1
|
Semwal M, Vashistha N, Rau S, Dietzek-Ivanšić B. An Increase in the Rigidity of the Environment Favors MLCT over the MC State in [Ru(bpy) 2(Nicotine) 2](Cl) 2: A Case Study of Photolabile Ligands. J Phys Chem A 2025; 129:439-446. [PMID: 39496280 PMCID: PMC11744796 DOI: 10.1021/acs.jpca.4c04914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Ru(II)-complexes with photolabile ligands find a wide range of applications, e.g., in drug release and in the design of light-responsive interfaces. While light-driven ligand loss has been studied mechanistically in detail for complexes in solution, comparably few studies are present that investigate the process in a material context, i.e., in a rigid environment and in the absence of solvent. This paper adds to this underrepresented perspective by studying the excited-state dynamics of [Ru(bpy)2(nicotine)2] (Cl)2 (Ru-nico) as a model system in poly(methyl methacrylate) (PMMA) and polyacrylonitrile (PAN) matrices. Femtosecond transient absorption spectroscopy and time-resolved emission spectroscopy are employed to monitor the photodissociation of labile nicotine ligands in polymer environments. Photoexcitation within the metal-to-ligand charge transfer (MLCT) band leads to transient dissociation of the nicotine ligand when the complex is dissolved in water. However, optical excitation of the 1MLCT transition of the complexes embedded in polymer matrices does not result in photodissociation, likely due to the rigidity of the environment, which cannot solvate the undercoordinated complex after ligand dissociation and the dissociated ligand. These insights shed light on the role of the local environment when considering the photophysics of ligand loss from Ru(II)-polypyridyl complexes and, hence, their use in the light-activation of reactive molecular components in materials.
Collapse
Affiliation(s)
- Mohini Semwal
- Institute
of Physical Chemistry,Friedrich Schiller
University Jena, Helmholtzweg 4, Jena 07743, Germany
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena 07745, Germany
| | - Nikita Vashistha
- Institute
of Physical Chemistry,Friedrich Schiller
University Jena, Helmholtzweg 4, Jena 07743, Germany
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena 07745, Germany
| | - Sven Rau
- Institute
for Inorganic Chemistry I, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute
of Physical Chemistry,Friedrich Schiller
University Jena, Helmholtzweg 4, Jena 07743, Germany
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena 07745, Germany
| |
Collapse
|
2
|
Móran Plata MJ, Marretta L, Gaztelumendi L, Pieslinger GE, Carballo RR, Rezabal E, Barone G, Martínez-Martínez V, Terenzi A, Salassa L. Alloxazine-Based Ligands and Their Ruthenium Complexes as NADH Oxidation Catalysts and G4 Binders. Inorg Chem 2024; 63:16362-16373. [PMID: 39151171 DOI: 10.1021/acs.inorgchem.4c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Flavin-like ligands (L-1 and L-2) with extended π-conjugation were synthesized using microwave-assisted techniques. An N,N-chelating fragment was integrated into alloxazine units, providing binding sites for metal ions while retaining redox activity. The complexation capability of L-1 and L-2 with two prototypical Ru-scaffolds was examined to design Ru(II) complexes (M-1 and M-2), whose electronic properties were studied and compared with their corresponding ligands via absorption and emission spectroscopy, computational analysis (density functional theory (DFT) and time-dependent DFT (TD-DFT)), and cyclic voltammetry (CV). The ability of L-1 and M-1 to undergo alloxazine/isoalloxazine tautomerization was demonstrated to play a crucial role in the photocatalytic oxidation of NADH, including under green and red wavelengths. Moreover, the interaction of M-1 and M-2 with B-DNA and G-quadruplex structures was investigated. M-2 showed high stabilization of Kit1 and h-Telo oligonucleotides. Meanwhile, M-1 demonstrated switchable emissive properties with B-DNA and induced conformational changes in the h-Telo G-quadruplex structure.
Collapse
Affiliation(s)
- Maria Jesus Móran Plata
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia 20018, Spain
| | - Laura Marretta
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze Edificio 17, Palermo 90128, Italy
| | - Lander Gaztelumendi
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia 20018, Spain
| | - German E Pieslinger
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain
- CONICET─Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires 1113, Argentina
| | - Romina R Carballo
- CONICET─Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires 1113, Argentina
| | - Elixabete Rezabal
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia 20018, Spain
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze Edificio 17, Palermo 90128, Italy
| | | | - Alessio Terenzi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, viale delle Scienze Edificio 17, Palermo 90128, Italy
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia 20018, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| |
Collapse
|
3
|
Goodwin MJ, Dickenson JC, Ripak A, Deetz AM, McCarthy JS, Meyer GJ, Troian-Gautier L. Factors that Impact Photochemical Cage Escape Yields. Chem Rev 2024; 124:7379-7464. [PMID: 38743869 DOI: 10.1021/acs.chemrev.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John C Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jackson S McCarthy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
4
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Cotic A, Ramírez-Wierzbicki I, Pieslinger GE, Aramburu-Trošelj BM, Cadranel A. Ligand field states dominate excited state decay in trans-[Ru(py)4Cl2] MLCT chromophores. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Karges J, Stokes RW, Cohen SM. Photorelease of a metal-binding pharmacophore from a Ru(II) polypyridine complex. Dalton Trans 2021; 50:2757-2765. [PMID: 33564808 PMCID: PMC7944940 DOI: 10.1039/d0dt04290k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adoption of compounds that target metalloenzymes comprises a relatively low (<5%) percentage of all FDA approved therapeutics. Metalloenzyme inhibitors typically coordinate to the active site metal ions and therefore contain ligands with charged or highly polar functional groups. While these groups may generate highly water-soluble compounds, this functionalization can also limit their pharmacological properties. To overcome this drawback, drug candidates can be formulated as prodrugs. While a variety of protecting groups have been developed, increasing efforts have been devoted towards the use of caging groups that can be removed upon exposure to light to provide spatial and temporal control over the treatment. Among these, the application of Ru(ii) polypyridine complexes is receiving increased attention based on their attractive biological and photophysical properties. Herein, a conjugate consisting of a metalloenzyme inhibitor and a Ru(ii) polypyridine complex as a photo-cage is presented. The conjugate was designed using density functional theory calculations and docking studies. The conjugate is stable in an aqueous solution, but irradiation of the complex with 450 nm light releases the inhibitor within several minutes. As a model system, the biochemical properties were investigated against the endonucleolytic active site of the influenza virus. While showing no inhibition in the dark in an in vitro assay, the conjugate generated inhibition upon light exposure at 450 nm, demonstrating the ability to liberate the metalloenzyme inhibitor. The presented inhibitor-Ru(ii) polypyridine conjugate is an example of computationally-guided drug design for light-activated drug release and may help reveal new avenues for the prodrugging of metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
7
|
Deshpande MS, Morajkar SM, Srinivasan BR, Ahirwar MB, Deshmukh MM. Effect of the electronic structure on the robustness of ruthenium( ii) bis-phenanthroline compounds for photodissociation of the co-ligand: synthesis, structural characterization, and density functional theory study. NEW J CHEM 2021. [DOI: 10.1039/d0nj05921h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodissociation of co-ligand in cis-[Ru(phen)2(L)2](PF6)2 (phen = 1,10-phenanthroline, L = isoquinoline 1; phthalazine 2), upon blue light irradiation was investigated via both experimental and DFT studies.
Collapse
Affiliation(s)
| | | | | | - Mini Bharati Ahirwar
- Department of Chemistry
- Dr Harisingh Gour Vishwavidyalaya (A Central University)
- Sagar
- India
| | - Milind M. Deshmukh
- Department of Chemistry
- Dr Harisingh Gour Vishwavidyalaya (A Central University)
- Sagar
- India
| |
Collapse
|
8
|
Guda AA, Guda SA, Lomachenko KA, Soldatov MA, Pankin IA, Soldatov AV, Braglia L, Bugaev AL, Martini A, Signorile M, Groppo E, Piovano A, Borfecchia E, Lamberti C. Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.10.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Micheroni D, Lin Z, Chen YS, Lin W. Luminescence Enhancement of cis-[Ru(bpy)2(py)2]2+ via Confinement within a Metal–Organic Framework. Inorg Chem 2019; 58:7645-7648. [DOI: 10.1021/acs.inorgchem.9b00396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniel Micheroni
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Zekai Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
10
|
Kayanuma M, Shoji M, Shigeta Y. Photosubstitution Reaction of cis-[Ru(bpy) 2(CH 3CN) 2] 2+ and cis-[Ru(bpy) 2(NH 3) 2] 2+ in Aqueous Solution via Monoaqua Intermediate. J Phys Chem A 2019; 123:2497-2502. [PMID: 30864800 DOI: 10.1021/acs.jpca.8b11399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photoinduced ligand exchange reaction of Ru(II) complexes in aqueous solution was studied using density functional theory (DFT). The optimized structures of the lowest triplet state of cis-[Ru(bpy)2(CH3CN)2]2+ (bpy = bipyridine), cis-[Ru(bpy)2(NH3)2]2+, and their monoaqua complexes were analyzed. The metal-centered (3MC) structure was lower than the metal-to-ligand charge transfer (3MLCT) structure for cis-[Ru(bpy)2(CH3CN)2]2+, whereas the 3MLCT structure was lower than the 3MC structure for cis-[Ru(bpy)2(NH3)2]2+. Such a difference would correlate with the higher quantum yield of the former complex. For the monoaqua complexes, the most stable local minimum structure was the 3MC structure, in which the Ru-OH2O and Ru-Nbpy ( trans to the oxygen) bonds were elongated. Therefore, the dissociation of the H2O ligand would be preferred to that of the CH3CN (or NH3) ligand from the monoaqua intermediate, which might result in the reformation of the monoaqua intermediate, and thus, the formation of the bis-aqua product would take a longer time than that of the monoaqua intermediate.
Collapse
Affiliation(s)
- Megumi Kayanuma
- Center for Computational Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Mitsuo Shoji
- Center for Computational Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| |
Collapse
|
11
|
Korzyński MD, Braglia L, Borfecchia E, Lamberti C, Dincă M. Molecular Niobium Precursors in Various Oxidation States: An XAS Case Study. Inorg Chem 2018; 57:13998-14004. [PMID: 30354088 DOI: 10.1021/acs.inorgchem.8b02616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although X-ray absorption spectroscopy (XAS) has become an indispensable tool in characterization of solid-state materials, it is less of a staple in molecular chemistry of niobium. Scattering X-ray techniques remain relatively unexplored for the systematic study of molecular niobium compounds. Here, we use XAS to probe the niobium environment in commonly used Nb precursors in +V, +IV, and +III oxidation states. Apart from laying out the guidelines for identification of niobium oxidation states, we correlate our data with density functional theory models to provide further structural insight. Of particular note, we are able to shed light on the nature of the commonly used and catalytically competent NbCl3(DME), which had not been previously characterized structurally despite its prevalence in Nb chemistry.
Collapse
Affiliation(s)
- Maciej D Korzyński
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Luca Braglia
- CNR-Istituto Officina dei Materiali , TASC Laboratory in Area Science Park - Basovizza , Strada Statale 14 km 163.5 , 34149 Trieste , Italy
| | - Elisa Borfecchia
- Department of Chemistry, NIS, CrisDi, and INSTM Centre of Reference , University of Turin , Via Quarello 15 , I-10135 Torino , Italy.,Center for Materials Science and Nanotechnology (SMN), Department of Chemistry , University of Oslo , 1033 Blindern , 0315 Oslo , Norway
| | - Carlo Lamberti
- Department of Physics, NIS, CrisDi, Interdepartmental Centers, and INSTM Centre of Reference , University of Turin , Via Giuria 1 , I-10125 Torino , Italy.,The Smart Materials Research Institute , Southern Federal University , Sladkova Street 178/24 , Rostov-on-Don , 344090 , Russia
| | - Mircea Dincă
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
12
|
Hayes D, Kohler L, Hadt RG, Zhang X, Liu C, Mulfort KL, Chen LX. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy. Chem Sci 2018; 9:860-875. [PMID: 29629153 PMCID: PMC5873173 DOI: 10.1039/c7sc04055e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/14/2017] [Indexed: 01/19/2023] Open
Abstract
The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(i) bis(phenanthroline)/ruthenium(ii) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(i)-Ru(ii) analogs of the homodinuclear Cu(i)-Cu(i) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations.
Collapse
Affiliation(s)
- Dugan Hayes
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , IL 60439 , USA . ; ;
| | - Lars Kohler
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , IL 60439 , USA . ; ;
| | - Ryan G Hadt
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , IL 60439 , USA . ; ;
| | - Xiaoyi Zhang
- X-ray Science Division , Argonne National Laboratory , Argonne , IL 60439 , USA
| | - Cunming Liu
- X-ray Science Division , Argonne National Laboratory , Argonne , IL 60439 , USA
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , IL 60439 , USA . ; ;
| | - Lin X Chen
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , IL 60439 , USA . ; ;
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA
| |
Collapse
|
13
|
Ruggiero E, Alonso-de Castro S, Habtemariam A, Salassa L. Upconverting nanoparticles for the near infrared photoactivation of transition metal complexes: new opportunities and challenges in medicinal inorganic photochemistry. Dalton Trans 2018; 45:13012-20. [PMID: 27482656 DOI: 10.1039/c6dt01428c] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The article highlights the emergent use of upconverting nanoparticles as tools for the near infrared photoactivation of transition metal complexes, identifying opportunities and challenges of this approach in the context of medicinal inorganic chemistry.
Collapse
Affiliation(s)
- Emmanuel Ruggiero
- CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, 20009, Spain.
| | | | | | - Luca Salassa
- CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, 20009, Spain. and Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), P.K. 1072, Donostia-San Sebastián, 20080, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| |
Collapse
|
14
|
Loftus LM, Li A, Fillman KL, Martin PD, Kodanko JJ, Turro C. Unusual Role of Excited State Mixing in the Enhancement of Photoinduced Ligand Exchange in Ru(II) Complexes. J Am Chem Soc 2017; 139:18295-18306. [PMID: 29226680 PMCID: PMC5901749 DOI: 10.1021/jacs.7b09937] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Four Ru(II) complexes were prepared bearing two new tetradentate ligands, cyTPA and 1-isocyTPQA, which feature a piperidine ring that provides a structurally rigid backbone and facilitates the installation of other donors as the fourth chelating arm, while avoiding the formation of stereoisomers. The photophysical properties and photochemistry of [Ru(cyTPA)(CH3CN)2]2+ (1), [Ru(1-isocyTPQA)(CH3CN)2]2+ (2), [Ru(cyTPA)(py)2]2+ (3), and [Ru(1-isocyTPQA)(py)2]2+ (4) were compared. The quantum yield for the CH3CN/H2O ligand exchange of 2 was measured to be Φ400 = 0.033(3), 5-fold greater than that of 1, Φ400 = 0.0066(3). The quantum yields for the py/H2O ligand exchange of 3 and 4 were lower, 0.0012(1) and 0.0013(1), respectively. DFT and related calculations show the presence of a highly mixed 3MLCT/3ππ* excited state as the lowest triplet state in 2, whereas the lowest energy triplet states in 1, 3, and 4 were calculated to be 3LF in nature. The mixed 3MLCT/3ππ* excited state places significant spin density on the quinoline moiety of the 1-isocyTPQA ligand positioned trans to the photolabile CH3CN ligand in 2, suggesting the presence of a trans-type influence in the excited state that enhances ligand exchange. Ultrafast spectroscopy was used to probe the excited states of 1-4, which confirmed that the mixed 3MLCT/3ππ* excited state in 2 promotes ligand dissociation, representing a new manner to effect photoinduced ligand exchange. The findings from this work can be used to design improved complexes for applications that require efficient ligand dissociation, as well as for those that require minimal deactivation of the 3MLCT state through low-lying metal-centered states.
Collapse
Affiliation(s)
- Lauren M. Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ao Li
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kathlyn L. Fillman
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Philip D. Martin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Magero D, Casida ME, Amolo G, Makau N, Kituyi L. Partial density of states ligand field theory (PDOS-LFT): Recovering a LFT-like picture and application to photoproperties of ruthenium(II) polypyridine complexes. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Caraballo RM, Rosi P, Hodak JH, Baraldo LM. Photosubstitution of Monodentate Ligands from RuII-Dicarboxybipyridine Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rolando M. Caraballo
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Departamento de Química Inorgánica; Analítica y Química Física; Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires; Instituto de Química-Física de Materiales; Ambientes y Energía (INQUIMAE); Buenos Aires Argentina
| | - Pablo Rosi
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Departamento de Química Inorgánica; Analítica y Química Física; Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires Argentina
| | - José H. Hodak
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Departamento de Química Inorgánica; Analítica y Química Física; Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires; Instituto de Química-Física de Materiales; Ambientes y Energía (INQUIMAE); Buenos Aires Argentina
| | - Luis M. Baraldo
- Universidad de Buenos Aires; Facultad de Ciencias Exactas y Naturales; Departamento de Química Inorgánica; Analítica y Química Física; Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires Argentina
- CONICET - Universidad de Buenos Aires; Instituto de Química-Física de Materiales; Ambientes y Energía (INQUIMAE); Buenos Aires Argentina
| |
Collapse
|
17
|
Chergui M, Collet E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev 2017; 117:11025-11065. [DOI: 10.1021/acs.chemrev.6b00831] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU), ISIC, and Lausanne Centre for
Ultrafast Science (LACUS), Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Collet
- Univ Rennes 1, CNRS, Institut de Physique de Rennes, UMR 6251, UBL, Rennes F-35042, France
| |
Collapse
|
18
|
Zhan F, Tao Y, Zhao H. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:818-824. [PMID: 28664889 DOI: 10.1107/s1600577517005719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen)3 spin crossover complex and yielded reliable distance change and excitation population.
Collapse
Affiliation(s)
- Fei Zhan
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ye Tao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haifeng Zhao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
19
|
Smith NA, Zhang P, Greenough SE, Horbury MD, Clarkson GJ, McFeely D, Habtemariam A, Salassa L, Stavros VG, Dowson CG, Sadler PJ. Combatting AMR: photoactivatable ruthenium(ii)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chem Sci 2017; 8:395-404. [PMID: 28451184 PMCID: PMC5365061 DOI: 10.1039/c6sc03028a] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022] Open
Abstract
The novel photoactive ruthenium(ii) complex cis-[Ru(bpy)2(INH)2][PF6]2 (1·2PF6, INH = isoniazid) was designed to incorporate the anti-tuberculosis drug, isoniazid, that could be released from the Ru(ii) cage by photoactivation with visible light. In aqueous solution, 1 rapidly released two equivalents of isoniazid and formed the photoproduct cis-[Ru(bpy)2(H2O)2]2+ upon irradiation with 465 nm blue light. We screened for activity against bacteria containing the three major classes of cell envelope: Gram-positive Bacillus subtilis, Gram-negative Escherichia coli, and Mycobacterium smegmatis in vitro using blue and multi-colored LED multi-well arrays. Complex 1 is inactive in the dark, but when photoactivated is 5.5× more potent towards M. smegmatis compared to the clinical drug isoniazid alone. Complementary pump-probe spectroscopy measurements along with density functional theory calculations reveal that the mono-aqua product is formed in <500 ps, likely facilitated by a 3MC state. Importantly, complex 1 is highly selective in killing mycobacteria versus normal human cells, towards which it is relatively non-toxic. This work suggests that photoactivatable prodrugs such as 1 are potentially powerful new agents in combatting the global problem of antibiotic resistance.
Collapse
Affiliation(s)
- Nichola A Smith
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Pingyu Zhang
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Simon E Greenough
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Michael D Horbury
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Daniel McFeely
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Luca Salassa
- CIC biomaGUNE , Paseo de Miramón 182 , Donostia-San Sebastián , 20009 , Spain
- Kimika Fakultatea , Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC) , P.K. 1072 , Donostia-San Sebastián , 20080 , Spain
- Ikerbasque , Basque Foundation for Science , Bilbao , 48011 , Spain
| | - Vasilios G Stavros
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Christopher G Dowson
- School of Life Sciences , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Gibbet Hill Road , Coventry CV4 7AL , UK .
| |
Collapse
|
20
|
Göttle AJ, Alary F, Boggio-Pasqua M, Dixon IM, Heully JL, Bahreman A, Askes SHC, Bonnet S. Pivotal Role of a Pentacoordinate (3)MC State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study. Inorg Chem 2016; 55:4448-56. [PMID: 27054312 DOI: 10.1021/acs.inorgchem.6b00268] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A mechanistic study of the photocleavage of the methylthioethanol ligand (Hmte) in the series of ruthenium complexes [Ru(tpy)(N-N)(Hmte)](2+) (tpy = 2,2':6',2″-terpyridine, N-N = bpy (2,2'-bipyridine), biq (2,2'-biquinoline), dcbpy (6,6'-dichloro-2,2'-bipyridine), dmbpy (6,6'-dimethyl-2,2'-bipyridine)) was performed using density functional theory. These studies reveal the decisive role of two quasi-degenerate triplet metal-centered states, denoted (3)MChexa and (3)MCpenta, on the lowest triplet potential energy surface. It also shows how the population of the specific pentacoordinate (3)MCpenta state, characterized by a geometry more accessible for the attack of a solvent molecule, is a key step for the efficiency of the photosubstitution reaction. The difference in the photosubstitution quantum yields experimentally observed for this series of complexes (from φ = 0.022 for N-N = bpy up to φ = 0.30 for N-N = dmbpy) is rationalized by the existence of this (3)MCpenta photoreactive state and by the different topologies of the triplet excited-state potential energy surfaces, rather than by the sole steric properties of these polypyridinyl ligands.
Collapse
Affiliation(s)
- Adrien J Göttle
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Azadeh Bahreman
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sven H C Askes
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
21
|
Mishima K, Kinoshita T, Hayashi M, Jono R, Segawa H, Yamashita K. Theoretical investigation of [Ru(tpy)2]2+, [Ru(tpy)(bpy)(H2O)]2+ and [Ru(tpy)(bpy)(Cl)]+ complexes in acetone revisited: Inclusion of strong spin–orbit couplings to quantum chemistry calculations. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present paper, we theoretically reinvestigate structural properties, and photo-physical and chemical characteristics and electronic absorption spectra of three kinds of ruthenium polypyridyl complexes [Ru(tpy)[Formula: see text], [Ru(tpy)(bpy)(H2O)][Formula: see text], and [Ru(tpy)(bpy)(Cl)][Formula: see text] complexes in acetone (tpy[Formula: see text]2,2[Formula: see text],2[Formula: see text]-terpyridine and bpy[Formula: see text]2,2[Formula: see text]-bipyridine). In particular, the experimental absorption spectra of these complexes are revisited theoretically in detail and are simulated using the first-order perturbation theory based on time-dependent density functional theory (TD-DFT) where the first-order perturbation term is the spin–orbit (SO) coupling Hamiltonian, and quantum chemistry calculations based on various functionals and basis sets. It was found that in general the theory including SO coupling can reproduce experimental data better than the simple quantum chemistry calculation neglecting SO coupling, which indicates that SO coupling is very important to understand the optical features of these complexes and that therefore the mixing between singlet and triplet states is strong due to the large SO coupling constant of Ru atom involved in these complexes. This suggests the fact that the disagreement between the experimental and calculated absorption spectra was found in TDB3LYP/(SDD with triple-[Formula: see text] for Ru and 6-31G* for others) [Jakubikova EJ et al., Inorg Chem 48:10720, 2009] can be tracked down to the neglect of SO couplings. It was also found that the choice of the DFT functionals and basis sets is crucial for a good theoretical reproduction of experimental data.
Collapse
Affiliation(s)
- Kenji Mishima
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takumi Kinoshita
- Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Ryota Jono
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroshi Segawa
- Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Koichi Yamashita
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
22
|
Zhou C, Tian Y, Yuan Z, Han M, Wang J, Zhu L, Tameh MS, Huang C, Ma B. Precise Design of Phosphorescent Molecular Butterflies with Tunable Photoinduced Structural Change and Dual Emission. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Zhou C, Tian Y, Yuan Z, Han M, Wang J, Zhu L, Tameh MS, Huang C, Ma B. Precise Design of Phosphorescent Molecular Butterflies with Tunable Photoinduced Structural Change and Dual Emission. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201505185] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Greenough SE, Roberts GM, Smith NA, Horbury MD, McKinlay RG, Żurek JM, Paterson MJ, Sadler PJ, Stavros VG. Ultrafast photo-induced ligand solvolysis of cis-[Ru(bipyridine)2(nicotinamide)2](2+): experimental and theoretical insight into its photoactivation mechanism. Phys Chem Chem Phys 2015; 16:19141-55. [PMID: 25060066 DOI: 10.1039/c4cp02359e] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanistic insight into the photo-induced solvent substitution reaction of cis-[Ru(bipyridine)2(nicotinamide)2](2+) (1) is presented. Complex 1 is a photoactive species, designed to display high cytotoxicity following irradiation, for potential use in photodynamic therapy (photochemotherapy). In Ru(II) complexes of this type, efficient population of a dissociative triplet metal-centred ((3)MC) state is key to generating high quantum yields of a penta-coordinate intermediate (PCI) species, which in turn may form the target species: a mono-aqua photoproduct [Ru(bipyridine)2(nicotinamide)(H2O)](2+) (2). Following irradiation of 1, a thorough kinetic picture is derived from ultrafast UV/Vis transient absorption spectroscopy measurements, using a 'target analysis' approach, and provides both timescales and quantum yields for the key processes involved. We show that photoactivation of 1 to 2 occurs with a quantum yield ≥0.36, all within a timeframe of ~400 ps. Characterization of the excited states involved, particularly the nature of the PCI and how it undergoes a geometry relaxation to accommodate the water ligand, which is a keystone in the efficiency of the photoactivation of 1, is accomplished through state-of-the-art computation including complete active space self-consistent field methods and time-dependent density functional theory. Importantly, the conclusions here provide a detailed understanding of the initial stages involved in this photoactivation and the foundation required for designing more efficacious photochemotherapy drugs of this type.
Collapse
Affiliation(s)
- Simon E Greenough
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Betanzos-Lara S, Chmel NP, Zimmerman MT, Barrón-Sosa LR, Garino C, Salassa L, Rodger A, Brumaghim JL, Gracia-Mora I, Barba-Behrens N. Redox-active and DNA-binding coordination complexes of clotrimazole. Dalton Trans 2015; 44:3673-85. [DOI: 10.1039/c4dt02883j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The coordination compounds bind to DNA by two different binding modes depending on the concentration, sequence of the DNA, and the structure of the complex.
Collapse
Affiliation(s)
- Soledad Betanzos-Lara
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad Nacional Autónoma de México
- México
- Mexico
| | - Nikola P. Chmel
- Department of Chemistry
- University of Warwick CV4 7AL Coventry
- England
- UK
| | | | - Lidia R. Barrón-Sosa
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad Nacional Autónoma de México
- México
- Mexico
| | - Claudio Garino
- Department of Chemistry and NIS Centre of Excellence
- University of Turin
- 10125 Turin
- Italy
| | - Luca Salassa
- CIC biomaGUNE
- 20009 Donostia
- Spain
- Kimika Fakultatea
- Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC)
| | - Alison Rodger
- Department of Chemistry
- University of Warwick CV4 7AL Coventry
- England
- UK
| | | | - Isabel Gracia-Mora
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad Nacional Autónoma de México
- México
- Mexico
| | - Norah Barba-Behrens
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad Nacional Autónoma de México
- México
- Mexico
| |
Collapse
|
26
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Perera TA, Masjedi M, Sharp PR. Photoreduction of Pt(IV) Chloro Complexes: Substrate Chlorination by a Triplet Excited State. Inorg Chem 2014; 53:7608-21. [DOI: 10.1021/ic5009413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Tharushi A. Perera
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| | - Mehdi Masjedi
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| | - Paul R. Sharp
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211-7600, United States
| |
Collapse
|
28
|
|
29
|
Camilo MR, Cardoso CR, Carlos RM, Lever ABP. Photosolvolysis of cis-[Ru(α-diimine)2(4-aminopyridine)2](2+) complexes: photophysical, spectroscopic, and density functional theory analysis. Inorg Chem 2014; 53:3694-708. [PMID: 24620830 DOI: 10.1021/ic5000205] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The photochemical and photophysical properties of the cis-[Ru(II)(α-diimine)2(4-APy)2](2+) complexes, where α-diimine = 1,10-phenanthroline (phen) and 4-APy = 4-aminopyridine I, 4,7-diphenyl-1,10-phenanthroline (Ph2phen) II, 2,2'-bipyridine (bpy) III, and 4,4'-dimethyl-2,2'-bipyridine (Me2bpy) IV, are reported. The four complexes were characterized using high-performance liquid chromatography, (1)H NMR, UV-visible, emission, and transient absorption spectroscopy. Upon photolysis in acetonitrile solution these complexes undergo 4-APy dissociation to give the monoacetonitrile complex (for II, III, and IV) or the bis(acetonitrile) complex (for I). A fairly wide range of excitation wavelengths (from 420 to 580 nm) were employed to explore the photophysics of these systems. Quantum yields and transient spectra are provided. Density functional theory (DFT) and time-dependent DFT analysis of singlet and triplet excited states facilitated our understanding of the photochemical behavior. A detailed assessment of the geometric and electronic structures of the lowest energy spin triplet charge transfer state ((3)MLCT) and spin triplet metal centered state ((3)MC) (dπ → σ* transitions) for species I-IV is presented. A second, previously unobserved, and nondissociative, (3)MC state is identified and is likely involved in the primary step of photodissociation. This new (3)MC state may indeed play a major role in many other photodissociation processes.
Collapse
Affiliation(s)
- Mariana R Camilo
- Departamento de Química, Universidade Federal de São Carlos , CP 676, CEP 13565-905, São Carlos-SP, Brazil
| | | | | | | |
Collapse
|
30
|
Chen LX, Zhang X, Shelby ML. Recent advances on ultrafast X-ray spectroscopy in the chemical sciences. Chem Sci 2014. [DOI: 10.1039/c4sc01333f] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular snapshots obtained by ultrafast X-ray spectroscopy reveal new insight into fundamental reaction mechanisms at single electron and atomic levels.
Collapse
Affiliation(s)
- L. X. Chen
- Chemical Sciences and Engineering Division
- Argonne National Laboratory
- Lemont, USA
- Department of Chemistry
- Northwestern University
| | - X. Zhang
- X-ray Science Division
- Advance Photon Source
- Argonne National Laboratory
- Lemont, USA
| | - M. L. Shelby
- Department of Chemistry
- Northwestern University
- Evanston, USA
| |
Collapse
|
31
|
Ruggiero E, Habtemariam A, Yate L, Mareque-Rivas JC, Salassa L. Near infrared photolysis of a Ru polypyridyl complex by upconverting nanoparticles. Chem Commun (Camb) 2014; 50:1715-8. [DOI: 10.1039/c3cc47601d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Borfecchia E, Garino C, Salassa L, Lamberti C. Synchrotron ultrafast techniques for photoactive transition metal complexes. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20120132. [PMID: 23776294 DOI: 10.1098/rsta.2012.0132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the last decade, the use of time-resolved X-ray techniques has revealed the structure of light-generated transient species for a wide range of samples, from small organic molecules to proteins. Time resolutions of the order of 100 ps are typically reached, allowing one to monitor thermally equilibrated excited states and capture their structure as a function of time. This review aims at providing a general overview of the application of time-resolved X-ray solution scattering (TR-XSS) and time-resolved X-ray absorption spectroscopy (TR-XAS), the two techniques prevalently employed in the investigation of light-triggered structural changes of transition metal complexes. In particular, we herein describe the fundamental physical principles for static XSS and XAS and illustrate the theory of time-resolved XSS and XAS together with data acquisition and analysis strategies. Selected pioneering examples of photoactive transition metal complexes studied by TR-XSS and TR-XAS are discussed in depth.
Collapse
Affiliation(s)
- Elisa Borfecchia
- Department of Chemistry, NIS Centre of Excellence, University of Turin, via P. Giuria 7, 10125 Turin, Italy
| | | | | | | |
Collapse
|
33
|
Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C. Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chem Rev 2013; 113:1736-850. [DOI: 10.1021/cr2000898] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silvia Bordiga
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Elena Groppo
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Giovanni Agostini
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| | - Jeroen A. van Bokhoven
- ETH Zurich, Institute for Chemical and Bioengineering, HCI E127 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry (LSK) Swiss Light Source, Paul Scherrer Instituteaul Scherrer Institute, Villigen, Switzerland
| | - Carlo Lamberti
- Department of Chemistry and NIS Centre of Excellence, Università di Torino and INSTM Reference Center, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|