, the developed assembly provides a gastight lid sealing the headspace above the probed liquid for monitoring the concentration of molecular oxygen also in the gas phase via luminescence quenching. Hence, the entire assembly may be operated at inert conditions, as required, for example, during the analysis of photocatalytic processes.
Collapse
Affiliation(s)
- Sarah Klingler
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, Ulm, 89081, Germany
| | - Julian Hniopek
- Department
of Spectroscopy/Imaging, Leibniz-Institute
of Photonic Technologies, Jena, 07745, Germany
- Institute
of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Robert Stach
- Hahn-Schickard, Sedanstraße
14, Ulm, 89077, Germany
| | - Michael Schmitt
- Institute
of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Jürgen Popp
- Department
of Spectroscopy/Imaging, Leibniz-Institute
of Photonic Technologies, Jena, 07745, Germany
- Institute
of Physical Chemistry & Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Boris Mizaikoff
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, Ulm, 89081, Germany
- Hahn-Schickard, Sedanstraße
14, Ulm, 89077, Germany
| |
Collapse
|
11
|
Fomina PS, Proskurnin MA, Mizaikoff B, Volkov DS. Infrared Spectroscopy in Aqueous Solutions: Capabilities and Challenges. Crit Rev Anal Chem 2022; 53:1748-1765. [PMID: 35212600 DOI: 10.1080/10408347.2022.2041390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fourier-transform infrared (FTIR) spectroscopy provides rapid, reliable, quantitative, and qualitative analysis of samples in different aggregation states, i.e., gases, thin films, solids, liquids, etc. However, when analyzing aqueous solutions, particular issues associated with the rather pronounced IR absorption characteristics of water appear to interfere with the solute determination. In this review, Fourier-transform infrared spectroscopic techniques and their analytical capabilities for analyzing aqueous solutions are reviewed, and highlight examples are discussed.
Collapse
Affiliation(s)
- Polina S Fomina
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
| | | | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany
- Hahn-Schickard, Institute for Microanalysis Systems, Ulm, Germany
| | - Dmitry S Volkov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Teuber A, Stach R, Haas J, Mizaikoff B. Innovative Substrate-Integrated Hollow Waveguide Coupled Attenuated Total Reflection Sensors for Quantum Cascade Laser Based Infrared Spectroscopy in Harsh Environments. APPLIED SPECTROSCOPY 2022; 76:132-140. [PMID: 34890273 DOI: 10.1177/00037028211064331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An innovative mid-infrared spectroscopic sensor system based on quantum cascade lasers has been developed. The system combines the versatility of substrate-integrated hollow waveguides (IHWGs) with the robustness of attenuated total reflection (ATR) crystals employed as internal reflection waveguides for evanescent field sensing. IHWGs are highly reflective metal structures that propagate infrared (IR) radiation and were used as light pipes for coupling radiation into the ATR waveguide. The combined IHWG-ATR device has been designed such that the utmost stability and robustness of the optical alignment were ensured. This novel assembly enables evanescent field absorption measurements at yet unprecedently harsh conditions, that is, high pressure and temperature. Combining these advantages, this innovative sensor assembly is perfectly suited for taking ATR spectroscopy into the field where the robustness of the assembly and optical alignment is essential.
Collapse
Affiliation(s)
- Andrea Teuber
- Institute of Analytical and Bioanalytical Chemistry, 9189Ulm University, Ulm, Germany
| | | | | | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, 9189Ulm University, Ulm, Germany
- 199772Hahn-Schickard, Ulm, Germany
| |
Collapse
|
13
|
Altug H, Oh SH, Maier SA, Homola J. Advances and applications of nanophotonic biosensors. NATURE NANOTECHNOLOGY 2022; 17:5-16. [PMID: 35046571 DOI: 10.1038/s41565-021-01045-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Nanophotonic devices, which control light in subwavelength volumes and enhance light-matter interactions, have opened up exciting prospects for biosensing. Numerous nanophotonic biosensors have emerged to address the limitations of the current bioanalytical methods in terms of sensitivity, throughput, ease-of-use and miniaturization. In this Review, we provide an overview of the recent developments of label-free nanophotonic biosensors using evanescent-field-based sensing with plasmon resonances in metals and Mie resonances in dielectrics. We highlight the prospects of achieving an improved sensor performance and added functionalities by leveraging nanostructures and on-chip and optoelectronic integration, as well as microfluidics, biochemistry and data science toolkits. We also discuss open challenges in nanophotonic biosensing, such as reducing the overall cost and handling of complex biological samples, and provide an outlook for future opportunities to improve these technologies and thereby increase their impact in terms of improving health and safety.
Collapse
Affiliation(s)
- Hatice Altug
- Laboratory of Bionanophotonic Systems, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut Munich, Faculty of Physics, Ludwig-Maximilians Universität München, Munich, Germany.
- Department of Physics, Imperial College London, London, UK.
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
14
|
Barreto D, Kokoric V, da Silveira Petruci JF, Mizaikoff B. From Light Pipes to Substrate-Integrated Hollow Waveguides for Gas Sensing: A Review. ACS MEASUREMENT SCIENCE AU 2021; 1:97-109. [PMID: 36785552 PMCID: PMC9836072 DOI: 10.1021/acsmeasuresciau.1c00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Absorption-based spectroscopy in the mid-infrared (MIR) spectral range (i.e., 2.5-25 μm) is an excellent choice for directly sensing trace gas analytes providing discriminatory molecular information due to inherently specific fundamental vibrational, rovibrational, and rotational transitions. Complimentarily, the miniaturization of optical components has aided the utility of optical sensing techniques in a wide variety of application scenarios that demand compact, portable, easy-to-use, and robust analytical platforms yet providing suitable accuracy, sensitivity, and selectivity. While MIR sensing technologies have clearly benefitted from the development of advanced on-chip light sources such as quantum cascade and interband cascade lasers and equally small MIR detectors, less attention has been paid to the development of modular/tailored waveguide technologies reproducibly and reliably interfacing photons with sample molecules in a compact format. In this context, the first generation of a new type of hollow waveguides gas cells-the so-called substrate-integrated hollow waveguides (iHWG)-with unprecedented compact dimensions published by the research team of Mizaikoff and collaborators has led to a paradigm change in optical transducer technology for gas sensors. Features of iHWGs included an adaptable (i.e., designable) well-defined optical path length via the integration of meandered hollow waveguide structures at virtually any desired dimension and geometry into an otherwise planar substrate, a high degree of robustness, compactness, and cost-effectiveness in fabrication. Moreover, only a few hundred microliters of gas samples are required for analysis, resulting in short sample transient times facilitating a real-time monitoring of gaseous species in virtually any concentration range. In this review, we give an overview of recent advancements and achievements since their introduction eight years ago, focusing on the development of iHWG-based mid-infrared sensor technologies. Highlighted applications ranging from clinical diagnostics to environmental and industrial monitoring scenarios will be contrasted by future trends, challenges, and opportunities for the development of next-generation portable optical gas-sensing platforms that take advantage of a modular and tailorable device design.
Collapse
Affiliation(s)
- Diandra
Nunes Barreto
- Institute
of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Vjekoslav Kokoric
- Institute
for Microanalysis Systems, Hahn-Schickard, Ulm 89077, Germany
| | | | - Boris Mizaikoff
- Institute
for Microanalysis Systems, Hahn-Schickard, Ulm 89077, Germany
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Ulm 89081, Germany
- e-mail:
| |
Collapse
|
15
|
Zhang J, Jiang B, Song Y, Xu Y. Surface phonon resonance enhanced Goos-Hänchen shift and its sensing application in the mid-infrared region. OPTICS EXPRESS 2021; 29:32973-32982. [PMID: 34809118 DOI: 10.1364/oe.439607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
The effect of surface phonon resonance (SPhR) and long range SPhR (LRSPhR) on the Goos-Hänchen shift (GHS) in the mid-infrared wavelength region are investigated. The GHS is significantly enhanced around the resonant angles of SPhR and LRSPhR with the p-polarized incident light. A highly sensitive refractive index sensor based on the enhanced GHS is proposed. The LRSPhR shows higher GHS and sensitivity than those of SPhR. The GHS and refractive index sensitivity can be further enhanced by engineering the damping rate of the phononic material. These results provide a potential route toward the large GHS and high refractive index sensitivity, thus opening up new opportunities for high sensitivity optical sensors based on GHS at the mid-infrared wavelength range.
Collapse
|
16
|
Formation Laws of Direction of Fano Line-Shape in a Ring MIM Plasmonic Waveguide Side-Coupled with a Rectangular Resonator and Nano-Sensing Analysis of Multiple Fano Resonances. CRYSTALS 2021. [DOI: 10.3390/cryst11070819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasmonic MIM (metal-insulator-metal) waveguides based on Fano resonance have been widely researched. However, the regulation of the direction of the line shape of Fano resonance is rarely mentioned. In order to study the regulation of the direction of the Fano line-shape, a Fano resonant plasmonic system, which consists of a MIM waveguide coupled with a ring resonator and a rectangle resonator, is proposed and investigated numerically via FEM (finite element method). We find the influencing factors and formation laws of the ‘direction’ of the Fano line-shape, and the optimal condition for the generation of multiple Fano resonances; and the application in refractive index sensing is also well studied. The conclusions can provide a clear theoretical reference for the regulation of the direction of the line shape of Fano resonance and the generation of multi Fano resonances in the designs of plasmonic nanodevices.
Collapse
|
17
|
Chen X, Huang P, Wang N, Zhu Y, Zhang J. Dual Tunable MZIs Stationary-Wave Integrated Fourier Transform Spectrum Detection. SENSORS 2021; 21:s21072352. [PMID: 33800576 PMCID: PMC8036941 DOI: 10.3390/s21072352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
In order to resolve spectral alias due to under sampling in traditional stationary-wave integrated Fourier transform (SWIFT) spectrometers, an all-on-chip waveguide based on dual tunable Mach-Zehnder interferometer (MZI) stationary-wave integrated Fourier transform technology (DTM-SWIFT) is proposed. Several gold nanowires are asymmetrically positioned at two sides of zero optical path difference and scatter the interference fringes information, which can avoid aliasing of spectral signals and help to gain high spectral resolution. A systematic theoretical analysis is carried on in detail, including the optical distribution characteristics based on multi-beam interference, stationary-wave theorem and signal reconstruction method based on the FT technology. The results show that the method can complete a resolution of 6 nm for Gauss spectrum reconstruction using only 6 gold nanowires, and a resolution of 5 cm-1 for Raman spectrum reconstruction using 25 gold nanowires.
Collapse
Affiliation(s)
| | | | | | | | - Jie Zhang
- Correspondence: ; Tel.: +86-135-9413-5451
| |
Collapse
|
18
|
Perevoschikov S, Kaydanov N, Ermatov T, Bibikova O, Usenov I, Sakharova T, Bocharnikov A, Skibina J, Artyushenko V, Gorin D. Light guidance up to 6.5 µm in borosilicate soft glass hollow-core microstructured optical waveguides. OPTICS EXPRESS 2020; 28:27940-27950. [PMID: 32988076 DOI: 10.1364/oe.399410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Limited operating bandwidth originated from strong absorption of glass materials in the infrared (IR) spectral region has hindered the potential applications of microstructured optical waveguide (MOW)-based sensors. Here, we demonstrate multimode waveguide regime up to 6.5 µm for the hollow-core (HC) MOWs drawn from borosilicate soft glass. Effective light guidance in central HC (diameter ∼240 µm) was observed from 0.4 to 6.5 µm despite high waveguide losses (0.4 and 1 dB/cm in near- and mid-IR, respectively). Additional optimization of the waveguide structure can potentially extend its operating range and decrease transmission losses, offering an attractive alternative to tellurite and chalcogenide-based fibers. Featuring the transparency in mid-IR, HC MOWs are promising candidates for the creation of MOW-based sensors for chemical and biomedical applications.
Collapse
|
19
|
Glöckler J, Jaeschke C, Tütüncü E, Kokoric V, Kocaöz Y, Mizaikoff B. Characterization of metal oxide gas sensors via optical techniques. Anal Bioanal Chem 2020; 412:4575-4584. [PMID: 32548766 PMCID: PMC7329784 DOI: 10.1007/s00216-020-02705-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022]
Abstract
Metal oxide (MOX) sensors are increasingly gaining attention in analytical applications. Their fundamental operation principle is based on conversion reactions of selected molecular species at their semiconducting surface. However, the exact turnover of analyte gas in relation to the concentration has not been investigated in detail to date. In the present study, two optical sensing techniques—luminescence quenching for molecular oxygen and infrared spectroscopy for carbon dioxide and methane—have been coupled for characterizing the behavior of an example semiconducting MOX methane gas sensor integrated into a recently developed low-volume gas cell. Thereby, oxygen consumption during MOX operation as well as the generation of carbon dioxide from the methane conversion reaction could be quantitatively monitored. The latter was analyzed via a direct mid-infrared gas sensor system based on substrate-integrated hollow waveguide (iHWG) technology combined with a portable Fourier transform infrared spectrometer, which has been able to not only detect the amount of generated carbon dioxide but also the consumption of methane during MOX operation. Hence, a method based entirely on direct optical detection schemes was developed for characterizing the actual signal generating processes—here for the detection of methane—via MOX sensing devices via near real-time online analysis. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Johannes Glöckler
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Carsten Jaeschke
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Erhan Tütüncü
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Vjekoslav Kokoric
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yusuf Kocaöz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
20
|
Selvaraj R, Vasa NJ, Nagendra SMS, Mizaikoff B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules 2020; 25:molecules25092227. [PMID: 32397389 PMCID: PMC7249025 DOI: 10.3390/molecules25092227] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Human exhaled breath consists of more than 3000 volatile organic compounds, many of which are relevant biomarkers for various diseases. Although gas chromatography has been the gold standard for volatile organic compound (VOC) detection in exhaled breath, recent developments in mid-infrared (MIR) laser spectroscopy have led to the promise of compact point-of-care (POC) optical instruments enabling even single breath diagnostics. In this review, we discuss the evolution of MIR sensing technologies with a special focus on photoacoustic spectroscopy, and its application in exhaled breath biomarker detection. While mid-infrared point-of-care instrumentation promises high sensitivity and inherent molecular selectivity, the lack of standardization of the various techniques has to be overcome for translating these techniques into more widespread real-time clinical use.
Collapse
Affiliation(s)
- Ramya Selvaraj
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
- Correspondence:
| | - Nilesh J. Vasa
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India;
| | - S. M. Shiva Nagendra
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
21
|
Masson JF. Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst 2020; 145:3776-3800. [PMID: 32374303 DOI: 10.1039/d0an00316f] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plasmonic sensors are ideally suited for the design of small, integrated, and portable devices that can be employed in situ for the detection of analytes relevant to environmental sciences, clinical diagnostics, infectious diseases, food, and industrial applications. To successfully deploy plasmonic sensors, scaled-down analytical devices based on surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR) must integrate optics, plasmonic materials, surface chemistry, fluidics, detectors and data processing in a functional instrument with a small footprint. The field has significantly progressed from the implementation of the various components in specifically designed prism-based instruments to the use of nanomaterials, optical fibers and smartphones to yield increasingly portable devices, which have been shown for a number of applications in the laboratory and deployed on site for environmental, biomedical/clinical, and food applications. A roadmap to deploy plasmonic sensors is provided by reviewing the current successes and by laying out the directions the field is currently taking to increase the use of field-deployed plasmonic sensors at the point-of-care, in the environment and in industries.
Collapse
Affiliation(s)
- Jean-Francois Masson
- Departement de chimie, Centre Québécois sur les Matériaux Fonctionnels (CQMF) and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, CP 6128 Succ. Centre-Ville, Montreal, QC, CanadaH3C 3J7.
| |
Collapse
|
22
|
Griskeviciute U, Millar RW, Gallacher K, Valente J, Paul DJ. Ge-on-Si waveguides for sensing in the molecular fingerprint regime. OPTICS EXPRESS 2020; 28:5749-5757. [PMID: 32121790 DOI: 10.1364/oe.382356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Low loss, single mode, Ge-on-Si rib waveguides are used to demonstrated optical sensing in the molecular fingerprint region of the mid-infrared spectrum. Sensing is carried out using two spin-coated films, with strong absorption in the mid-infrared. These films are used to calibrate the modal overlap with an analyte, and therefore experimentally demonstrate the potential for Ge-on-Si waveguides for mid-infrared sensing applications. The results are compared to Fourier transform infrared spectroscopy measurements. The advantage of waveguide spectroscopy is demonstrated in terms of the increased optical interaction, and a new multi-path length approach is demonstrated to improve the dynamic range, which is not possible with conventional FTIR or attenuated total reflection (ATR) measurements. These results highlight the potential for Ge-on-Si as an integrated sensing platform for healthcare, pollution monitoring and defence applications.
Collapse
|
23
|
Kowacz M, Pollack GH. Moving Water Droplets: The Role of Atmospheric CO2 and Incident Radiant Energy in Charge Separation at the Air–Water Interface. J Phys Chem B 2019; 123:11003-11013. [DOI: 10.1021/acs.jpcb.9b09161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Magdalena Kowacz
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| | - Gerald H. Pollack
- Department of Bioengineering, University of Washington, Box 355061, Seattle, Washington 98195, United States
| |
Collapse
|
24
|
Ye T, Kowacz M, Pollack GH. Unexpected effects of incident radiant energy on evaporation of Water condensate. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Dong B, Luo X, Zhu S, Hu T, Li M, Hasan D, Zhang L, Chua SJ, Wei J, Chang Y, Ma Y, Vachon P, Lo GQ, Ang KW, Kwong DL, Lee C. Thermal annealing study of the mid-infrared aluminum nitride on insulator (AlNOI) photonics platform. OPTICS EXPRESS 2019; 27:19815-19826. [PMID: 31503736 DOI: 10.1364/oe.27.019815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/28/2019] [Indexed: 05/19/2023]
Abstract
Aluminum nitride on insulator (AlNOI) photonics platform has great potential for mid-infrared applications thanks to the large transparency window, piezoelectric property, and second-order nonlinearity of AlN. However, the deployment of AlNOI platform might be hindered by the high propagation loss. We perform thermal annealing study and demonstrate significant loss improvement in the mid-infrared AlNOI photonics platform. After thermal annealing at 400°C for 2 hours in ambient gas environment, the propagation loss is reduced by half. Bend loss and taper coupling loss are also investigated. The performance of multimode interferometer, directional coupler, and add/drop filter are improved in terms of insertion loss, quality factor, and extinction ratio. Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction spectroscopy suggest the loss improvement is mainly attributed to the reduction of extinction coefficient in the silicon dioxide cladding. Apart from loss improvement, appropriate thermal annealing also helps in reducing thin film stress.
Collapse
|
26
|
Chong H, Xu Z, Wang Z, Yu J, Biesner T, Dressel M, Wu L, Li Q, Ye H. CMOS-Compatible Antimony-Doped Germanium Epilayers for Mid-Infrared Low-Loss High-Plasma-Frequency Plasmonics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19647-19653. [PMID: 31055915 DOI: 10.1021/acsami.9b04391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Antimony (Sb) heavily-doped germanium (Ge)-on-silicon (Si) epitaxial films are investigated as mid-infrared (MIR) plasmonic materials. Structural, electrical, and optical properties have been improved by proper choice of dopant species (i.e., Sb) and optimization of the growth parameters (i.e., Sb flux and substrate temperature). The increased electron conductivity can be attributed to the elevated carrier concentration (1.5 × 1020 cm-3) and carrier mobility (224 cm2 V-1 s-1) in the Sb-doped Ge epilayers. The measured MIR reflectivities of the Sb-doped Ge films show free-carrier-dependent properties, which leads to tunable real and imaginary parts of permittivities. Localized surface plasmon polaritons of the bowtie antennas fabricated from the Sb-doped Ge films are demonstrated. The fabricated antennas can provide signal enhancement for the molecular vibrational spectroscopy when these vibrational lines are spectrally in proximity to the localized plasmon resonance. These CMOS-compatible Sb-doped Ge epilayers offer a platform to study the interaction of MIR plasmon with nanostructures on chips.
Collapse
Affiliation(s)
- Haining Chong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zemin Xu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhewei Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jianbo Yu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Tobias Biesner
- Physikalisches Institut , Universität Stuttgart , Pfaffenwaldring 57 , 70550 Stuttgart , Germany
| | - Martin Dressel
- Physikalisches Institut , Universität Stuttgart , Pfaffenwaldring 57 , 70550 Stuttgart , Germany
| | - Lan Wu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Hui Ye
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
27
|
Öner T, Thiam P, Kos G, Krska R, Schwenker F, Mizaikoff B. Machine learning algorithms for the automated classification of contaminated maize at regulatory limits via infrared attenuated total reflection spectroscopy. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mould infested maize poses a severe problem for farmers, food producers and for consumers worldwide. Mycotoxins are secondary metabolites produced by certain mould species that contaminate food and feed. The consumption of these toxins may cause serious health problems for humans and animals. The trichothecene deoxynivalenol (DON) constitutes one of the most commonly occurring Fusarium toxins encountered in maize and requires improved methods to limit its entrance into the food and feed system. While a variety of chromatographic and mass spectrometry methods for the identification of such toxins have been established, these are considered time-consuming, cost-intensive and require highly qualified personnel. Alternatively, optical techniques, such as mid-infrared spectroscopy offer rapid detection of fungal infections in cereals and other commodities with minimised sample preparation and analysis time. The present study demonstrates a rapid fungal contamination detection strategy in maize taking advantage of IR-spectroscopy combined with advanced machine learning algorithms. The developed method represents an advancement for the analysis of differences in protein and carbohydrate content revealed in the associated IR-spectra related to the amount of toxin contamination at the European Union (EU) regulatory limits for DON in maize (i.e. 1,250 μg/kg). The employed maize varieties are naturally infected samples or have been infected with Fusarium verticillioides, Fusarium graminearum or Fusarium culmorum. Sieved maize samples at the EU regulatory limit were correctly classified using machine learning approaches, therefore enabling the differentiation between DON-contaminated and non-contaminated maize samples. Specifically, a variety of machine learning methods, including Adaptive Boosting (AdaBoost), Random Forests, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) demonstrated excellent classification and validation performance using the obtained IR-spectra. As a result, 183 maize samples of different varieties and infection levels were accurately classified. 94% of the non-contaminated samples and 91% of the contaminated samples were correctly classified using an MLP classification approach.
Collapse
Affiliation(s)
- T. Öner
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - P. Thiam
- Institute of Neural Information Processing, Ulm University, James-Franck-Ring, 89081 Ulm, Germany
| | - G. Kos
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
| | - R. Krska
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, United Kingdom
| | - F. Schwenker
- Institute of Neural Information Processing, Ulm University, James-Franck-Ring, 89081 Ulm, Germany
| | - B. Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
28
|
Dong B, Luo X, Zhu S, Li M, Hasan D, Zhang L, Chua SJ, Wei J, Chang Y, Lo GQ, Ang KW, Kwong DL, Lee C. Aluminum nitride on insulator (AlNOI) platform for mid-infrared photonics. OPTICS LETTERS 2019; 44:73-76. [PMID: 30645551 DOI: 10.1364/ol.44.000073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 05/19/2023]
Abstract
We report an aluminum nitride on insulator platform for mid-infrared (MIR) photonics applications beyond 3 μm. Propagation loss and bending loss are studied, while functional devices such as directional couplers, multimode interferometers, and add/drop filters are demonstrated with high performance. The complementary metal-oxide-semiconductor-compatible aluminum nitride offers advantages ranging from a large transparency window, high thermal and chemical resistance, to piezoelectric tunability and three-dimensional integration capability. This platform can have synergy with other photonics platforms to enable novel applications for sensing and thermal imaging in MIR.
Collapse
|
29
|
Haas J, Artmann P, Mizaikoff B. Mid-infrared GaAs/AlGaAs micro-ring resonators characterized via thermal tuning. RSC Adv 2019; 9:8594-8599. [PMID: 35518680 PMCID: PMC9061883 DOI: 10.1039/c8ra10395j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/05/2019] [Indexed: 11/21/2022] Open
Abstract
Micro-ring resonators with a decoupling waveguide have been fabricated from thin-film GaAs/Al0.2Ga0.8As waveguides accommodating mid-infrared wavelengths, and were characterized in detail via thermal tuning.
Collapse
Affiliation(s)
- Julian Haas
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- D-89081 Ulm
- Germany
| | - Philipp Artmann
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- D-89081 Ulm
- Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry
- Ulm University
- D-89081 Ulm
- Germany
| |
Collapse
|
30
|
Haas J, Schwartz M, Rengstl U, Jetter M, Michler P, Mizaikoff B. Chem/bio sensing with non-classical light and integrated photonics. Analyst 2018; 143:593-605. [PMID: 29260151 DOI: 10.1039/c7an01011g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.
Collapse
Affiliation(s)
- J Haas
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Dong B, Hu T, Luo X, Chang Y, Guo X, Wang H, Kwong DL, Lo GQ, Lee C. Wavelength-Flattened Directional Coupler Based Mid-Infrared Chemical Sensor Using Bragg Wavelength in Subwavelength Grating Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E893. [PMID: 30388814 PMCID: PMC6266145 DOI: 10.3390/nano8110893] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
Abstract
In this paper, we report a compact wavelength-flattened directional coupler (WFDC) based chemical sensor featuring an incorporated subwavelength grating (SWG) structure for the mid-infrared (MIR). By incorporating a SWG structure into directional coupler (DC), the dispersion in DC can be engineered to allow broadband operation which is advantageous to extract spectroscopic information for MIR sensing analysis. Meanwhile, the Bragg reflection introduced by the SWG structure produces a sharp trough at the Bragg wavelength. This sharp trough is sensitive to the surrounding refractive index (RI) change caused by the existence of analytes. Therefore, high sensitivity can be achieved in a small footprint. Around fivefold enhancement in the operation bandwidth compared to conventional DC is achieved for 100% coupling efficiency in a 40 µm long WFDC experimentally. Detection of dichloromethane (CH₂Cl₂) in ethanol (C₂H₅OH) is investigated in a SWG-based WFDC sensor 136.8 µm long. Sensing performance is studied by 3D finite-difference time domain (FDTD) simulation while sensitivity is derived by computation. Both RI sensing and absorption sensing are examined. RI sensing reveals a sensitivity of -0.47% self-normalized transmitted power change per percentage of CH₂Cl₂ concentration while 0.12% change in the normalized total integrated output power is realized in the absorption sensing. As the first demonstration of the DC based sensor in the MIR, our device has the potential for tertiary mixture sensing by utilizing both changes in the real and imaginary part of RI. It can also be used as a broadband building block for MIR application such as spectroscopic sensing system.
Collapse
Affiliation(s)
- Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore.
- Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456, Singapore.
| | - Ting Hu
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
| | - Xianshu Luo
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
| | - Yuhua Chang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore.
| | - Xin Guo
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Hong Wang
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Dim-Lee Kwong
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
| | - Guo-Qiang Lo
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore.
- Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
32
|
Quantum Cascade Laser Infrared Spectroscopy for Online Monitoring of Hydroxylamine Nitrate. Int J Anal Chem 2018; 2018:7896903. [PMID: 30344609 PMCID: PMC6174729 DOI: 10.1155/2018/7896903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/26/2018] [Accepted: 08/29/2018] [Indexed: 11/18/2022] Open
Abstract
We describe a new approach for high sensitivity and real-time online measurements to monitor the kinetics in the processing of nuclear materials and other chemical reactions. Mid infrared (Mid-IR) quantum cascade laser (QCL) high-resolution spectroscopy was used for rapid and continuous sampling of nitrates in aqueous and organic reactive systems, using pattern recognition analysis and high sensitivity to detect and identify chemical species. In this standoff or off-set method, the collection of a sample for analysis is not required. To perform the analysis, a flow cell was used for in situ sampling of a liquid slipstream. A prototype was designed based on attenuated total reflection (ATR) coupled with the QCL beam to detect and identify chemical changes and be deployed in hostile environments, either radiological or chemical. The limit of detection (LOD) and the limit of quantification (LOQ) at 3σ for hydroxylamine nitrate ranged from 0.3 to 3 and from 3.5 to 10 g·L−1, respectively, for the nitrate system at three peaks with wavelengths between 3.8 and 9.8 μm.
Collapse
|
33
|
Shen Q, Luo Z, Ma S, Tao P, Song C, Wu J, Shang W, Deng T. Bioinspired Infrared Sensing Materials and Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707632. [PMID: 29750376 DOI: 10.1002/adma.201707632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/08/2018] [Indexed: 05/26/2023]
Abstract
Bioinspired engineering offers a promising alternative approach in accelerating the development of many man-made systems. Next-generation infrared (IR) sensing systems can also benefit from such nature-inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high-performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal-based IR sensors that rely on either bolometer-like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward.
Collapse
Affiliation(s)
- Qingchen Shen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhen Luo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuai Ma
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
34
|
|
35
|
Talataisong W, Ismaeel R, Marques THR, Abokhamis Mousavi S, Beresna M, Gouveia MA, Sandoghchi SR, Lee T, Cordeiro CMB, Brambilla G. Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform. Sci Rep 2018; 8:8113. [PMID: 29802299 PMCID: PMC5970260 DOI: 10.1038/s41598-018-26561-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/09/2018] [Indexed: 11/11/2022] Open
Abstract
Mid-infrared (mid-IR) optical fibers have long attracted great interest due to their wide range of applications in security, biology and chemical sensing. Traditionally, research was directed towards materials with low absorption in the mid-IR region, such as chalcogenides, which are difficult to manipulate and often contain highly toxic elements. In this paper, we demonstrate a Polyethylene Terephthalate Glycol (PETG) hollow-core fiber (HCF) with guiding properties in the mid-IR. Guiding is provided by the fiber geometry, as PETG exhibits a material attenuation 2 orders of magnitude larger than the HCF propagation loss. The structured plastic fiber preforms were fabricated using commercial 3D printing technology and then drawn using a conventional fiber drawing tower. The final PETG fiber outer diameter was 466 µm with a hollow-core diameter of 225 µm. Thermal imaging at the fiber facet performed within the wavelength range 3.5–5 µm clearly indicates air guidance in the fiber hollow-core.
Collapse
Affiliation(s)
- Wanvisa Talataisong
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Rand Ismaeel
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Thiago H R Marques
- Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.,Instituto de Filosofia e Ciências Humanas, UNICAMP, Campinas, Brazil
| | | | - Martynas Beresna
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - M A Gouveia
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Seyed Reza Sandoghchi
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Timothy Lee
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| | - Cristiano M B Cordeiro
- Instituto de Fisica "Gleb Wataghin", Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Gilberto Brambilla
- Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
36
|
Xin C, Wu H, Xie Y, Yu S, Zhou N, Shi Z, Guo X, Tong L. CdTe microwires as mid-infrared optical waveguides. OPTICS EXPRESS 2018; 26:10944-10952. [PMID: 29716023 DOI: 10.1364/oe.26.010944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Cadmium telluride (CdTe) has been proven to be an attractive mid-infrared (MIR) material with a large refractive index (~2.68 at 4.5 μm) and broadband transparency (~1 to 25 μm). CdTe microwires (MWs) with diameters from a few to about ten micrometers were fabricated by a thermal evaporation process. MIR light was coupled into and guided through individual MWs. Excellent optical waveguiding properties of these MWs are experimentally obtained within MIR spectral range (up to 8.6 μm), with waveguiding losses from 1.3 to 13 dB/cm. Our results show that CdTe MWs can be used as wavelength or subwavelength-width waveguides for MIR microphotonics or circuits.
Collapse
|
37
|
da Silveira Petruci JF, Wilk A, Cardoso AA, Mizaikoff B. A Hyphenated Preconcentrator-Infrared-Hollow-Waveguide Sensor System for N 2O Sensing. Sci Rep 2018; 8:5909. [PMID: 29650982 PMCID: PMC5897552 DOI: 10.1038/s41598-018-23961-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 03/21/2018] [Indexed: 11/09/2022] Open
Abstract
Following the Kyoto protocol, all signatory countries must provide an annual inventory of greenhouse-gas emission including N2O. This fact associated with the wide variety of sources for N2O emissions requires appropriate sensor technologies facilitating in-situ monitoring, compact dimensions, ease of operation, and sufficient sensitivity for addressing such emission scenarios. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor system for quantifying gaseous N2O via coupling a substrate-integrated hollow waveguide (iHWG) simultaneously serving as highly miniaturized mid-infrared photon conduit and gas cell to a custom-made preconcentrator. N2O was collected onto a solid sorbent material packed into the preconcentrator unit, and then released via thermal desorption into the iHWG-MIR sensor utilizing a compact Fourier transform infrared (FTIR) spectrometer for molecularly selective spectroscopic detection with a limit of detection (LOD) at 5 ppbv. Highlighting the device flexibility in terms of sampling time, flow-rate, and iHWG design facilitates tailoring the developed preconcentrator-iHWG device towards a wide variety of application scenarios ranging from soil and aquatic emission monitoring and drone- or unmanned aerial vehicle (UAV)-mounted monitoring systems to clinical/medical analysis scenarios.
Collapse
Affiliation(s)
- João Flavio da Silveira Petruci
- São Paulo State University, Department of Analytical Chemistry, UNESP, CEP 14800-970, Araraquara, SP, Brazil.,Ulm University, Institute of Analytical and Bioanalytical Chemistry, 89081, Ulm, Germany
| | - Andreas Wilk
- Ulm University, Institute of Analytical and Bioanalytical Chemistry, 89081, Ulm, Germany
| | - Arnaldo Alves Cardoso
- São Paulo State University, Department of Analytical Chemistry, UNESP, CEP 14800-970, Araraquara, SP, Brazil
| | - Boris Mizaikoff
- Ulm University, Institute of Analytical and Bioanalytical Chemistry, 89081, Ulm, Germany.
| |
Collapse
|
38
|
Stach R, Haas J, Tütüncü E, Daboss S, Kranz C, Mizaikoff B. polyHWG: 3D Printed Substrate-Integrated Hollow Waveguides for Mid-Infrared Gas Sensing. ACS Sens 2017; 2:1700-1705. [PMID: 29090579 DOI: 10.1021/acssensors.7b00649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gas analysis via mid-infrared (MIR) spectroscopic techniques has gained significance due to its inherent molecular selectivity and sensitivity probing pronounced vibrational, rotational, and roto-vibrational modes. In addition, MIR gas sensors are suitable for real-time monitoring in a wide variety of sensing scenarios. Our research team has recently introduced so-called substrate-integrated hollow waveguides (iHWGs) fabricated by precision milling, which have been demonstrated to be useful in online process monitoring, environmental sensing, and exhaled breath analysis especially if low sample volumes (i.e., few hundreds of microliters) are probed with rapid signal transients. A logical next step is to establish ultralightweight, potentially disposable, and low-cost substrate-integrated hollow waveguides, which may be readily customized and tailored to specific applications using 3D printing techniques. 3D printing provides access to an unprecedented variety of thermoplastic materials including biocompatible polylactides, readily etchable styrene copolymers, and magnetic or conductive materials. Thus, the properties of the waveguide may be adapted to suit its designated application, e.g., drone-mounted ultralightweight waveguides for environmental monitoring or biocompatible disposable sensor interfaces in medical/clinical applications.
Collapse
Affiliation(s)
- Robert Stach
- Institute of Analytical and
Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julian Haas
- Institute of Analytical and
Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Erhan Tütüncü
- Institute of Analytical and
Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sven Daboss
- Institute of Analytical and
Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and
Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and
Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
39
|
Zhou J, Wang R, Wu X, Xu B. Fiber-Content Measurement of Wool-Cashmere Blends Using Near-Infrared Spectroscopy. APPLIED SPECTROSCOPY 2017; 71:2367-2376. [PMID: 28537417 DOI: 10.1177/0003702817713480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cashmere and wool are two protein fibers with analogous geometrical attributes, but distinct physical properties. Due to its scarcity and unique features, cashmere is a much more expensive fiber than wool. In the textile production, cashmere is often intentionally blended with fine wool in order to reduce the material cost. To identify the fiber contents of a wool-cashmere blend is important to quality control and product classification. The goal of this study is to develop a reliable method for estimating fiber contents in wool-cashmere blends based on near-infrared (NIR) spectroscopy. In this study, we prepared two sets of cashmere-wool blends by using either whole fibers or fiber snippets in 11 different blend ratios of the two fibers and collected the NIR spectra of all the 22 samples. Of the 11 samples in each set, six were used as a subset for calibration and five as a subset for validation. By referencing the NIR band assignment to chemical bonds in protein, we identified six characteristic wavelength bands where the NIR absorbance powers of the two fibers were significantly different. We then performed the chemometric analysis with two multilinear regression (MLR) equations to predict the cashmere content (CC) in a blended sample. The experiment with these samples demonstrated that the predicted CCs from the MLR models were consistent with the CCs given in the preparations of the two sample sets (whole fiber or snippet), and the errors of the predicted CCs could be limited to 0.5% if the testing was performed over at least 25 locations. The MLR models seem to be reliable and accurate enough for estimating the cashmere content in a wool-cashmere blend and have potential to be used for tackling the cashmere adulteration problem.
Collapse
Affiliation(s)
- Jinfeng Zhou
- 1 Department of Merchandising and Digital Retailing, University of North Texas, Denton, TX, USA
- 2 Key Laboratory of Textile Science & Technology Ministry of Education College of Textiles, Donghua University, China
| | - Rongwu Wang
- 2 Key Laboratory of Textile Science & Technology Ministry of Education College of Textiles, Donghua University, China
| | - Xiongying Wu
- 2 Key Laboratory of Textile Science & Technology Ministry of Education College of Textiles, Donghua University, China
| | - Bugao Xu
- 1 Department of Merchandising and Digital Retailing, University of North Texas, Denton, TX, USA
- 2 Key Laboratory of Textile Science & Technology Ministry of Education College of Textiles, Donghua University, China
| |
Collapse
|
40
|
Wang R, Vasiliev A, Muneeb M, Malik A, Sprengel S, Boehm G, Amann MC, Šimonytė I, Vizbaras A, Vizbaras K, Baets R, Roelkens G. III-V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2-4 μm Wavelength Range. SENSORS 2017; 17:s17081788. [PMID: 28777291 PMCID: PMC5579498 DOI: 10.3390/s17081788] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022]
Abstract
The availability of silicon photonic integrated circuits (ICs) in the 2-4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III-V laser sources and photodetectors on silicon photonic ICs for fully integrated optical sensors. Then a compact 2 μm wavelength widely tunable external cavity laser using a silicon photonic IC for the wavelength selective feedback is shown. High-performance silicon arrayed waveguide grating spectrometers are also presented. Further we show an on-chip photothermal transducer using a suspended silicon-on-insulator microring resonator used for mid-infrared photothermal spectroscopy.
Collapse
Affiliation(s)
- Ruijun Wang
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| | - Anton Vasiliev
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| | - Muhammad Muneeb
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| | - Aditya Malik
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| | - Stephan Sprengel
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, Garching 85748, Germany.
| | - Gerhard Boehm
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, Garching 85748, Germany.
| | - Markus-Christian Amann
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, Garching 85748, Germany.
| | - Ieva Šimonytė
- Brolis Semiconductors UAB, Moletu pl. 73, Vilnius LT-14259, Lithuania.
| | | | | | - Roel Baets
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| | - Gunther Roelkens
- Photonics Research Group, Ghent University-imec, Technologiepark-Zwijnaarde 15, Ghent 9052, Belgium.
- Center for Nano- and Biophotonics (NB-Photonics), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
41
|
Sandner T, Steinbach AM, Knittel P, Diemant T, Behm RJ, Strehle S, Kranz C, Mizaikoff B. Silanization of Sapphire Surfaces for Optical Sensing Applications. ACS Sens 2017; 2:522-530. [PMID: 28723185 DOI: 10.1021/acssensors.6b00786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Well-characterized silane layers are essential for optimized attachment of (bio)molecules enabling reliable chem/biosensor performance. Herein, binding properties and orientation of 3-mercaptopropyltrimethoxysilane layers at crystalline sapphire (0001) surfaces were determined by water contact angle measurements, infrared reflection absorption spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Infrared reflection absorption spectroscopy measurements suggest an almost perpendicular arrangement of the MPTMS molecules to the substrate surface. Adhesion force studies between a silicon nitride AFM tip and modified sapphire, gold, and silicon dioxide substrates were investigated by peak force tapping atomic force microscopy and used to define the silane binding properties on these surfaces. As expected, the Al-O-Si bond was determined to be responsible for the layer formation at the sapphire substrate surface.
Collapse
Affiliation(s)
- Tanja Sandner
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Annina M. Steinbach
- Institute
of Electron Devices and Circuits, Ulm University, Albert-Einstein-Allee 45, D-89081 Ulm, Germany
| | - Peter Knittel
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Thomas Diemant
- Institute
of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| | - R. Jürgen Behm
- Institute
of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
| | - Steffen Strehle
- Institute
of Electron Devices and Circuits, Ulm University, Albert-Einstein-Allee 45, D-89081 Ulm, Germany
| | - Christine Kranz
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Boris Mizaikoff
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
42
|
Sieger M, Kos G, Sulyok M, Godejohann M, Krska R, Mizaikoff B. Portable Infrared Laser Spectroscopy for On-site Mycotoxin Analysis. Sci Rep 2017; 7:44028. [PMID: 28276454 PMCID: PMC5343660 DOI: 10.1038/srep44028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/02/2017] [Indexed: 11/09/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites of fungi that spoil food, and severely impact human health (e.g., causing cancer). Therefore, the rapid determination of mycotoxin contamination including deoxynivalenol and aflatoxin B1 in food and feed samples is of prime interest for commodity importers and processors. While chromatography-based techniques are well established in laboratory environments, only very few (i.e., mostly immunochemical) techniques exist enabling direct on-site analysis for traders and manufacturers. In this study, we present MYCOSPEC - an innovative approach for spectroscopic mycotoxin contamination analysis at EU regulatory limits for the first time utilizing mid-infrared tunable quantum cascade laser (QCL) spectroscopy. This analysis technique facilitates on-site mycotoxin analysis by combining QCL technology with GaAs/AlGaAs thin-film waveguides. Multivariate data mining strategies (i.e., principal component analysis) enabled the classification of deoxynivalenol-contaminated maize and wheat samples, and of aflatoxin B1 affected peanuts at EU regulatory limits of 1250 μg kg-1 and 8 μg kg-1, respectively.
Collapse
Affiliation(s)
- Markus Sieger
- Ulm University, Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Gregor Kos
- McGill University, Atmospheric and Oceanic Sciences, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Montreal, Canada
| | - Michael Sulyok
- University of Natural Resources and Applied Life Sciences, IFA-Tulln, Konrad Lorenz Straße 20, A-3430 Tulln, Austria
| | | | - Rudolf Krska
- University of Natural Resources and Applied Life Sciences, IFA-Tulln, Konrad Lorenz Straße 20, A-3430 Tulln, Austria
| | - Boris Mizaikoff
- Ulm University, Institute of Analytical and Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
43
|
Heath C, Pejcic B, Myers M. Calixarene–polymer hybrid film for selective detection of hydrocarbons in water. NEW J CHEM 2017. [DOI: 10.1039/c7nj01384a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Designing calixarene–polymer composites for enhanced molecular detection of neutral and low molecular weight hydrocarbons in aquatic environments.
Collapse
Affiliation(s)
| | | | - Matthew Myers
- CSIRO, Energy
- Kensington
- Australia
- School of Chemistry and Biochemistry
- The University of Western Australia
| |
Collapse
|
44
|
Borodinov N, Soliani AP, Galabura Y, Zdyrko B, Tysinger C, Novak S, Du Q, Huang Y, Singh V, Han Z, Hu J, Kimerling L, Agarwal AM, Richardson K, Luzinov I. Gradient Polymer Nanofoams for Encrypted Recording of Chemical Events. ACS NANO 2016; 10:10716-10725. [PMID: 27754643 DOI: 10.1021/acsnano.6b06044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have fabricated gradient-grafted nanofoam films that are able to record the presence of volatile chemical compounds in an offline regime. In essence, the nanofoam film (100-300 nm thick) is anchored to a surface cross-linked polymer network in a metastable extended configuration that can relax back to a certain degree upon exposure to a chemical vapor. The level of the chain relaxation is associated with thermodynamic affinity between the polymer chains and the volatile compounds. In our design, the chemical composition of the nanofoam film is not uniform; therefore, the film possesses a gradually changing local affinity to a vapor along the surface. Upon vapor exposure, the nonuniform changes in local film morphology provide a permanent record or "fingerprint" for the chemical event of interest. This permanent modification in the film structure can be directly detected via changes not only in the film surface profile but also in the film optical characteristics. To this end, we demonstrated that sensing/recording nanofoam films can be prepared and interrogated on the surfaces of optical waveguides, microring optical resonators. It is important that the initial surface profile and structure of the nanofoam film are encrypted by the distinctive conditions that were used to fabricate the film and practically impossible to replicate without prior knowledge.
Collapse
Affiliation(s)
- Nikolay Borodinov
- Department of Materials Science and Engineering, Clemson University , Clemson, South Carolina 29634, United States
| | - Anna Paola Soliani
- Department of Materials Science and Engineering, Clemson University , Clemson, South Carolina 29634, United States
| | - Yuriy Galabura
- Department of Materials Science and Engineering, Clemson University , Clemson, South Carolina 29634, United States
| | - Bogdan Zdyrko
- Department of Materials Science and Engineering, Clemson University , Clemson, South Carolina 29634, United States
| | - Carley Tysinger
- Department of Materials Science and Engineering, Clemson University , Clemson, South Carolina 29634, United States
| | - Spencer Novak
- Department of Materials Science and Engineering, Clemson University , Clemson, South Carolina 29634, United States
| | - Qingyang Du
- Microphotonics Center and Department of Materials Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yizhong Huang
- Microphotonics Center and Department of Materials Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Vivek Singh
- Microphotonics Center and Department of Materials Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Zhaohong Han
- Microphotonics Center and Department of Materials Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Juejun Hu
- Microphotonics Center and Department of Materials Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Lionel Kimerling
- Microphotonics Center and Department of Materials Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Anuradha Murthy Agarwal
- Microphotonics Center and Department of Materials Science and Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Kathleen Richardson
- Department of Materials Science and Engineering, Clemson University , Clemson, South Carolina 29634, United States
- College of Optics and Photonics, University of Central Florida , Orlando, Florida 32816, United States
| | - Igor Luzinov
- Department of Materials Science and Engineering, Clemson University , Clemson, South Carolina 29634, United States
| |
Collapse
|
45
|
Firet NJ, Smith WA. Probing the Reaction Mechanism of CO2 Electroreduction over Ag Films via Operando Infrared Spectroscopy. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02382] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nienke J. Firet
- Materials for Energy Conversion
and Storage (MECS), Department of Chemical Engineering, Faculty of
Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Wilson A. Smith
- Materials for Energy Conversion
and Storage (MECS), Department of Chemical Engineering, Faculty of
Applied Sciences, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
46
|
Towards label-free mid-infrared protein assays: in-situ formation of bare gold nanoparticles for surface enhanced infrared absorption spectroscopy of bovine serum albumin. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2031-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Leidner L, Stäb J, Adam JT, Gauglitz G. Surface-enhanced infrared absorption studies towards a new optical biosensor. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1736-1742. [PMID: 28144523 PMCID: PMC5238651 DOI: 10.3762/bjnano.7.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
Reflectometric interference spectroscopy (RIfS), which is well-established in the visual regime, measures the optical thickness change of a sensitive layer caused, e.g., by binding an analyte. When operated in the mid-infrared range the sensor provides additional information via weak absorption spectra (fingerprints). The originally poor spectra are magnified by surface-enhanced infrared absorption (SEIRA). This is demonstrated using the broad complex fluid water band at 3300 cm-1, which is caused by superposition of symmetric, antisymmetric stretching vibration, and the first overtone of the bending vibration under the influence of H-bonds and Fermi resonance effect. The results are compared with a similar experiment performed with an ATR (attenuated total reflectance) set-up.
Collapse
Affiliation(s)
- Lothar Leidner
- Institute of Physical and Theoretical Chemistry (IPTC), Eberhard Karls University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Julia Stäb
- Institute of Physical and Theoretical Chemistry (IPTC), Eberhard Karls University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Jennifer T Adam
- Institute of Physical and Theoretical Chemistry (IPTC), Eberhard Karls University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Günter Gauglitz
- Institute of Physical and Theoretical Chemistry (IPTC), Eberhard Karls University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
48
|
Schädle T, Mizaikoff B. Mid-Infrared Waveguides: A Perspective. APPLIED SPECTROSCOPY 2016; 70:1625-1638. [PMID: 27624555 DOI: 10.1177/0003702816659668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 05/28/2023]
Abstract
Significant advancements in waveguide technology in the mid-infrared (MIR) regime during recent decades have assisted in establishing MIR spectroscopic and sensing technologies as a routine tool among nondestructive analytical methods. In this review, the evolution of MIR waveguides along with state-of-the-art technologies facilitating next-generation MIR chem/bio sensors will be discussed introducing a classification scheme defining three "generations" of MIR waveguides: (1) conventional internal reflection elements as "first generation" waveguides; (2) MIR-transparent optical fibers as "second generation" waveguides; and most recently introduced(3) thin-film structures as "third generation" waveguides. Selected application examples for these each waveguide category along with future trends will highlight utility and perspectives for waveguide-based MIR spectroscopy and sensing systems.
Collapse
Affiliation(s)
- Thomas Schädle
- Institute of Analytical and Bioanalytical Chemistry (IABC), Ulm University, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry (IABC), Ulm University, Ulm, Germany
| |
Collapse
|
49
|
Dey S, Zhao J. Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots. J Phys Chem Lett 2016; 7:2921-9. [PMID: 27411778 DOI: 10.1021/acs.jpclett.6b01164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quantum dots are nanoscale quantum emitters with high quantum yield and size-dependent emission wavelength, holding promises in many optical and electronic applications. When quantum dots are situated close to noble metal nanoparticles, their emitting behavior can be conveniently tuned because of the interaction between the excitons of the quantum dots and the plasmons of the metal nanoparticles. This interaction at the single quantum dot level gives rise to reduced or suppressed photoluminescence blinking and enhanced multiexciton emission, which is difficult to achieve in isolated quantum dots. However, the mechanism of how plasmonic structures cause the changes in the quantum dot emission remains unclear. Because of the complexity of the system, the interfaces between metal, semiconductor, and ligands must be considered, in addition to factors such as geometry, interparticle distance, and spectral overlap. The challenges in the design and fabrication of the hybrid nanostructures as well as in understanding the exciton-plasmon coupling mechanism can be overcome by a cooperative effort in synthesis, optical spectroscopy, and theoretical modeling.
Collapse
Affiliation(s)
- Swayandipta Dey
- Department of Chemistry, University of Connecticut , 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| | - Jing Zhao
- Department of Chemistry, University of Connecticut , 55 North Eagleville Road, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
50
|
Oinas J, Rieppo L, Finnilä MAJ, Valkealahti M, Lehenkari P, Saarakkala S. Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis. Sci Rep 2016; 6:30008. [PMID: 27445254 PMCID: PMC4956759 DOI: 10.1038/srep30008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
The changes in chemical composition of human articular cartilage (AC) caused by osteoarthritis (OA) were investigated using Fourier transform infrared microspectroscopy (FTIR-MS). We demonstrate the sensitivity of FTIR-MS for monitoring compositional changes that occur with OA progression. Twenty-eight AC samples from tibial plateaus were imaged with FTIR-MS. Hyperspectral images of all samples were combined for K-means clustering. Partial least squares regression (PLSR) analysis was used to compare the spectra with the OARSI grade (histopathological grading of OA). Furthermore, the amide I and the carbohydrate regions were used to estimate collagen and proteoglycan contents, respectively. Spectral peak at 1338 cm(-1) was used to estimate the integrity of the collagen network. The layered structure of AC was revealed using the carbohydrate region for clustering. Statistically significant correlation was observed between the OARSI grade and the collagen integrity in the superficial (r = -0.55) and the deep (r = -0.41) zones. Furthermore, PLSR models predicted the OARSI grade from the superficial (r = 0.94) and the deep (r = 0.77) regions of the AC with high accuracy. Obtained results suggest that quantitative and qualitative changes occur in the AC composition during OA progression, and these can be monitored by the use of FTIR-MS.
Collapse
Affiliation(s)
- J Oinas
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Finland
| | - L Rieppo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Finland
| | - M A J Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - M Valkealahti
- Medical Research Center, University of Oulu and Oulu University Hospital, Finland.,Department of Surgery, Oulu University Hospital, Finland
| | - P Lehenkari
- Medical Research Center, University of Oulu and Oulu University Hospital, Finland.,Department of Surgery, Oulu University Hospital, Finland.,Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu, Finland
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Finland
| |
Collapse
|