1
|
Maksimchuk NV, Marikovskaya SM, Larionov KP, Evtushok VY, Yanshole VV, Antonov AA, Kholdeeva OA. Effect of the Polyanion Structure on the Mechanism of Alcohol Oxidation with H 2O 2 Catalyzed by Zr-Substituted Polyoxotungstates. Inorg Chem 2024; 63:18043-18057. [PMID: 39300783 DOI: 10.1021/acs.inorgchem.4c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Zr-monosubstituted polyoxometalates (Zr-POMs) of the Lindqvist (Bu4N)6[{W5O18Zr(μ-OH)}2] (1), Keggin (Bu4N)8[{PW11O39Zr(μ-OH)}2] (2), and Wells-Dawson (Bu4N)11.3K2.5H0.2[{P2W17O61Zr}2(μ-OH)2] (3) structures catalyze oxidation of alcohols using aqueous hydrogen peroxide as an oxidant. With 1 equiv of H2O2 and 1 mol % of Zr-POM, selectivity toward aldehydes and ketones varied from good to excellent, depending on the alcohol nature. Catalytic activity and attainable substrate conversions strongly depended on the Zr-POM structure and most often decreased in the order 1 > 2 ≫ 3. The reaction mechanism was probed using a test substrate, cyclobutanol, radical and 1O2 scavengers, and kinetic and spectroscopic (attenuated total reflectance-Fourier transform infrared (ATR-FT-IR), 31P NMR and electrospray ionization-mass spectrometry (ESI-MS)) tools. The results point to heterolytic alcohol oxidation in the presence of 1 and 2 and homolytic alcohol oxidation in the presence of 3. Kinetic and spectroscopic studies implicated an oxidation mechanism that involves both alcohol and peroxide binding to 2 followed by an inner-sphere heterolytic H-abstraction from the α-C-H bond by the Zr-hydroperoxo group, leading to a carbonyl compound. The unique capability of 1 to generate 1O2 upon interaction with H2O2 complicates the reaction kinetics and improves the product yield. Spectroscopic studies coupled with stoichiometric experiments unveiled that dimeric monoperoxo {Zr2(μ-η2:η2-O2)} and monomeric hydroperoxo {Zr(η2-OOH)} species accomplish the transformation of alcohols to carbonyl compounds.
Collapse
Affiliation(s)
| | | | - Kirill P Larionov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Vasilii Yu Evtushok
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Vadim V Yanshole
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
| | - Artem A Antonov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Oxana A Kholdeeva
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Wang Y, Guo M, Xu X. Nanoproteases: Alternatives to Natural Protease for Biotechnological Applications. Chemistry 2024; 30:e202401178. [PMID: 38705854 DOI: 10.1002/chem.202401178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Some nanomaterials with intrinsic protease-like activity have the advantages of good stability, biosafety, low price, large-scale preparation and unique property of nanomaterials, which are promising alternatives for natural proteases in various applications. An especial term, "nanoprotease", has been coined to stress the intrinsic proteolytic property of these nanomaterials. As a new generation of artificial proteases, they have become a burgeoning field, attracting many researchers to design and synthesize high performance nanoproteases. In this review, we summarize recent progress on all types of nanoproteases with regard of their activity, mechanism and application and introduce a new and effective strategy for engineering high-performance nanoproteases. In addition, we discuss the challenges and opportunities of nanoprotease research in the future.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Mingxiu Guo
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiaolong Xu
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
3
|
Salazar Marcano DE, Savić ND, Declerck K, Abdelhameed SAM, Parac-Vogt TN. Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks. Chem Soc Rev 2024; 53:84-136. [PMID: 38015569 DOI: 10.1039/d3cs00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
4
|
Barba‐Bon A, Gumerova NI, Tanuhadi E, Ashjari M, Chen Y, Rompel A, Nau WM. All-Inorganic Polyoxometalates Act as Superchaotropic Membrane Carriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309219. [PMID: 37943506 PMCID: PMC11475408 DOI: 10.1002/adma.202309219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Polyoxometalates (POMs) are known antitumoral, antibacterial, antiviral, and anticancer agents and considered as next-generation metallodrugs. Herein, a new biological functionality in neutral physiological media, where selected mixed-metal POMs are sufficiently stable and able to affect membrane transport of impermeable, hydrophilic, and cationic peptides (heptaarginine, heptalysine, protamine, and polyarginine) is reported. The uptake is observed in both, model membranes as well as cells, and attributed to the superchaotropic properties of the polyoxoanions. In view of the structural diversity of POMs these findings pave the way toward their biomedical application in drug delivery or for cell-biological uptake studies with biological effector molecules or staining agents.
Collapse
Affiliation(s)
- Andrea Barba‐Bon
- School of ScienceConstructor UniversityCampus Ring 128759BremenGermany
| | - Nadiia I. Gumerova
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieJosef‐Holaubek‐Platz 2Wien1090Austria
| | - Elias Tanuhadi
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieJosef‐Holaubek‐Platz 2Wien1090Austria
| | - Maryam Ashjari
- School of ScienceConstructor UniversityCampus Ring 128759BremenGermany
| | - Yao Chen
- School of ScienceConstructor UniversityCampus Ring 128759BremenGermany
| | - Annette Rompel
- Universität WienFakultät für ChemieInstitut für Biophysikalische ChemieJosef‐Holaubek‐Platz 2Wien1090Austria
| | - Werner M. Nau
- School of ScienceConstructor UniversityCampus Ring 128759BremenGermany
| |
Collapse
|
5
|
Maksimchuk NV, Marikovskaya SM, Larionov KP, Antonov AA, Shashkov MV, Yanshole VV, Evtushok VY, Kholdeeva OA. Tuning Reactivity of Zr-Substituted Keggin Phosphotungstate in Alkene Epoxidation through Balancing H 2O 2 Activation Pathways: Unusual Effect of Base. Inorg Chem 2023; 62:18955-18969. [PMID: 37927081 DOI: 10.1021/acs.inorgchem.3c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The Zr-monosubstituted Keggin-type dimeric phosphotungstate (Bu4N)8[{PW11O39Zr(μ-OH)(H2O)}2] (1) efficiently catalyzes epoxidation of C═C bonds in various kinds of alkenes, including terminal ones, with aqueous H2O2 as oxidant. Less sterically hindered double bonds are preferably epoxidized despite their lower nucleophilicity. Basic additives (Bu4NOH) in the amount of 1 equiv per dimer 1 suppress H2O2 unproductive decomposition, increase substrate conversion, improve yield of heterolytic oxidation products and oxidant utilization efficiency, and also affect regioselectivity of epoxidation, enhancing oxygen transfer to sterically hindered electron-rich C═C bonds. Acid additives produce a reverse effect on the substrate conversion and H2O2 efficiency. The reaction mechanism was explored using a range of test substrates, kinetic, and spectroscopic tools. The opposite effects of acid and base additives on alkene epoxidation and H2O2 degradation have been rationalized in terms of their impact on hydrolysis of 1 to form monomeric species, [PW11O39Zr(OH)(H2O)x]4- (1-M, x = 1 or 2), which favors H2O2 homolytic decomposition. The interaction of 1 with H2O2 has been investigated by HR-ESI-MS, ATR-FT-IR, and 31P NMR spectroscopic techniques. The combination of spectroscopic studies and kinetic modeling implicated the existence of two types of dimeric peroxo complexes, [Zr2(μ-η2:η2-O2){PW11O39}2(H2O)x]]8- and [{Zr(μ-η2-O2)}2(PW11O39)2(H2O)y]10-, along with monomeric Zr (hydro)peroxo species that begin to dominate at a high excess of H2O2. Both dimeric μ-η2-peroxo intermediates are inert toward alkenes under stoichiometric conditions. V-shape Hammett plots obtained for epoxidation of p-substituted styrenes suggested a biphilic nature of the active oxidizing species, which are monomeric Zr-hydroperoxo and peroxo species. Small basic additives increase the electrophilicity of the catalyst and decrease its nucleophilicity. HR-ESI-MS has identified a dimeric, most likely, bridging hydroperoxo species [{PW11O39Zr}2(μ-O)(μ-OOH)]9-, which may account for the improved epoxidation selectivity and regioselectivity toward sterically hindered C═C bonds.
Collapse
Affiliation(s)
| | - Sofia M Marikovskaya
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Kirill P Larionov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Artem A Antonov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Mikhail V Shashkov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Vadim V Yanshole
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
| | - Vasilii Yu Evtushok
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Oxana A Kholdeeva
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Gumerova NI, Rompel A. Speciation atlas of polyoxometalates in aqueous solutions. SCIENCE ADVANCES 2023; 9:eadi0814. [PMID: 37343109 DOI: 10.1126/sciadv.adi0814] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Speciation is the key parameter in solution chemistry that describes the composition, concentration, and oxidation state of each chemical form of an element present in a sample. The speciation study of complex polyatomic ions has remained challenging because of the large number of factors affecting stability and the limited number of direct methods. To address these challenges, we developed the speciation atlas of 10 polyoxometalates commonly used in catalytic and biological applications in aqueous solutions, where the speciation atlas provides both a species distribution database and a predictive model for other polyoxometalates to be used. Compiled for six different polyoxometalate archetypes with three types of addenda ions based on 1309 nuclear magnetic resonance spectra under 54 different conditions, the atlas has revealed a previously unknown behavior of polyoxometalates that may account for their potency as biological agents and catalysts. The atlas is intended to promote the interdisciplinary use of metal oxides in various scientific fields.
Collapse
Affiliation(s)
- Nadiia I Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Josef-Holaubek-Platz 2, 1090 Wien, Austria
| |
Collapse
|
7
|
Tubul-Sterin T, Baranov M, Gan-Or G, Leffler N, Neyman A, Weinstock IA. Polyoxometalate-Complexed Indium Hydroxide: Atomically Homogeneous Impregnation via Countercation Exchange. Inorg Chem 2023; 62:1804-1812. [PMID: 35312306 DOI: 10.1021/acs.inorgchem.1c03857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal hydroxides catalyze organic transformations and photochemical processes and serve as precursors for the oxide layers of functional multicomponent devices. However, no general methods are available for the preparation of stable water-soluble complexes of metal hydroxide nanocrystals (NCs) that might be more effective in catalysis and serve as versatile precursors for the reproducible fabrication of multicomponent devices. We now report that InIII-substituted monodefect Wells-Dawson (WD) polyoxometalate (POM) cluster anions, [α2-P2W17O61InIIIOH)]8-, serve as ligands for stable, water-soluble complexes, 1, of platelike, predominantly cubic-phase (dzhalindite) In(OH)3 NCs that after optimization contain ca. 10% InOOH. Images from cryogenic tranmsission electron microscopy reveal numerous WD ligands at the surfaces of platelike NCs, with average dimensions of 17 × 28 × 2 nm, each complexed by an average of ca. 450 InIII-substituted WD cluster anions and charge-balanced by 3600 Na+ countercations. Facilitated by the water solubility of 1, countercation exchange is used to stoichiometrically disperse ca. 1800 Cu2+ ions in an atomically homogeneous fashion around the surfaces of each NC core. The utility of this impregnation method is illustrated by using the ion-exchanged material as an electrocatalyst that reduces CO2 to CO 15 times faster per milligram of Cu than does K6Cu[P2CuII(H2O)W17O61] (control) alone. More generally, the findings point to POM complexation as a promising method for stabilizing and solubilizing reactive d-, p-, and f-block metal hydroxide NCs and for enabling their utilization as versatile components in the fabrication of functional multicomponent materials.
Collapse
Affiliation(s)
- Tal Tubul-Sterin
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Mark Baranov
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gal Gan-Or
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nitai Leffler
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Alevtina Neyman
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ira A Weinstock
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
8
|
Greijer BH, Nestor G, Eriksson JE, Seisenbaeva GA, Kessler VG. Factors influencing stoichiometry and stability of polyoxometalate - peptide complexes. Dalton Trans 2022; 51:9511-9521. [PMID: 35695069 DOI: 10.1039/d2dt00717g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the pursuit of understanding the factors guiding interactions between polyoxometalates (POMs) and biomolecules, several complexes between Keggin phosphomolybdate and diglycine have been produced at different acidity and salinity conditions, leading to difference in stoichiometry and in crystal structure. Principal factors determining how the POM and dipeptide interact appear to be pH, ionic strength of the medium, and the molar ratio of POM to peptide. An important effect turned out to be even the structure-directing role of the sodium cations coordinating carbonyl functions of the peptide bond. Given the interest in applying POMs in biological systems, these factors are highly relevant to consider. In the view of recent interest in using POMs as nano catalysts in peptide hydrolysis also the potential Keggin POM transformation in phosphate buffered saline medium was investigated leading to insight that nanoparticles of zirconium phosphate (ZrP) can be actual catalysts for breakdown of the peptide bond.
Collapse
Affiliation(s)
- Björn H Greijer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden.
| | - Gustav Nestor
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden.
| | - Jan E Eriksson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden.
| | - Gulaim A Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden.
| | - Vadim G Kessler
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden.
| |
Collapse
|
9
|
Sheng R, Sun R, Chen L, Lv R, Li Y, Du T, Zhang Y, Qi Y. Recent Advances in Polyoxometalates with Enzyme-like Characteristics for Analytical Applications. Crit Rev Anal Chem 2022; 54:315-332. [PMID: 35549959 DOI: 10.1080/10408347.2022.2073432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Artificial enzymes based on inorganic solids with both enzyme-mimetic activities and the special material features has been a promising candidate to overcome many deleterious effects of native enzymes in analytical applications. Polyoxometalates (POMs) are an importance class of molecular metal-oxygen anionic clusters. Their outstanding physicochemical properties, versatility and potential applications in energy conversion, magnetism, catalysis, molecular electronics and biomedicine have long been studied. However, the analytical applications of them is limited. Recently, the intrinsic enzymatic activities of POMs have also been found and become an area of growing interest. In this review, along with other reports, we aimed to classify the enzymatic activity of POMs, summarize the construction of POMs-based enzymes, and survey their recent advances in analytical fields. Finally, the current challenges and trends of the polyoxometalates with enzymatic activity in future chemo-/bio-sensing applications are briefly discussed.
Collapse
Affiliation(s)
- Rongtian Sheng
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Ruimeng Sun
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Lixia Chen
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Ruijuan Lv
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Yuhan Li
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Ting Du
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Yang Zhang
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
10
|
Abdelhameed SAM, Ly HGT, Moons J, de Azambuja F, Proost P, Parac-Vogt TN. Expanding the reactivity of inorganic clusters towards proteins: the interplay between the redox and hydrolytic activity of Ce(iv)-substituted polyoxometalates as artificial proteases. Chem Sci 2021; 12:10655-10663. [PMID: 34447559 PMCID: PMC8356750 DOI: 10.1039/d1sc02760c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
The ability of soluble metal-oxo clusters to specifically interact with protein surfaces makes them attractive as potential inorganic drugs and as artificial enzymes. In particular, metal-substituted polyoxometalates (MS-POMs) are remarkably selective in hydrolyzing a range of different proteins. However, the influence of MS-POMs' redox chemistry on their proteolytic activity remains virtually unexplored. Herein we report a highly site-selective hydrolysis of hemoglobin (Hb), a large tetrameric globular protein, by a Ce(iv)-substituted Keggin polyoxometalate (CeIVK), and evaluate the effect of CeIVK's redox chemistry on its reactivity and selectivity as an artificial protease. At pH 5.0, incubation of Hb with CeIVK resulted in strictly selective protein hydrolysis at six Asp-X bonds, two of which were located in the α-chain (α(Asp75-Leu76) and α(Asp94-Pro95)) and five at the β-chain (β(Asp51-Ala52), β(Asp68-Ser69), β(Asp78-Asp79), β(Asp98-Pro99) and β(Asp128-Phe129)). However, increasing the pH of the reaction mixture to 7.4 decreased the CeIVK hydrolytic reactivity towards Hb, resulting in the cleavage of only one peptide bond (β(Asp128-Phe129)). Combination of UV-Vis, circular dichroism and Trp fluorescence spectroscopy indicated similar interactions between Hb and CeIVK at both pH conditions; however, 31P NMR spectroscopy showed faster reduction of CeIVK into the hydrolytically inactive CeIIIK form in the presence of protein at pH 7.4. In agreement with these results, careful mapping of all hydrolyzed Asp-X bonds on the protein structure revealed that the lower reactivity toward the α-chain was consistent with the presence of more redox-active amino acids (Tyr and His) in this subunit in comparison with the β-chain. This points towards a link between the presence of the redox-active sites on the protein surface and efficiency and selectivity of redox-active MS-POMs as artificial proteases. More importantly, the study provides a way to tune the redox and hydrolytic reactivity of MS-POMs towards proteins through adjustment of reaction parameters like temperature and pH.
Collapse
Affiliation(s)
| | - Hong Giang T Ly
- KU Leuven, Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
- Department of Chemistry, College of Natural Sciences, Can Tho University Can Tho Vietnam
| | - Jens Moons
- KU Leuven, Department of Chemistry Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Paul Proost
- KU Leuven Department of Microbiology, Immunology, and Transplantation Herestraat 49 3000 Leuven Belgium
| | | |
Collapse
|
11
|
Azambuja FD, Moons J, Parac-Vogt TN. The Dawn of Metal-Oxo Clusters as Artificial Proteases: From Discovery to the Present and Beyond. Acc Chem Res 2021; 54:1673-1684. [PMID: 33600141 DOI: 10.1021/acs.accounts.0c00666] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The selective cleavage of peptide bonds in proteins is of paramount importance in many areas of the biological and medical sciences, playing a key role in protein structure/function/folding analysis, protein engineering, and targeted proteolytic drug design. Current applications that depend on selective protein hydrolysis largely rely on costly proteases such as trypsin, which are sensitive to the pH, ionic strength, and temperature conditions. Moreover, >95% of peptides deposited in databases are generated from trypsin digests, restricting the information within the analyzed proteomes. On the other hand, harsh and toxic chemical reagents such as BrCN are very active but cause permanent modifications of certain amino acid residues. Consequently, transition-metal complexes have emerged as smooth and selective artificial proteases owing to their ability to provide larger fragments and complementary structural information. In the past decade, our group has discovered the unique protease activity of diverse metal-oxo clusters (MOC) and pioneered a distinctive approach to the development of selective artificial proteases. In contrast to classical coordination complexes which often depend on amino acid side chains to control the regioselectivity, the selectivity profile of MOCs is determined by a complex combination of structural factors, such as the protein surface charge, metal coordination to specific side chains, and hydrogen bonding between the protein surface and the MOC scaffold.In this Account, we present a critical overview of our detailed kinetic, spectroscopic, and crystallographic studies in MOC-assisted peptide bond hydrolysis, from its origins to the current rational and detailed mechanistic understanding. To this end, reactivity trends related to the structure and properties of MOCs based on the hydrolysis of small model peptides and key structural aspects governing the selectivity of protein hydrolysis are presented. Finally, our endeavors in seeking the next generation of heterogeneous MOC-based proteases are briefly discussed by embedding MOCs in metal-organic frameworks or using them as discrete nanoclusters in the development of artificial protease-like materials (i.e., nanozymes). The deep and comprehensive understanding sought experimentally and theoretically over the years in aqueous systems with intrinsic polar and charged substrates provides a unique view of the reactivity between inorganic moieties and biomolecules, thereby broadly impacting several different fields (e.g., catalysis in biochemistry, inorganic chemistry, and organic chemistry).
Collapse
Affiliation(s)
| | - Jens Moons
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
12
|
Frisch ML, Polarz S. Molecular fusion of surfactant and Lewis-acid properties for attacking dirt by catalytic bond cleavage. Sci Rep 2021; 11:5131. [PMID: 33664375 PMCID: PMC7933239 DOI: 10.1038/s41598-021-84654-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 12/05/2022] Open
Abstract
The capability of ordinary surfactants in solubilizing hydrophobic compounds can come to a limit, if the extension of a contaminant is too large. An attractive goal is the development of surfactants which can actively reduce the size of dirt. Because strong Lewis acids are known to catalyze both bond formation and cleavage, an integration into the surfactant's molecular framework is tempting. End-group functionalized hepta-dentate ligands, which coordinate to metal ions preventing deactivation by hydrolysis over a broad range of pH values while maintaining strong Lewis-acidity, are herein presented. After proof of amphiphilicity and surfactant characteristics, catalytic properties are investigated for different reactions including the cleavage of proteins. The compounds perform better than benchmark catalysts concerning the attack of unreactive amide bonds. A study with two Sc3+ species as the active site, one non-amphiphilic, the other one being surface-active, underlines the positive effect of surfactant properties for boosting catalytic efficiency.
Collapse
Affiliation(s)
- Marvin L Frisch
- Department of Chemistry, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany.,Institute of Chemistry, Technical University Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Sebastian Polarz
- Institute for Inorganic Chemistry, Leibniz-University Hannover, Callinstrasse 9, 30167, Hannover, Germany. .,Department of Chemistry, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
13
|
de Azambuja F, Lenie J, Parac-Vogt TN. Homogeneous Metal Catalysts with Inorganic Ligands: Probing Ligand Effects in Lewis Acid Catalyzed Direct Amide Bond Formation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jille Lenie
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
14
|
Van Rompuy LS, Moons J, Aelbers J, Struyf T, Van den Ende W, Parac‐Vogt TN. Selective Hydrolysis of Terminal Glycosidic Bond in α‐1‐Acid Glycoprotein Promoted by Keggin and Wells–Dawson Type Heteropolyacids. Chemistry 2020; 26:16463-16471. [DOI: 10.1002/chem.202003189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 01/18/2023]
Affiliation(s)
| | - Jens Moons
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jo Aelbers
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tom Struyf
- Department of Biology Molecular Plant Biology KU Leuven Kasteelpark Arenberg 31 3001 Leuven Belgium
| | - Wim Van den Ende
- Department of Biology Molecular Plant Biology KU Leuven Kasteelpark Arenberg 31 3001 Leuven Belgium
| | | |
Collapse
|
15
|
Xie X, Zheng T, Li W. Recent Progress in Ionic Coassembly of Cationic Peptides and Anionic Species. Macromol Rapid Commun 2020; 41:e2000534. [PMID: 33225490 DOI: 10.1002/marc.202000534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/10/2020] [Indexed: 12/25/2022]
Abstract
Peptide assembly has been extensively exploited as a promising platform for the creation of hierarchical nanostructures and tailor-made bioactive materials. Ionic coassembly of cationic peptides and anionic species is paving the way to provide particularly important contribution to this topic. In this review, the recent progress of ionic coassembly soft materials derived from the electrostatic coupling between cationic peptides and anionic species in aqueous solution is systematically summarized. The presentation of this review starts from a brief background on the general importance and advantages of peptide-based ionic coassembly. After that, diverse combinations of cationic peptides with small anions, macro- and/or oligo-anions, anionic polymers, and inorganic polyoxometalates are described. Emphasis is placed on the hierarchical structures, value-added properties, and applications. The molecular design of cationic peptides and the general principles behind the ionic coassembled structures are discussed. It is summarized that the combination of interesting and unique characteristics that arise both from the chemical diversity of peptides and the wide range of anionic species may contribute in a variety of output, including drug delivery, tissue engineering, gene transfection, and antibacterial activity. The emergent new phenomena and findings are illustrated. Finally, the outlook for the peptide-based ionic coassembly systems is also presented.
Collapse
Affiliation(s)
- Xiaoming Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China.,Department of Chemistry, Xinzhou Teachers' University, Xinzhou, Shanxi, 034000, China
| | - Tingting Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjing Avenue 2699, Changchun, 130012, China
| |
Collapse
|
16
|
Loosen A, de Azambuja F, Smolders S, Moons J, Simms C, De Vos D, Parac-Vogt TN. Interplay between structural parameters and reactivity of Zr 6-based MOFs as artificial proteases. Chem Sci 2020; 11:6662-6669. [PMID: 34094124 PMCID: PMC8159359 DOI: 10.1039/d0sc02136a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022] Open
Abstract
Structural parameters influencing the reactivity of metal-organic frameworks (MOF) are challenging to establish. However, understanding their effect is crucial to further develop their catalytic potential. Here, we uncovered a correlation between reaction kinetics and the morphological structure of MOF-nanozymes using the hydrolysis of a dipeptide under physiological pH as model reaction. Comparison of the activation parameters in the presence of NU-1000 with those observed with MOF-808 revealed the reaction outcome is largely governed by the Zr6 cluster. Additionally, its structural environment completely changes the energy profile of the hydrolysis step, resulting in a higher energy barrier ΔG ‡ for NU-1000 due to a much larger ΔS ‡ term. The reactivity of NU-1000 towards a hen egg white lysozyme protein under physiological pH was also evaluated, and the results pointed to a selective cleavage at only 3 peptide bonds. This showcases the potential of Zr-MOFs to be developed into heterogeneous catalysts for non-enzymatic but selective transformation of biomolecules, which are crucial for many modern applications in biotechnology and proteomics.
Collapse
Affiliation(s)
- Alexandra Loosen
- Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven Belgium
| | | | - Simon Smolders
- Department Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F Leuven Belgium
| | - Jens Moons
- Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven Belgium
| | - Charlotte Simms
- Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven Belgium
| | - Dirk De Vos
- Department Microbial and Molecular Systems, KU Leuven Celestijnenlaan 200F Leuven Belgium
| | | |
Collapse
|
17
|
Solé-Daura A, Poblet JM, Carbó JJ. Structure-Activity Relationships for the Affinity of Chaotropic Polyoxometalate Anions towards Proteins. Chemistry 2020; 26:5799-5809. [PMID: 32104951 DOI: 10.1002/chem.201905533] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 12/31/2022]
Abstract
The influence of the composition of chaotropic polyoxometalate (POM) anions on their affinity to biological systems was studied by means of atomistic molecular dynamics (MD) simulations. The variations in the affinity to hen egg-white lysozyme (HEWL) were analyzed along two series of POMs whereby the charge or the size and shape of the metal cluster are modified systematically. Our simulations revealed a quadratic relationship between the charge of the POM and its affinity to HEWL as a consequence of the parabolic growth of POM⋅⋅⋅water interaction with the charge. As the charge increases, POMs become less chaotropic (more kosmotropic) increasing the number and the strength of POM-water hydrogen bonds and structuring the solvation shell around the POM. This atomistic description explains the proportionally larger desolvation energies and less protein affinity for highly charged POMs, and consequently, the preference for moderate charge densities (q/M=0.33). Also, our simulations suggest that POM⋅⋅⋅protein interactions are size-specific. The cationic pockets of HEWL protein show a preference for Keggin-like structures, which display the optimal dimensions (≈1 nm). Finally, we developed a quantitative multidimensional model for protein affinity with predictive ability (r2 =0.97; q2 =0.88) using two molecular descriptors that account for the charge density (charge per metal atom ratio; q/M) and the size and shape (shape weighted-volume; VS ).
Collapse
Affiliation(s)
- Albert Solé-Daura
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Josep M Poblet
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Jorge J Carbó
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| |
Collapse
|
18
|
Moons J, Azambuja F, Mihailovic J, Kozma K, Smiljanic K, Amiri M, Cirkovic Velickovic T, Nyman M, Parac‐Vogt TN. Discrete Hf
18
Metal‐oxo Cluster as a Heterogeneous Nanozyme for Site‐Specific Proteolysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jens Moons
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Francisco Azambuja
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jelena Mihailovic
- Faculty of Chemistry University of Belgrade Studentski trg 16 11000 Belgrade Serbia
| | - Karoly Kozma
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Katarina Smiljanic
- Faculty of Chemistry University of Belgrade Studentski trg 16 11000 Belgrade Serbia
| | - Mehran Amiri
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry University of Belgrade Studentski trg 16 11000 Belgrade Serbia
- Ghent University Global Campus Incheon South Korea
- Ghent University Faculty of Bioscience Engineering Ghent Belgium
- Serbian Academy of Sciences and Arts Belgrade Serbia
| | - May Nyman
- Department of Chemistry Oregon State University Corvallis OR 97331-4003 USA
| | | |
Collapse
|
19
|
Moons J, de Azambuja F, Mihailovic J, Kozma K, Smiljanic K, Amiri M, Cirkovic Velickovic T, Nyman M, Parac-Vogt TN. Discrete Hf 18 Metal-oxo Cluster as a Heterogeneous Nanozyme for Site-Specific Proteolysis. Angew Chem Int Ed Engl 2020; 59:9094-9101. [PMID: 32154631 DOI: 10.1002/anie.202001036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/04/2020] [Indexed: 12/11/2022]
Abstract
The selective hydrolysis of proteins by non-enzymatic catalysis is difficult to achieve, yet it is crucial for applications in biotechnology and proteomics. Herein, we report that discrete hafnium metal-oxo cluster [Hf18 O10 (OH)26 (SO4 )13 ⋅(H2 O)33 ] (Hf18 ), which is centred by the same hexamer motif found in many MOFs, acts as a heterogeneous catalyst for the efficient hydrolysis of horse heart myoglobin (HHM) in low buffer concentrations. Among 154 amino acids present in the sequence of HHM, strictly selective cleavage at only 6 solvent accessible aspartate residues was observed. Mechanistic experiments suggest that the hydrolytic activity is likely derived from the actuation of HfIV Lewis acidic sites and the Brønsted acidic surface of Hf18 . X-ray scattering and ESI-MS revealed that Hf18 is completely insoluble in these conditions, confirming the HHM hydrolysis is caused by a heterogeneous reaction of the solid Hf18 cluster, and not from smaller, soluble Hf species that could leach into solution.
Collapse
Affiliation(s)
- Jens Moons
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | | | - Jelena Mihailovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Karoly Kozma
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Katarina Smiljanic
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia
| | - Mehran Amiri
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000, Belgrade, Serbia.,Ghent University Global Campus, Incheon, South Korea.,Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | | |
Collapse
|
20
|
de Bournonville S, Vangrunderbeeck S, Ly HGT, Geeroms C, De Borggraeve WM, Parac-Vogt TN, Kerckhofs G. Exploring polyoxometalates as non-destructive staining agents for contrast-enhanced microfocus computed tomography of biological tissues. Acta Biomater 2020; 105:253-262. [PMID: 31996331 DOI: 10.1016/j.actbio.2020.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 11/28/2022]
Abstract
To advance clinical translation of regenerative medicine, there is, amongst others, still need for better insights in tissue development and disease. For this purpose, more precise imaging of the 3D microstructure and spatial interrelationships of the different tissues within organs is crucial. Despite being destructive towards the sample, conventional histology still is the gold standard for structural analysis of biological tissues. It is, however, limited by 2D sections of a 3D object, prohibiting full 3D structural analysis. MicroCT has proven to provide full 3D structural information of mineralized tissues and dense biomaterials. However, the intrinsic low X-ray absorption of soft tissues requires contrast-enhancing staining agents (CESAs). In a previous study, we showed that hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) allows simultaneous contrast-enhanced microCT (CE-CT) visualization of bone and its marrow vascularization and adiposity. In this study, other POM species have been examined for their potential as soft tissue CESAs. Four Wells-Dawson POMs, differing in structure and overall charge, were used to stain murine long bones and kidneys. Their staining potential and diffusion rate were compared to those of Hf-WD POM and phosphotungstic acid (PTA), a frequently used but destructive CESA. Monolacunary Wells-Dawson POM (Mono-WD POM) showed similar soft tissue enhancement as Hf-WD POM and PTA. Moreover, Mono-WD POM is less destructive, shows a better diffusion than PTA, and its synthesis requires less time and cost than Hf-WD POM. Finally, the solubility of Mono-WD POM was improved by addition of lithium chloride (LiCl) to the staining solution, enhancing further the soft tissue contrast. STATEMENT OF SIGNIFICANCE: To advance clinical translation of regenerative medicine, there is, amongst others, still need for better insights in tissue development and disease. For this purpose, more precise imaging of the 3D microstructure and spatial interrelationships of the different tissues within organs is crucial. Current standard structural analysis techniques (e.g. 2D histomorphometry), however, do not allow full 3D assessment. Contrast-enhanced X-ray computed tomography has emerged as a powerful 3D structural characterization tool of soft biological tissues. In this study, from a library of Wells Dawson polyoxometalates (WD POMs), we identified monolacunary WD POM together with lithium chloride, dissolved in phosphate buffered saline, as the most suitable contrast-enhancing staining agent solution for different biological tissues without tissue shrinkage.
Collapse
Affiliation(s)
- Sébastien de Bournonville
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Sarah Vangrunderbeeck
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Hong Giang T Ly
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Carla Geeroms
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; IREC, Institute of Experimental and Clinical Research, UCLouvain, Woluwé-Saint-Lambert, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Ly HGT, Mihaylov TT, Proost P, Pierloot K, Harvey JN, Parac‐Vogt TN. Chemical Mimics of Aspartate‐Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Asp−X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach. Chemistry 2019; 25:14370-14381. [DOI: 10.1002/chem.201902675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Giang T. Ly
- Laboratory of Bioinorganic ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tzvetan T. Mihaylov
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Paul Proost
- Laboratory of Molecular ImmunologyRega InstituteDepartment of Microbiology, Immunology, and TransplantationKU Leuven Herestraat 49 3000 Leuven Belgium
| | - Kristine Pierloot
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jeremy N. Harvey
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tatjana N. Parac‐Vogt
- Laboratory of Bioinorganic ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
22
|
Crans DC, Sánchez-Lombardo I, McLauchlan CC. Exploring Wells-Dawson Clusters Associated With the Small Ribosomal Subunit. Front Chem 2019; 7:462. [PMID: 31334216 PMCID: PMC6624422 DOI: 10.3389/fchem.2019.00462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 01/23/2023] Open
Abstract
The polyoxometalate P2W18O626-, the Wells-Dawson cluster, stabilized the ribosome sufficiently for the crystallographers to solve the phase problem and improve the structural resolution. In the following we characterize the interaction of the Wells-Dawson cluster with the ribosome small subunit. There are 14 different P2W18O626- clusters interacting with the ribosome, and the types of interactions range from one simple residue interaction to complex association of multiple sites including backbone interactions with a Wells-Dawson cluster. Although well-documented that bridging oxygen atoms are the main basic sites on other polyoxometalate interaction with most proteins reported, the W=O groups are the main sites of the Wells-Dawson cluster interacting with the ribosome. Furthermore, the peptide chain backbone on the ribosome host constitutes the main sites that associate with the Wells-Dawson cluster. In this work we investigate the potential of one representative pair of closely-located Wells-Dawson clusters being a genuine Double Wells-Dawson cluster. We found that the Double Wells-Dawson structure on the ribosome is geometrically sound and in line with other Double Wells-Dawson clusters previously observed in the solid state and solution. This information suggests that the Double Wells-Dawson structure on the ribosome is real and contribute to characterization of this particular structure of the ribosome.
Collapse
Affiliation(s)
- Debbie C Crans
- Department Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Irma Sánchez-Lombardo
- Department Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States.,División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, Mexico
| | - Craig C McLauchlan
- Department of Chemistry, Illinois State University, Normal, IL, United States
| |
Collapse
|
23
|
Toporivska Y, Gumienna-Kontecka E. The solution thermodynamic stability of desferrioxamine B (DFO) with Zr(IV). J Inorg Biochem 2019; 198:110753. [PMID: 31229836 DOI: 10.1016/j.jinorgbio.2019.110753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Abstract
Desferrioxamine B (DFO, [H4L]+, ligand) is currently the preferred chelator for 89Zr(IV), however the biological studies suggest that it releases the metal ion in vivo. Herein, we present the solution thermodynamics of complexes formed between Zr(IV) and this hexadentate chelating agent, the data surprisingly not yet available in the literature. Several techniques including electrospray ionization mass spectrometry (ESI-MS), potentiometry, UV-Vis spectroscopy and isothermal titration calorimetry (ITC) were used to determine the stoichiometry and thermodynamic stability of complexes formed in solution over pH range 1-11, overcoming all the difficulties with the characterisation of the aqueous solution chemistry of Zr(IV) complexes, like strong hydrolysis and lack of spectral information. A model containing only mononuclear complexes, i.e. [ZrHL]2+ [ZrL]+, [ZrLH-1] throughout the entire measured pH range is proposed. The stability constants and pM (Zr(IV)) value determined for Zr(IV)-DFO system, place DFO among good Zr(IV) chelators, however the formation of 6-coordinate unsaturated complexes (i.e. with coordination sphere of 8-coordinate Zr(IV) completed by water molecules), together with the susceptibility of coordinated water molecule to deprotonation, are suggested to be the reason of in vivo instability of 89Zr(IV)-DFO complexes.
Collapse
Affiliation(s)
- Yuliya Toporivska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | | |
Collapse
|
24
|
Kaledin AL, Troya D, Karwacki CJ, Balboa A, Gordon WO, Morris JR, Mitchell MB, Frenkel AI, Hill CL, Musaev DG. Key mechanistic details of paraoxon decomposition by polyoxometalates: Critical role of para-nitro substitution. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Anyushin AV, Sap A, Quanten T, Proost P, Parac-Vogt TN. Selective Hydrolysis of Ovalbumin Promoted by Hf(IV)-Substituted Wells-Dawson-Type Polyoxometalate. Front Chem 2018; 6:614. [PMID: 30619823 PMCID: PMC6305993 DOI: 10.3389/fchem.2018.00614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
The reactivity and selectivity of Wells-Dawson type polyoxometalate (POM), K16[Hf(α2-P2W17O61)2]·19H2O (Hf1-WD2), have been examined with respect to the hydrolysis of ovalbumin (OVA), a storage protein consisting of 385 amino acids. The exact cleavage sites have been determined by Edman degradation experiments, which indicated that Hf1-WD2 POM selectively cleaved OVA at eight peptide bonds: Phe13-Asp14, Arg85-Asp86, Asn95-Asp96, Ala139-Asp140, Ser148-Trp149, Ala361-Asp362, Asp362-His363, and Pro364-Phe365. A combination of spectroscopic methods including 31P NMR, Circular Dichroism (CD), and Tryptophan (Trp) fluorescence spectroscopy were employed to gain better understanding of the observed selective cleavage and the underlying hydrolytic mechanism. 31P NMR spectra have shown that signals corresponding to Hf1-WD2 gradually broaden upon addition of OVA and completely disappear when the POM-protein molar ratio becomes 1:1, indicating formation of a large POM/protein complex. CD demonstrated that interactions of Hf1-WD2 with OVA in the solution do not result in protein unfolding or denaturation even upon adding an excess of POM. Trp fluorescence spectroscopy measurements revealed that the interaction of Hf1-WD2 with OVA (Kq = 1.1 × 105 M−1) is both quantitatively and qualitatively slightly weaker than the interaction of isostructural Zr-containing Wells-Dawson POM (Zr1-WD2) with human serum albumin (HAS) (Kq = 5.1 × 105 M−1).
Collapse
Affiliation(s)
- Alexander V Anyushin
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Annelies Sap
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Thomas Quanten
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Vandebroek L, Mampaey Y, Antonyuk S, Van Meervelt L, Parac-Vogt TN. Noncovalent Complexes Formed between Metal-Substituted Polyoxometalates and Hen Egg White Lysozyme. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Laurens Vandebroek
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F box 2404 3001 Heverlee (Leuven) Belgium
| | - Yentl Mampaey
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F box 2404 3001 Heverlee (Leuven) Belgium
| | - Svetlana Antonyuk
- Institute of Integrative Biology; University of Liverpool; Life Sciences Building, Crown Street L69 7ZB Liverpool UK
| | - Luc Van Meervelt
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F box 2404 3001 Heverlee (Leuven) Belgium
| | - Tatjana N. Parac-Vogt
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F box 2404 3001 Heverlee (Leuven) Belgium
| |
Collapse
|
27
|
Vandebroek L, Van Meervelt L, Parac-Vogt TN. Direct observation of the ZrIV interaction with the carboxamide bond in a noncovalent complex between Hen Egg White Lysozyme and a Zr-substituted Keggin polyoxometalate. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1348-1354. [DOI: 10.1107/s2053229618010690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/24/2018] [Indexed: 11/11/2022]
Abstract
The successful cocrystallization of the noncovalent complex formed between (Et2NH2)8[{α-PW11O39Zr-(μ-OH)(H2O)}2]·7H2O Keggin polyoxometalate (2) and Hen Egg White Lysozyme (HEWL) protein is reported. The resulting structural model revealed interaction between monomeric [Zr(PW11O39)]4−(1), which is a postulated catalytically active species, and the protein in two positions in the asymmetric unit. The first position (occupancy 36%) confirms the previously observed binding sites on the protein surface, whereas the second position (occupancy 14%) provides novel insights into the hydrolytic mechanisms of ZrIV-substituted polyoxometalates. The new interaction site occurs at the Asn65 residue, which is directly next to the Asp66–Gly67 peptide bond that was identified recently as a cleavage site in the polyoxometalate-catalysed hydrolysis of HEWL. Furthermore, in this newly discovered binding site, the monomeric polyoxometalate 1 is observed to bind directly to the side chain of the Asn65 residue. This binding of ZrIV as a Lewis-acid metal to the carbonyl O atom of the Asn65 side chain is very similar to the intermediate state proposed in density functional theory (DFT) studies in which ZrIV activates the peptide bond via interaction with its carbonyl O atom, and can be thus regarded as a model for interaction between ZrIV and a peptide bond.
Collapse
|
28
|
Jayasinghe‐Arachchige VM, Hu Q, Sharma G, Paul TJ, Lundberg M, Quinonero D, Parac‐Vogt TN, Prabhakar R. Hydrolysis of chemically distinct sites of human serum albumin by polyoxometalate: A hybrid QM/MM (ONIOM) study. J Comput Chem 2018; 40:51-61. [DOI: 10.1002/jcc.25528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/28/2022]
Affiliation(s)
| | - Qiaoyu Hu
- Department of Chemistry University of Miami Coral Gables Florida 33146
| | - Gaurav Sharma
- Department of Chemistry University of Miami Coral Gables Florida 33146
| | - Thomas J. Paul
- Department of Chemistry University of Miami Coral Gables Florida 33146
| | - Marcus Lundberg
- Department of Chemistry ‐ Ångström Laboratory Uppsala University 751 21, Uppsala Sweden
| | - David Quinonero
- Department of Chemistry Universitat de les Illes Balears Palma de Mallorca Spain
| | | | - Rajeev Prabhakar
- Department of Chemistry University of Miami Coral Gables Florida 33146
| |
Collapse
|
29
|
Quanten T, De Mayaer T, Shestakova P, Parac-Vogt TN. Selectivity and Reactivity of Zr IV and Ce IV Substituted Keggin Type Polyoxometalates Toward Cytochrome c in Surfactant Solutions. Front Chem 2018; 6:372. [PMID: 30211153 PMCID: PMC6121075 DOI: 10.3389/fchem.2018.00372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
In this paper we investigate the effect of three different types of surfactants, on the hydrolysis of Cytochrome c (Cyt c), a predominantly α helical protein containing a heme group, promoted by [Ce(α PW11O39)2]10- (CeK) and [Zr(α PW11O39)2]10- (ZrK) polyoxometalates. In the presence of SDS, Zw3 12, or CHAPS surfactants, which are commonly used for solubilizing hydrophobic proteins, the specificity of CeK or ZrK toward hydrolysis of Cyt c does not change. However, the hydrolysis rate of Cyt c by CeK was increased in the presence of SDS, but decreased in the presence of CHAPS, and was nearly inhibited in the presence of Zw3 12. The Circular dichroism and Tryptophan fluorescence spectroscopy have shown that the structural changes in Cyt c caused by surfactants are similar to those caused by POMs, hence the same specificity in the absence or presence of surfactants was observed. The results also indicate that for Cyt c hydrolysis to occur, large unfolding of the protein is needed in order to accommodate the POMs. While SDS readily unfolds Cyt c, the protein remains largely folded in the presence of CHAPS and Zw3 12. Addition of POMs to Cyt c solutions in CHAPS results in unfolding of the structure allowing the interaction with POMs to occur and results in protein hydrolysis. Zw3 12, however, locks Cyt c in a conformation that resists unfolding upon addition of POM, and therefore results in nearly complete inhibition of protein hydrolysis.
Collapse
Affiliation(s)
- Thomas Quanten
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Tessa De Mayaer
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Pavletta Shestakova
- NMR Centre, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tatjana N Parac-Vogt
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Skunik-Nuckowska M, Dyjak S, Grzejszczyk K, Wisińska NH, Béguin F, Kulesza PJ. Capacitance characteristics of carbon-based electrochemical capacitors exposed to heteropolytungstic acid electrolyte. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Zhang DD, Guo ZY, Guo PF, Hu X, Chen XW, Wang JH. Polyoxometalate-Coated Magnetic Nanospheres for Highly Selective Isolation of Immunoglobulin G. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21876-21882. [PMID: 29882647 DOI: 10.1021/acsami.8b05334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polyoxometalate [{a-PW11O39Zr(μ-OH)(H2O)}2]8- (POM1) is first prepared by sandwiching ZrIV among 2 mono-lacunary α-Keggin polyoxometalates, and then novel magnetic nanoparticles (NPs), Fe3O4@polyethyleneimine (PEI)@POM1, are fabricated by coating POM1 onto the surface of magnetic Fe3O4@PEI NPs under electrostatic interaction. The obtained Fe3O4@PEI@POM1 NPs are characterized by Fourier transform infrared, zeta potential, vibrating sample magnetometer, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Ascribed to the hydrogen-bonding and electrostatic interactions, the NPs exhibit high adsorption selectivity toward IgG, and the adsorption capacity is high up to 304 mg g-1 under optimal adsorption conditions. By using 0.01% cetyl trimethylammonium bromide to strip the adsorbed protein species, an elution efficiency of 95% is achieved. The feasibility of Fe3O4@PEI@POM1 NPs in real-world sample assay has been demonstrated by the selective isolation of IgG heavy chain and light chain from human serum, as confirmed by the sodium dodecyl sulfate polyacrylamide gel electrophoresis assay.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| | - Zhi-Yong Guo
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| | - Peng-Fei Guo
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| | - Xue Hu
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| | - Xu-Wei Chen
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| | - Jian-Hua Wang
- Department of Chemistry, College of Science , Northeastern University , Shenyang 110819 , China
| |
Collapse
|
32
|
Collins-Wildman DL, Kim M, Sullivan KP, Plonka AM, Frenkel AI, Musaev DG, Hill CL. Buffer-Induced Acceleration and Inhibition in Polyoxometalate-Catalyzed Organophosphorus Ester Hydrolysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | - Anna M. Plonka
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Anatoly I. Frenkel
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | | | | |
Collapse
|
33
|
Ly HGT, Fu G, Kondinski A, Bueken B, De Vos D, Parac-Vogt TN. Superactivity of MOF-808 toward Peptide Bond Hydrolysis. J Am Chem Soc 2018; 140:6325-6335. [PMID: 29684281 DOI: 10.1021/jacs.8b01902] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MOF-808, a Zr(IV)-based metal-organic framework, has been proven to be a very effective heterogeneous catalyst for the hydrolysis of the peptide bond in a wide range of peptides and in hen egg white lysozyme protein. The kinetic experiments with a series of Gly-X dipeptides with varying nature of amino acid side chain have shown that MOF-808 exhibits selectivity depending on the size and chemical nature of the X side chain. Dipeptides with smaller or hydrophilic residues were hydrolyzed faster than those with bulky and hydrophobic residues that lack electron rich functionalities which could engage in favorable intermolecular interactions with the btc linkers. Detailed kinetic studies performed by 1H NMR spectroscopy revealed that the rate of glycylglycine (Gly-Gly) hydrolysis at pD 7.4 and 60 °C was 2.69 × 10-4 s-1 ( t1/2 = 0.72 h), which is more than 4 orders of magnitude faster compared to the uncatalyzed reaction. Importantly, MOF-808 can be recycled several times without significantly compromising the catalytic activity. A detailed quantum-chemical study combined with experimental data allowed to unravel the role of the {Zr6O8} core of MOF-808 in accelerating Gly-Gly hydrolysis. A mechanism for the hydrolysis of Gly-Gly by MOF-808 is proposed in which Gly-Gly binds to two Zr(IV) centers of the {Zr6O8} core via the oxygen atom of the amide group and the N-terminus. The activity of MOF-808 was also demonstrated toward the hydrolysis of hen egg white lysozyme, a protein consisting of 129 amino acids. Selective fragmentation of the protein was observed with 55% yield after 25 h under physiological pH.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Guangxia Fu
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Aleksandar Kondinski
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Bart Bueken
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Dirk De Vos
- Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium
| |
Collapse
|
34
|
Zhang H, Tong X, Liu Z, Wan J, Yu L, Zhang Z. The sustainable heterogeneous catalytic reductive amination of lignin models to produce aromatic tertiary amines. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01480a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A sustainable and heterogeneous catalytic reductive amination process is developed in the presence of heterogeneous zirconium-based catalysts, in which N,N-dimethylformamide (DMF) is used as the solvent, the low-molecular-weight amine source, and the reductant.
Collapse
Affiliation(s)
- Haigang Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Xinli Tong
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Zonghui Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Jun Wan
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Linhao Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| | - Zhenya Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- P. R. China
| |
Collapse
|
35
|
Ly HGT, Parac-Vogt TN. Spectroscopic Study of the Interaction between Horse Heart Myoglobin and Zirconium(IV)-Substituted Polyoxometalates as Artificial Proteases. Chemphyschem 2017; 18:2451-2458. [PMID: 28675658 DOI: 10.1002/cphc.201700680] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 01/19/2023]
Abstract
A recent study [Angew. Chem. Int. Ed. 2015, 54, 7391-7394] has shown that horse heart myoglobin (HHM) is selectively hydrolyzed by a range of zirconium(IV)-substituted polyoxometalates (POMs) under mild conditions. In this study, the molecular interactions between the Zr-POM catalysts and HHM are investigated by using a range of complementary techniques, including circular dichroism (CD), UV/Vis spectroscopy, tryptophan fluorescence spectroscopy, and 1 H and 31 P NMR spectroscopy. A tryptophan fluorescence quenching study reveals that, among all examined Zr-POMs, the most reactive POM, 2:2 ZrIV -Keggin, exhibits the strongest interaction with HHM. 31 P NMR spectroscopy studies show that this POM dissociates in solution, resulting in the formation of a monomeric 1:1 ZrIV -Keggin structure, which is likely to be a catalytically active species. In the presence of ZrIV -POMs, HHM does not undergo complete denaturation, as evidenced by CD, UV/Vis, tryptophan fluorescence, and 1 H NMR spectroscopy. CD spectroscopy shows a gradual decrease in the α-helical content of HHM upon addition of ZrIV -POMs. The largest effect is observed in the presence of a large ZrIV -Wells-Dawson structure, whereas small ZrIV -Lindqvist POM has the least influence on the decrease in the α-helical content of HHM. In all cases, the Soret band at λ=409 nm is maintained in the presence of all examined Zr-POMs, which indicates that no conformational changes in the protein occur near the heme group.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | | |
Collapse
|
36
|
Arefian M, Mirzaei M, Eshtiagh-Hosseini H, Frontera A. A survey of the different roles of polyoxometalates in their interaction with amino acids, peptides and proteins. Dalton Trans 2017; 46:6812-6829. [DOI: 10.1039/c7dt00894e] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective provides a comprehensive description of the different roles of POMs in their interaction with relevant biological molecules.
Collapse
Affiliation(s)
- Mina Arefian
- Department of Chemistry
- Ferdowsi University of Mashhad
- Mashhad 917751436
- Iran
| | - Masoud Mirzaei
- Department of Chemistry
- Ferdowsi University of Mashhad
- Mashhad 917751436
- Iran
| | | | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| |
Collapse
|
37
|
Metal assisted peptide bond hydrolysis: Chemistry, biotechnology and toxicological implications. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Gao P, Wu Y, Wu L. Co-assembly of polyoxometalates and peptides towards biological applications. SOFT MATTER 2016; 12:8464-8479. [PMID: 27714298 DOI: 10.1039/c6sm01433j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The synergistic self-assembly of biomolecules with polyoxometalates (POMs) has recently been considered as an effective approach to construct nano-biomaterials with diverse structures and morphologies towards applications in drug delivery, controlled release, tissue engineering scaffolds, and biomineralization, due to the unique features of the clusters in addition to many well-known inorganic nanoparticles. This review presents an overview of recent work focusing on the noncovalent co-assembly of peptides and POMs as well as their biological applications. In the co-assemblies triggered by the interaction between the components significant advantages are observed that POMs or peptides alone do not possess; examples include chiral recognition of hybrid metal oxides, the quick hydrolysis of peptides, and enhanced inhibition of Aβ aggregation. Finally, we outline a brief perspective on possible unresolved issues and future opportunities in this field.
Collapse
Affiliation(s)
- Pengfan Gao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
39
|
Sap A, Van Tichelen L, Mortier A, Proost P, Parac-Vogt TN. Tuning the Selectivity and Reactivity of Metal-Substituted Polyoxometalates as Artificial Proteases by Varying the Nature of the Embedded Lewis Acid Metal Ion. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601098] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Annelies Sap
- KU Leuven; Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Anneleen Mortier
- Department of Microbiology and Immunology; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Paul Proost
- Department of Microbiology and Immunology; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | | |
Collapse
|
40
|
Luong TKN, Mihaylov TT, Absillis G, Shestakova P, Pierloot K, Parac-Vogt TN. Phosphate Ester Bond Hydrolysis Promoted by Lanthanide-Substituted Keggin-type Polyoxometalates Studied by a Combined Experimental and Density Functional Theory Approach. Inorg Chem 2016; 55:9898-9911. [PMID: 27657461 DOI: 10.1021/acs.inorgchem.6b01802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hydrolytic cleavage of 4-nitrophenyl phosphate (NPP), a commonly used DNA model substrate, was examined in the presence of series of lanthanide-substituted Keggin-type polyoxometalates (POMs) [Me2NH2]11[CeIII(PW11O39)2], [Me2NH2]10[CeIV(PW11O39)2] (abbreviated as (CeIV(PW11)2), and K4[EuPW11O39] by means of NMR and luminescence spectroscopies and density functional theory (DFT) calculations. Among the examined complexes, the Ce(IV)-substituted Keggin POM (CeIV(PW11)2) showed the highest reactivity, and its aqueous speciation was fully determined under different conditions of pD, temperature, concentration, and ionic strength by means of 31P and 31P diffusion-ordered NMR spectroscopy. The cleavage of the phosphoester bond of NPP in the presence of (CeIV(PW11)2) proceeded with an observed rate constant kobs = (5.31 ± 0.06) × 10-6 s-1 at pD 6.4 and 50 °C. The pD dependence of NPP hydrolysis exhibits a bell-shaped profile, with the fastest rate observed at pD 6.4. The formation constant (Kf = 127 M-1) and catalytic rate constant (kc = 19.41 × 10-5 s-1) for the NPP-Ce(IV)-Keggin POM complex were calculated, and binding between CeIV(PW11)2 and the phosphate group of NPP was also evidenced by the change of the chemical shift of the 31P nucleus in NPP upon addition of the POM complex. DFT calculations revealed that binding of NPP to the parent catalyst CeIV(PW11)2 is thermodynamically unlikely. On the contrary, formation of complexes with the monomeric 1:1 species, CeIVPW11, is considered to be more favorable, and the most stable complex, [CeIVPW11(H2O)2(NPP-κO)2]7-, was found to involve two NPP ligands coordinated to the CeIVcenter of CeIVPW11 in the monodentate fashion. The formation of such species is considered to be responsible for the hydrolytic activity of CeIV(PW11)2 toward phosphomonoesters. On the basis of these findings a principle mechanism for the hydrolysis of NPP by the POM is proposed.
Collapse
Affiliation(s)
| | | | | | - Pavletta Shestakova
- NMR Laboratory, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences , Acad. G. Bontchev Str., B1.9, 1113 Sofia, Bulgaria
| | | | | |
Collapse
|
41
|
Mihaylov TT, Ly HGT, Pierloot K, Parac-Vogt TN. Molecular Insight from DFT Computations and Kinetic Measurements into the Steric Factors Influencing Peptide Bond Hydrolysis Catalyzed by a Dimeric Zr(IV)-Substituted Keggin Type Polyoxometalate. Inorg Chem 2016; 55:9316-28. [DOI: 10.1021/acs.inorgchem.6b01461] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tzvetan T. Mihaylov
- Laboratory of Computational Coordination
Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hong Giang T. Ly
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Kristine Pierloot
- Laboratory of Computational Coordination
Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tatjana N. Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
42
|
Solé-Daura A, Goovaerts V, Stroobants K, Absillis G, Jiménez-Lozano P, Poblet JM, Hirst JD, Parac-Vogt TN, Carbó JJ. Probing Polyoxometalate-Protein Interactions Using Molecular Dynamics Simulations. Chemistry 2016; 22:15280-15289. [DOI: 10.1002/chem.201602263] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Albert Solé-Daura
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Vincent Goovaerts
- Laboratory of Bioinorganic Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Karen Stroobants
- Laboratory of Bioinorganic Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Gregory Absillis
- Laboratory of Bioinorganic Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Pablo Jiménez-Lozano
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Josep M. Poblet
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| | - Jonathan D. Hirst
- School of Chemistry; University of Nottingham; University Park Nottingham NG7 2RD UK
| | - Tatjana N. Parac-Vogt
- Laboratory of Bioinorganic Chemistry; KU Leuven; Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Jorge J. Carbó
- Departament de Química Física i Inorgànica; Universitat Rovira i Virgili; Marcel⋅lí Domingo, 1 43007 Tarragona Spain
| |
Collapse
|
43
|
Luong TKN, Absillis G, Shestakova P, Parac-Vogt TN. Hydrolysis of the RNA model substrate catalyzed by a binuclear Zr(IV)-substituted Keggin polyoxometalate. Dalton Trans 2016; 44:15690-6. [PMID: 26256057 DOI: 10.1039/c5dt02077h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The reactivity and solution behaviour of the binuclear Zr(IV)-substituted Keggin polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]·7H2O (ZrK 2 : 2) towards phosphoester bond hydrolysis of the RNA model substrate 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP) was investigated at different reaction conditions (pD, temperature, concentration, and ionic strength). The hydrolysis of the phosphoester bond of HPNP, followed by means of (1)H NMR spectroscopy, proceeded with an observed rate constant, kobs = 11.5(±0.42) × 10(-5) s(-1) at pD 6.4 and 50 °C, representing a 530-fold rate enhancement in comparison with the spontaneous hydrolysis of HPNP. (1)H and (31)P NMR spectra indicate that at these reaction conditions the only products of hydrolysis are p-nitrophenol and the corresponding cyclic phosphate ester. The pD dependence of kobs exhibits a bell-shaped profile, with the fastest rate observed at pD 6.4. The formation constant (Kf = 455 M(-1)) and catalytic rate constant (kc = 42 × 10(-5) s(-1)) for the HPNP-ZrK 2 : 2 complex, activation energy (Ea) of 63.35 ± 1.82 kJ mol(-1), enthalpy of activation (ΔH(‡)) of 60.60 ± 2.09 kJ mol(-1), entropy of activation (ΔS(‡)) of -133.70 ± 6.13 J mol(-1) K(-1), and Gibbs activation energy (ΔG(‡)) of 102.05 ± 0.13 kJ mol(-1) at 37 °C were calculated from kinetic experiments. Binding between ZrK 2 : 2 and the P-O bond of HPNP was evidenced by the change in the (31)P chemical shift and signal line-broadening of the (31)P atom in HPNP upon addition of ZrK 2 : 2. Based on (31)P NMR experiments and isotope effect studies, a mechanism for HPNP hydrolysis in the presence of ZrK 2 : 2 was proposed.
Collapse
Affiliation(s)
- Thi Kim Nga Luong
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
44
|
Luong TKN, Shestakova P, Absillis G, Parac-Vogt TN. Detailed Mechanism of Phosphoanhydride Bond Hydrolysis Promoted by a Binuclear Zr(IV)-Substituted Keggin Polyoxometalate Elucidated by a Combination of (31)P, (31)P DOSY, and (31)P EXSY NMR Spectroscopy. Inorg Chem 2016; 55:4864-73. [PMID: 27111398 DOI: 10.1021/acs.inorgchem.6b00385] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A detailed reaction mechanism is proposed for the hydrolysis of the phosphoanhydride bonds in adenosine triphosphate (ATP) in the presence of the binuclear Zr(IV)-substituted Keggin type polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]·7H2O (ZrK 2:2). The full reaction mechanism of ATP hydrolysis in the presence of ZrK 2:2 at pD 6.4 was elucidated by a combination of (31)P, (31)P DOSY, and (31)P EXSY NMR spectroscopy, demonstrating the potential of these techniques for the analysis of complex reaction mixtures involving polyoxometalates (POMs). Two possible parallel reaction pathways were proposed on the basis of the observed reaction intermediates and final products. The 1D (31)P and (31)P DOSY spectra of a mixture of 20.0 mM ATP and 3.0 mM ZrK 2:2 at pD 6.4, measured immediately after sample preparation, evidenced the formation of two types of complexes, I1A and I1B, representing different binding modes between ATP and the Zr(IV)-substituted Keggin type polyoxometalate (ZrK). Analysis of the NMR data shows that at pD 6.4 and 50 °C ATP hydrolysis in the presence of ZrK proceeds in a stepwise fashion. During the course of the hydrolytic reaction various products, including adenosine diphosphate (ADP), adenosine monophosphate (AMP), pyrophosphate (PP), and phosphate (P), were detected. In addition, intermediate species representing the complexes ADP/ZrK (I2) and PP/ZrK (I5) were identified and the potential formation of two other intermediates, AMP/ZrK (I3) and P/ZrK (I4), was demonstrated. (31)P EXSY NMR spectra evidenced slow exchange between ATP and I1A, ADP and I2, and PP and I5, thus confirming the proposed reaction pathways.
Collapse
Affiliation(s)
- Thi Kim Nga Luong
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Pavletta Shestakova
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium.,NMR Laboratory, Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences , Acad. G. Bontchev Str., Bl.9, 1113 Sofia, Bulgaria
| | - Gregory Absillis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
45
|
Ly HGT, Absillis G, Parac-Vogt TN. Influence of the amino acid side chain on peptide bond hydrolysis catalyzed by a dimeric Zr(iv)-substituted Keggin type polyoxometalate. NEW J CHEM 2016. [DOI: 10.1039/c5nj00561b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Structurally different dipeptides were hydrolyzed by [{α-PW11O39Zr-(μ-OH)(H2O)}2]8−. The rate constants were dependent on bulkiness and chemical nature of the dipeptide.
Collapse
|
46
|
Ly HGT, Mihaylov T, Absillis G, Pierloot K, Parac-Vogt TN. Reactivity of Dimeric Tetrazirconium(IV) Wells-Dawson Polyoxometalate toward Dipeptide Hydrolysis Studied by a Combined Experimental and Density Functional Theory Approach. Inorg Chem 2015; 54:11477-92. [PMID: 26599585 DOI: 10.1021/acs.inorgchem.5b02122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Detailed kinetic studies on the hydrolysis of glycylglycine (Gly-Gly) in the presence of the dimeric tetrazirconium(IV)-substituted Wells-Dawson-type polyoxometalate Na14[Zr4(P2W16O59)2(μ3-O)2(OH)2(H2O)4] · 57H2O (1) were performed by a combination of (1)H, (13)C, and (31)P NMR spectroscopies. The catalyst was shown to be stable under a broad range of reaction conditions. The effect of pD on the hydrolysis of Gly-Gly showed a bell-shaped profile with the fastest hydrolysis observed at pD 7.4. The observed rate constant for the hydrolysis of Gly-Gly at pD 7.4 and 60 °C was 4.67 × 10(-7) s(-1), representing a significant acceleration as compared to the uncatalyzed reaction. (13)C NMR data were indicative for coordination of Gly-Gly to 1 via its amide oxygen and amine nitrogen atoms, resulting in a hydrolytically active complex. Importantly, the effective hydrolysis of a series of Gly-X dipeptides with different X side chain amino acids in the presence of 1 was achieved, and the observed rate constant was shown to be dependent on the volume, chemical nature, and charge of the X amino acid side chain. To give a mechanistic explanation of the observed catalytic hydrolysis of Gly-Gly, a detailed quantum-chemical study was performed. The theoretical results confirmed the nature of the experimentally suggested binding mode in the hydrolytically active complex formed between Gly-Gly and 1. To elucidate the role of 1 in the hydrolytic process, both the uncatalyzed and the polyoxometalate-catalyzed reactions were examined. In the rate-determining step of the uncatalyzed Gly-Gly hydrolysis, a carboxylic oxygen atom abstracts a proton from a solvent water molecule and the nascent OH nucleophile attacks the peptide carbon atom. Analogous general-base activity of the free carboxylic group was found to take place also in the case of polyoxometalate-catalyzed hydrolysis as the main catalytic effect originates from the -C═O···Zr(IV) binding.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tzvetan Mihaylov
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Gregory Absillis
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Kristine Pierloot
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry and ‡Laboratory of Computational Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
47
|
Sap A, Absillis G, Parac-Vogt TN. Selective hydrolysis of oxidized insulin chain B by a Zr(IV)-substituted Wells-Dawson polyoxometalate. Dalton Trans 2015; 44:1539-48. [PMID: 25216342 DOI: 10.1039/c4dt01477d] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report for the first time on the selective hydrolysis of a polypeptide system by a metal-substituted polyoxometalate (POM). Oxidized insulin chain B, a 30 amino acid polypeptide, was selectively cleaved by the Zr(IV)-substituted Wells-Dawson POM, K15H[Zr(α2-P2W17O61)2]·25H2O, under physiological pH and temperature conditions in aqueous solution. HPLC-ESI-MS, LC-MS/MS, MALDI-TOF and MALDI-TOF MS/MS data indicate hydrolysis at the Phe1-Val2, Gln4-His5, Leu6-Cys(SO3H)7, and Gly8-Ser9 peptide bonds. The rate of oxidized insulin chain B hydrolysis (0.45 h(-1) at pH 7.0 and 60 °C) was calculated by fitting the integration values of its HPLC-UV signal to a first-order exponential decay function. (1)H NMR measurements show significant line broadening and shifting of the polypeptide resonances upon addition of the Zr(IV)-POM, indicating that interaction between the Zr(IV)-POM and the polypeptide takes place in solution. Circular dichroism (CD) measurements clearly prove that the flexible unfolded nature of the polypeptide was retained in the presence of the Zr(IV)-POM. The thermal stability of the Zr(IV)-POM in the presence of the polypeptide chain during the hydrolytic reaction was confirmed by (31)P NMR spectroscopy. Despite the highly negative charge of the Zr(IV)-POM, the mechanism of interaction appears to be dominated by a strong metal-directed binding between the positively charged Zr(IV) center and negatively charged amino acid side chains.
Collapse
Affiliation(s)
- Annelies Sap
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| | | | | |
Collapse
|
48
|
Understanding the Regioselective Hydrolysis of Human Serum Albumin by Zr(IV)-Substituted Polyoxotungstates Using Tryptophan Fluorescence Spectroscopy. INORGANICS 2015. [DOI: 10.3390/inorganics3020230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
49
|
Affiliation(s)
- Sa-Sa Wang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Guo-Yu Yang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- MOE
Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
50
|
Ly HGT, Absillis G, Janssens R, Proost P, Parac-Vogt TN. Highly Amino Acid Selective Hydrolysis of Myoglobin at Aspartate Residues as Promoted by Zirconium(IV)-Substituted Polyoxometalates. Angew Chem Int Ed Engl 2015; 54:7391-4. [PMID: 25950869 DOI: 10.1002/anie.201502006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/17/2015] [Indexed: 01/22/2023]
Abstract
SDS-PAGE/Edman degradation and HPLC MS/MS showed that zirconium(IV)-substituted Lindqvist-, Keggin-, and Wells-Dawson-type polyoxometalates (POMs) selectively hydrolyze the protein myoglobin at Asp-X peptide bonds under mildly acidic and neutral conditions. This transformation is the first example of highly sequence selective protein hydrolysis by POMs, a novel class of protein-hydrolyzing agents. The selectivity is directed by Asp residues located on the surface of the protein and is further assisted by electrostatic interactions between the negatively charged POMs and positively charged surface patches in the vicinity of the cleavage site.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven (Belgium) http://www.chem.kuleuven.be/lbc/index.html
| | - Gregory Absillis
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven (Belgium) http://www.chem.kuleuven.be/lbc/index.html
| | - Rik Janssens
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000 Leuven (Belgium)
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology and Immunology, KU Leuven, Minderbroedersstraat 10, 3000 Leuven (Belgium)
| | - Tatjana N Parac-Vogt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven (Belgium) http://www.chem.kuleuven.be/lbc/index.html.
| |
Collapse
|