1
|
Mak ECL, Chen Z, Lee LCC, Leung PKK, Yip AMH, Shum J, Yiu SM, Yam VWW, Lo KKW. Exploiting the Potential of Iridium(III) bis-Nitrone Complexes as Phosphorogenic Bifunctional Reagents for Phototheranostics. J Am Chem Soc 2024; 146:25589-25599. [PMID: 39248725 DOI: 10.1021/jacs.4c07251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Cross-linking strategies have found wide applications in chemical biology, enabling the labeling of biomolecules and monitoring of protein-protein interactions. Nitrone exhibits remarkable versatility and applicability in bioorthogonal labeling due to its high reactivity with strained alkynes via the strain-promoted alkyne-nitrone cycloaddition (SPANC) reaction. In this work, four cyclometalated iridium(III) polypyridine complexes functionalized with two nitrone units were designed as novel phosphorogenic bioorthogonal reagents for bioimaging and phototherapeutics. The complexes showed efficient emission quenching, which is attributed to an efficient nonradiative decay pathway via the low-lying T1/S0 minimum energy crossing point (MECP), as revealed by computational studies. However, the complexes displayed significant emission enhancement and lifetime extension upon reaction with (1R,8S,9s)-bicyclo[6.1.0]non-4-yne (BCN) derivatives. In particular, they showed a remarkably higher reaction rate toward a bis-cyclooctyne derivative (bis-BCN) compared with its monomeric counterpart (mono-BCN). Live-cell imaging and (photo)cytotoxicity studies revealed higher photocytotoxicity in bis-BCN-pretreated cells, which is ascribed to the enhanced singlet oxygen (1O2) photosensitization resulting from the elimination of the nitrone-associated quenching pathway. Importantly, the cross-linking properties and enhanced reactivity of the complexes make them highly promising candidates for the development of hydrogels and stapled/cyclized peptides, offering intriguing photophysical, photochemical, and biological properties. Notably, a nanosized hydrogel (2-gel) demonstrated potential as a drug delivery system, while a stapled peptide (2-bis-pDIKK) exhibited p53-Mdm2 inhibitory activity related to apoptosis and a cyclized peptide (2-bis-RGD) showed cancer selectivity.
Collapse
Affiliation(s)
- Eunice Chiu-Lam Mak
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Ziyong Chen
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Peter Kam-Keung Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Alex Man-Hei Yip
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Justin Shum
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Stokes EC, Shoetan IO, Gillman AM, Horton PN, Coles SJ, Woodbury SE, Fallis IA, Pope SJA. Alkyl chain functionalised Ir(iii) complexes: synthesis, properties and behaviour as emissive dopants in microemulsions. RSC Adv 2024; 14:6987-6997. [PMID: 38414995 PMCID: PMC10897649 DOI: 10.1039/d3ra06764e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024] Open
Abstract
Six iridium(iii) complexes of the general form [Ir(C^N)2(N^N)]X (where C^N = cyclometalating ligand; N^N = disubstituted 2,2'-bipyridine), and incorporating alkyl chains of differing lengths (C8, C10, C12), have been synthesised and characterised. The complexes have been characterised using a variety of methods including spectroscopies (NMR, IR, UV-Vis, luminescence) and analytical techniques (high resolution mass spectrometry, cyclic voltammetry, X-ray diffraction). Two dodecyl-functionalised complexes were studied for their behaviour in aqueous solutions. Although the complexes did not possess sufficient solubility to determine their critical micelle concentrations (CMC) in water, they were amenable for use as emissive dopants in a N-methyl C12 substituted imidazolium salt microemulsion carrier system with a CMC = 36.5 mM. The investigation showed that the metal doped microemulsions had increased CMCs of 40.4 and 51.3 mM and luminescent properties characterised by the dopant.
Collapse
Affiliation(s)
- Emily C Stokes
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Ibrahim O Shoetan
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Alice M Gillman
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Peter N Horton
- Chemistry, UK National Crystallographic Service, Faculty of Natural and Environmental Sciences, University of Southampton Highfield Southampton SO17 1BJ England UK
| | - Simon J Coles
- Chemistry, UK National Crystallographic Service, Faculty of Natural and Environmental Sciences, University of Southampton Highfield Southampton SO17 1BJ England UK
| | - Simon E Woodbury
- National Nuclear Laboratory, Central Laboratory Sellafield, Seascale Cumbria CA20 1PG UK
| | - Ian A Fallis
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| | - Simon J A Pope
- School of Chemistry, Cardiff University Main Building Cardiff CF10 3AT UK
| |
Collapse
|
3
|
Tsakaraki D, Andreopoulou AK, Bokias G. pH-Responsive Emission of Novel Water-Soluble Polymeric Iridium(III) Complexes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:927. [PMID: 35335741 PMCID: PMC8951343 DOI: 10.3390/nano12060927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022]
Abstract
The synthesis and characterization of water-soluble copolymers containing N,N-dimethylacrylamide (DMAM) and a vinylic monomer containing an Iridium(III), Ir(III), complex substituted with the quinoline-based unit 2-(pyridin-2-ylo)-6-styrene-4-phenylquinoline (VQPy) as ligand are reported. These copolymers were prepared through pre- or post-polymerization complexation of Ir(III) with the VQPy units. The first methodology led to copolymer P1 having fully complexed VQPy units, whereas the latter methodology allowed the preparation of terpolymers containing free and Ir(III)-complexed VQPy units (copolymer P2). The optical properties of the copolymers were studied in detail through UV-Vis and photoluminescence spectroscopy in aqueous solution. It is shown that the metal-to-ligand charge transfer (ΜLCT) emission is prevailing in the case of P1, regardless of pH. In contrast, in the case of terpolymer P2 the MLCT emission of the Ir(III) complex is combined with the pH-responsive emission of free VQPy units, leading to characteristic pH-responsive color changes under UV illumination in the acidic pH region.
Collapse
Affiliation(s)
- Dafnianna Tsakaraki
- Department of Chemistry, University of Patras, GR 26504 Patras, Greece; (D.T.); (A.K.A.)
| | - Aikaterini K. Andreopoulou
- Department of Chemistry, University of Patras, GR 26504 Patras, Greece; (D.T.); (A.K.A.)
- FORTH/ICE-HT, Stadiou Street, P.O. Box 1414, GR 26504 Rio-Patras, Greece
| | - Georgios Bokias
- Department of Chemistry, University of Patras, GR 26504 Patras, Greece; (D.T.); (A.K.A.)
- FORTH/ICE-HT, Stadiou Street, P.O. Box 1414, GR 26504 Rio-Patras, Greece
| |
Collapse
|
4
|
Dayanidhi PD, Vaidyanathan VG. Understanding the ancillary ligand effect on luminescent cyclometalated Ir(III) complex as a reporter for 2-acetylaminofluorene DNA(AAF-dG) adduct. J Biol Inorg Chem 2021; 27:189-199. [PMID: 34843001 DOI: 10.1007/s00775-021-01920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Mutagenic agents such as aromatic amines undergo metabolic activation and produce DNA adducts at C8 position of guanine bases. N-2-acetylaminofluorene (AAF) generates different mutational outcomes when placed at G1, G2, and G3 of a NarI sequence (-G1G2CG3CC/T-). These outcomes are dictated by the conformations adopted by these adducts. Detection of such lesions is of considerable interest owing to their hazardous effects. Here, we report the synthesis of three cyclometalated [Ir(L)2dppz]+ complexes (L = 2-phenylpyridine (ppy) 1; benzo[h]quinoline (bhq) 2; 2-phenylquinoline (pq) 3; dppz = dipyrido[3,2-a:2',3'-c]phenazine) and their interaction with AAF adducted NarI DNA. Remarkably, complexes 1 and 2 displayed dominant 3LC transition characteristic of polar environment despite binding to the adducted sites. On the other hand, complex 3 binds to NarI sequences and behaves as a luminescent reporter for AAF-modified DNA. The results reported here emphasize that molecular light switching phenomenon can be stimulated by switching ancillary ligands and might act as potential probes for covalent-DNA defects.
Collapse
Affiliation(s)
- P David Dayanidhi
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - V G Vaidyanathan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Leung PKK, Lee LCC, Yeung HHY, Io KW, Lo KKW. Bioorthogonal control of the phosphorescence and singlet oxygen photosensitisation properties of iridium(III) tetrazine complexes. Chem Commun (Camb) 2021; 57:4914-4917. [PMID: 33870960 DOI: 10.1039/d1cc00545f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, we demonstrate bioorthogonal control of the phosphorescence and singlet oxygen photosensitisation properties of new iridium(iii) tetrazine complexes by different reaction partners; the system was exploited for organelle-specific staining and modulated photocytotoxic activity applications.
Collapse
Affiliation(s)
- Peter Kam-Keung Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Herman Ho-Yin Yeung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Kai-Wa Io
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China. and State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China and Centre of Functional Photonics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
6
|
Jin C, Li G, Wu X, Liu J, Wu W, Chen Y, Sasaki T, Chao H, Zhang Y. Robust Packing of a Self‐Assembling Iridium Complex via Endocytic Trafficking for Long‐Term Lysosome Tracking. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chengzhi Jin
- Bioinspired Soft Matter Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Guanying Li
- Bioinspired Soft Matter Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Xia Wu
- Bioinspired Soft Matter Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yazhou Chen
- Bioinspired Soft Matter Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Toshio Sasaki
- Imaging Section Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Ye Zhang
- Bioinspired Soft Matter Unit Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha Onna-son Okinawa 904-0495 Japan
| |
Collapse
|
7
|
Jin C, Li G, Wu X, Liu J, Wu W, Chen Y, Sasaki T, Chao H, Zhang Y. Robust Packing of a Self-Assembling Iridium Complex via Endocytic Trafficking for Long-Term Lysosome Tracking. Angew Chem Int Ed Engl 2021; 60:7597-7601. [PMID: 33448553 DOI: 10.1002/anie.202015913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/18/2021] [Indexed: 11/10/2022]
Abstract
Live cell imaging of lysosome positioning and motility is critical to studying lysosome status and function for pharmacological interventions. To create a super stable lysosomal probe for long-term live cell imaging, we have designed and synthesized an aromatic-peptide-conjugated cyclometalated iridium(III) complex that emits light via π-π stacking oriented self-assembly in water at extremely low concentration. Through endocytic trafficking, self-assemblies are transformed from nanoparticles into sturdily packed networks that are stabilized in lysosomal acidic environment. Upon short time/low dose treatment of the iridium complex at passage 0, live cell lysosomal tracking is applicable beyond the 14th passage of cells with high labelling rate and a mild decline in luminescence intensity. The illuminated lysosomes are trackable using super-resolution imaging to study their response to cellular processes.
Collapse
Affiliation(s)
- Chengzhi Jin
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.,MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guanying Li
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Xia Wu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yazhou Chen
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Toshio Sasaki
- Imaging Section, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
8
|
Elgar CE, Otaif HY, Zhang X, Zhao J, Horton PN, Coles SJ, Beames JM, Pope SJA. Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTA-UC Performance. Chemistry 2021; 27:3427-3439. [PMID: 33242225 DOI: 10.1002/chem.202004146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Six substituted ligands based upon 2-(naphthalen-1-yl)quinoline-4-carboxylate and 2-(naphthalen-2-yl)quinoline-4-carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII , yielding complexes of the form [Ir(C^N)2 (bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2'-bipyridine). X-ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668-693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand-centred versus MLCT character instilled by the facets of the ligand structure. Triplet-triplet annihilation upconversion (TTA-UC) measurements demonstrate that the complexes based upon the 1-naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6-6.7 %.
Collapse
Affiliation(s)
- Christopher E Elgar
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Haleema Y Otaif
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Joseph M Beames
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Simon J A Pope
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| |
Collapse
|
9
|
Shakirova JR, Sadeghi A, Koblova AA, Chelushkin PS, Toropainen E, Tavakoli S, Kontturi LS, Lajunen T, Tunik SP, Urtti A. Design and synthesis of lipid-mimetic cationic iridium complexes and their liposomal formulation for in vitro and in vivo application in luminescent bioimaging. RSC Adv 2020; 10:14431-14440. [PMID: 35498460 PMCID: PMC9051922 DOI: 10.1039/d0ra01114b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Two iridium [Ir(N^C)2(N^N)]+ complexes with the diimine N^N ligand containing a long polymethylene hydrophobic chain were synthesized and characterized by using NMR and ESI mass-spectrometry: N^N - 2-(1-hexadecyl-1H-imidazol-2-yl)pyridine, N^C - methyl-2-phenylquinoline-4-carboxylate (Ir1) and 2-phenylquinoline-4-carboxylic acid (Ir2). These complexes were used to prepare the luminescent PEGylated DPPC liposomes (DPPC/DSPE-PEG2000/Ir-complex = 95/4.5/1 mol%) using a thin film hydration method. The narrowly dispersed liposomes had diameters of about 110 nm. The photophysics of the complexes and labeled liposomes were carefully studied. Ir1 and Ir2 give red emission (λ em = 667 and 605 nm) with a lifetime in the microsecond domain and quantum yields of 4.8% and 10.0% in degassed solution. Incorporation of the complexes into the liposome lipid bilayer results in shielding of the emitters from interaction with molecular oxygen and partial suppression of excited state nonradiative relaxation due to the effect of the relatively rigid bilayer matrix. Delivery of labeled liposomes to the cultured ARPE-19 cells demonstrated the usefulness of Ir1 and Ir2 in cellular imaging. Labeled liposomes were then injected intravitreally into rat eyes and imaged successfully with optical coherence tomography and funduscopy. In conclusion, iridium complexes enabled the successful labeling and imaging of liposomes in cells and animals.
Collapse
Affiliation(s)
- Julia R Shakirova
- St. Petersburg State University, Institute of Chemistry Universitetskii pr., 26 198504 St. Petersburg Russia
| | - Amir Sadeghi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland Yliopistonranta 1C 70211 Kuopio Finland
| | - Alla A Koblova
- St. Petersburg State University, Institute of Chemistry Universitetskii pr., 26 198504 St. Petersburg Russia
| | - Pavel S Chelushkin
- St. Petersburg State University, Institute of Chemistry Universitetskii pr., 26 198504 St. Petersburg Russia
| | - Elisa Toropainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland Yliopistonranta 1C 70211 Kuopio Finland
| | - Shirin Tavakoli
- Drug Research Program, Faculty of Pharmacy, University of Helsinki Viikinkaari 5 E 00710 Helsinki Finland
| | - Leena-Stiina Kontturi
- Drug Research Program, Faculty of Pharmacy, University of Helsinki Viikinkaari 5 E 00710 Helsinki Finland
| | - Tatu Lajunen
- Drug Research Program, Faculty of Pharmacy, University of Helsinki Viikinkaari 5 E 00710 Helsinki Finland
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Science, Tokyo University of Pharmacy & Life Sciences 1432-1 Hachioji 192-0392 Tokyo Japan
| | - Sergey P Tunik
- St. Petersburg State University, Institute of Chemistry Universitetskii pr., 26 198504 St. Petersburg Russia
| | - Arto Urtti
- St. Petersburg State University, Institute of Chemistry Universitetskii pr., 26 198504 St. Petersburg Russia
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland Yliopistonranta 1C 70211 Kuopio Finland
- Drug Research Program, Faculty of Pharmacy, University of Helsinki Viikinkaari 5 E 00710 Helsinki Finland
| |
Collapse
|
10
|
Stonelake T, Phillips KA, Otaif HY, Edwardson ZC, Horton PN, Coles SJ, Beames JM, Pope SJA. Spectroscopic and Theoretical Investigation of Color Tuning in Deep-Red Luminescent Iridium(III) Complexes. Inorg Chem 2020; 59:2266-2277. [PMID: 32013422 PMCID: PMC7145353 DOI: 10.1021/acs.inorgchem.9b02991] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 12/03/2022]
Abstract
A series of heteroleptic, neutral iridium(III) complexes of the form [Ir(L)2(N^O)] (where L = cyclometalated 2,3-disubstituted quinoxaline and N^O = ancillary picolinate or pyrazinoate) are described in terms of their synthesis and spectroscopic properties, with supporting computational analyses providing additional insight into the electronic properties. The 10 [Ir(L)2(N^O)] complexes were characterized using a range of analytical techniques (including 1H, 13C, and 19F NMR and IR spectroscopies and mass spectrometry). One of the examples was structurally characterized using X-ray diffraction. The redox properties were determined using cyclic voltammetry, and the electronic properties were investigated using UV-vis, time-resolved luminescence, and transient absorption spectroscopies. The complexes are phosphorescent in the red region of the visible spectrum (λem = 633-680 nm), with lifetimes typically of hundreds of nanoseconds and quantum yields ca. 5% in aerated chloroform. A combination of spectroscopic and computational analyses suggests that the long-wavelength absorption and emission properties of these complexes are strongly characterized by a combination of spin-forbidden metal-to-ligand charge-transfer and quinoxaline-centered transitions. The emission wavelength in these complexes can thus be controlled in two ways: first, substitution of the cyclometalating quinoxaline ligand can perturb both the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital levels (LUMO, Cl atoms on the ligand induce the largest bathochromic shift), and second, the choice of the ancillary ligand can influence the HOMO energy (pyrazinoate stabilizes the HOMO, inducing hypsochromic shifts).
Collapse
Affiliation(s)
- Thomas
M. Stonelake
- School
of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| | - Kaitlin A. Phillips
- School
of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| | - Haleema Y. Otaif
- School
of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| | | | - Peter N. Horton
- U.K.
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Simon J. Coles
- U.K.
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Joseph M. Beames
- School
of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| | - Simon J. A. Pope
- School
of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| |
Collapse
|
11
|
Day AH, Übler MH, Best HL, Lloyd-Evans E, Mart RJ, Fallis IA, Allemann RK, Al-Wattar EAH, Keymer NI, Buurma NJ, Pope SJA. Targeted cell imaging properties of a deep red luminescent iridium(iii) complex conjugated with a c-Myc signal peptide. Chem Sci 2020; 11:1599-1606. [PMID: 32206278 PMCID: PMC7069228 DOI: 10.1039/c9sc05568a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/14/2019] [Indexed: 12/05/2022] Open
Abstract
A nuclear localisation sequence (NLS) peptide, PAAKRVKLD, derived from the human c-Myc regulator gene, has been functionalised with a long wavelength (λ ex = 550 nm; λ em = 677 nm) cyclometalated organometallic iridium(iii) complex to give the conjugate Ir-CMYC. Confocal fluorescence microscopy studies on human fibroblast cells imaged after 18-24 h incubation show that Ir-CMYC concentrations of 80-100 μM promote good cell uptake and nuclear localisation, which was confirmed though co-localisation studies using Hoechst 33342. In comparison, a structurally related, photophysically analogous iridium(iii) complex lacking the peptide sequence, Ir-PYR, showed very different biological behaviour, with no evidence of nuclear, lysosomal or autophagic vesicle localisation and significantly increased toxicity to the cells at concentrations >10 μM that induced mitochondrial dysfunction. Supporting UV-visible and circular dichroism spectroscopic studies show that Ir-PYR and Ir-CMYC display similarly low affinities for DNA (ca. 103 M-1), consistent with electrostatic binding. Therefore the translocation and nuclear uptake properties of Ir-CMYC are attributed to the presence of the PAAKRVKLD nuclear localisation sequence in this complex.
Collapse
Affiliation(s)
- Adam H Day
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Martin H Übler
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Hannah L Best
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Emyr Lloyd-Evans
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Robert J Mart
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Ian A Fallis
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Rudolf K Allemann
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Eman A H Al-Wattar
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Nathaniel I Keymer
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Niklaas J Buurma
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Simon J A Pope
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| |
Collapse
|
12
|
Solomatina AI, Kuznetsov KM, Gurzhiy VV, Pavlovskiy VV, Porsev VV, Evarestov RA, Tunik SP. Luminescent organic dyes containing a phenanthro[9,10-D]imidazole core and [Ir(N^C)(N^N)] + complexes based on the cyclometalating and diimine ligands of this type. Dalton Trans 2020; 49:6751-6763. [PMID: 32373874 DOI: 10.1039/d0dt00568a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A family of diimine (N^N) and cyclometalating (N^C) ligands based on a phenanthro-imidazole aromatic system: 2-pyridyl-1H-phenanthro[9,10-d]imidazole (N^N); 2-R-1-phenyl-1H-phenanthro[9,10-d]imidazole, R = phenyl (N^C4), 3-iodophenyl (N^C5) and 4-nitrophenyl (N^C6) were prepared. It was found that N^C4 and N^C5 show π-π* fluorescence typical of aromatic systems of this sort, whereas the donor-acceptor architecture of N^C6 leads to strong emission solvatochromism and acidochromism, indicating the charge transfer character of the fluorescence observed. Six iridium(iii) complexes (1-6) [Ir(N^C#)2(N^N)]+, where # = 1-6 and N^C1 = 2-phenylpyridine, N^C2 = 2-(benzo[b]thiophen-2-yl)pyridine, and N^C3 = methyl 2-phenylquinoline-4-carboxylate, were also synthesized and characterized. The complexes obtained display moderate to bright phosphorescence with quantum yields up to 46% in degassed solution. The photophysical characteristics of 1-6 were studied in detail. DFT and TD DFT calculations were used for the assignment of electronic transitions responsible for the absorption and emission of these compounds. The variations in the cyclometalating ligand structure give rise to rich photophysics of the complexes obtained. It was found that the orbitals of both N^C and N^N ligands make a major contribution to the formation of emissive excited states and a delicate balance between the energy of the ligands' frontier orbitals determines the emission character.
Collapse
Affiliation(s)
- Anastasia I Solomatina
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Kirill M Kuznetsov
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Vladislav V Gurzhiy
- St. Petersburg State University, Institute of Earth Sciences, University emb. 7/9, 199034 Saint Petersburg, Russia
| | - Vladimir V Pavlovskiy
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Vitaly V Porsev
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Robert A Evarestov
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Sergey P Tunik
- St. Petersburg State University, Institute of Chemistry, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| |
Collapse
|
13
|
Wei LQ, Ye BH. Cyclometalated Ir-Zr Metal-Organic Frameworks as Recyclable Visible-Light Photocatalysts for Sulfide Oxidation into Sulfoxide in Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41448-41457. [PMID: 31604013 DOI: 10.1021/acsami.9b15646] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aerobic photo-oxidation of sulfide into sulfoxide in water is of great interest in green chemistry. In this study, three highly stable Ir(III)-Zr(IV) metal-organic frameworks (Ir-Zr MOFs), namely Zr6-Irbpy (bpy is 2,2'-bipyridine), Zr6-IrbpyOMe (bpyOMe is 4,4'-dimethoxy-2,2'-bipyridine), and Zr6-Irphen (phen is 1,10-phenanthroline), are constructed by using [Ir(pqc)2(L)2]Cl complexes (where pqc is 2-phenylquinoline-4-carboxylic acid and L is an ancillary ligand bpy, bpyOMe, or phen) as linkers and Zr6 cluster as nodes. The constructed Ir-Zr MOFs present high catalytic activity on aerobic photo-oxidation of sulfide into sulfoxide under visible light irradiation in water at room temperature. Moreover, the reaction is high chemoselectivity and functional group tolerance. The catalyst can be readily recycled and reused at least 10 times without loss of catalytic activity. Mechanism studies demonstrate that superoxide radical is the reactive oxygen species in the sulfoxidation, which is generated by electron transfer from the excited triplet photosensitizer 3[Ir-Zr-MOF]* to O2. The high activity of photocatalytic sulfoxidation in water may be attributed to the stabilization of the persulfoxide intermediate by hydrogen bond formation with water solvent, which accelerates the conversion of persulfoxide into sulfoxide and prevents further oxidation of sulfoxide into sulfone. This work provides a new strategy for the green synthesis of sulfoxides under ambient conditions.
Collapse
Affiliation(s)
- Lian-Qiang Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
- College of Chemistry and Bioengineering , Hechi University , Yizhou , 546300 , China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
14
|
Liu J, Chan AKW, Ng M, Hong EYH, Wu NMW, Wu L, Yam VWW. Synthesis, Characterization, and Photochromic Studies of Cyclometalated Iridium(III) Complexes Containing a Spironaphthoxazine Moiety. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Liu
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, PR China
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Maggie Ng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Eugene Yau-Hin Hong
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Nathan Man-Wai Wu
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Vivian Wing-Wah Yam
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, PR China
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| |
Collapse
|
15
|
McGoorty M, Singh A, Deaton TA, Peterson B, Taliaferro CM, Yingling YG, Castellano FN. Bathophenanthroline Disulfonate Ligand-Induced Self-Assembly of Ir(III) Complexes in Water: An Intriguing Class of Photoluminescent Soft Materials. ACS OMEGA 2018; 3:14027-14038. [PMID: 31458098 PMCID: PMC6645117 DOI: 10.1021/acsomega.8b02034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/11/2018] [Indexed: 06/10/2023]
Abstract
Strong evidence of concentration-induced and dissolved electrolyte-induced chromophore aggregation has been universally observed in numerous water soluble bis-cyclometalated Ir(III) photosensitizers bearing the sulfonated diimine ligands bathophenanthroline disulfonate and bathocuproine disulfonate. This new class of aqueous-based soft materials was highly photoluminescent in their aggregated state where detailed spectroscopic investigations of this phenomenon revealed significant blue shifts of their respective photoluminescence emission spectra with concomitant increases in excited-state lifetimes and quantum yields initiating even at micromolar chromophore concentrations in water or upon the addition of a strong electrolyte. A combination of nanoscale particle characterization techniques, static and dynamic photoluminescence spectroscopic studies, along with atomistic molecular dynamics (MD) simulations of these soft materials suggests the formation of small, heterogeneous nanoaggregate structures, wherein the sulfonated diimine ancillary ligand serves as a pro-aggregating subunit in all instances. Importantly, the experimental and MD findings suggest the likelihood of discovering similar aqueous aggregation phenomena occurring in all transition-metal complexes bearing these water-solubilizing diimine ligands.
Collapse
Affiliation(s)
- Michelle
M. McGoorty
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Abhishek Singh
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Thomas A. Deaton
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Benjamin Peterson
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Chelsea M. Taliaferro
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Yaroslava G. Yingling
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Felix N. Castellano
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
16
|
Lee LC, Cheung HM, Liu H, Lo KK. Exploitation of Environment‐Sensitive Luminophores in the Design of Sydnone‐Based Bioorthogonal Imaging Reagents. Chemistry 2018; 24:14064-14068. [DOI: 10.1002/chem.201803452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/10/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong P. R. China
| | - Hugo Man‐Hin Cheung
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong P. R. China
| | - Hua‐Wei Liu
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong P. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong P. R. China
- State Key Laboratory of Millimeter WavesCity University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong P. R. China
- Center of Functional PhotonicsCity University of Hong Kong Tat Chee Avenue Kowloon, Hong Kong P. R. China
| |
Collapse
|
17
|
Yang LX, Yang WF, Yuan YJ, Su YB, Zhou MM, Liu XL, Chen GH, Chen X, Yu ZT, Zou ZG. Visible-Light-Driven Hydrogen Production and Polymerization using Triarylboron-Functionalized Iridium(III) Complexes. Chem Asian J 2018; 13:1699-1709. [PMID: 29722159 DOI: 10.1002/asia.201800455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Indexed: 11/12/2022]
Abstract
The development of novel iridium(III) complexes has continued as an important area of research owing to their highly tunable photophysical properties and versatile applications. In this report, three heteroleptic dimesitylboron-containing iridium(III) complexes, [Ir(p-B-ppy)2 (N^N)]+ {p-B-ppy=2-(4-dimesitylborylphenyl)pyridine; N^N=dipyrido[3,2-a:2',3'-c]phenazine (dppz) (1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (2), and 1,10-phenanthroline (phen) (3)}, were prepared and fully characterized electrochemically, photophysically, and computationally. Altering the conjugated length of the N^N ligands allowed us to tailor the photophysical properties of these complexes, especially their luminescence wavelength, which could be adjusted from λ=583 to 631 nm in CH2 Cl2 . All three complexes were evaluated as visible-light-absorbing sensitizers for the photogeneration of hydrogen from water and as photocatalysts for the photopolymerization of methyl methacrylate. The results showed that all of them were active in both photochemical reactions. High activity for the photosensitizer (over 1158 turnover numbers with 1) was observed, and the system generated hydrogen even after 20 h. Additionally, poly(methyl methacrylate) with a relatively narrow molecular-weight distribution was obtained if an initiator (i.e., ethyl α-bromophenylacetate) was used. The living character of the photoinduced polymerization was confirmed on the basis of successful chain-extension experiments.
Collapse
Affiliation(s)
- Ling-Xia Yang
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China.,National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Wan-Fa Yang
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, China
| | - Yi-Bing Su
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China.,National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Miao-Miao Zhou
- Department of Chemistry, Shantou University, Guangdong, 515063, China
| | - Xiao-Le Liu
- Department of Chemistry, Shantou University, Guangdong, 515063, China
| | - Guang-Hui Chen
- Department of Chemistry, Shantou University, Guangdong, 515063, China
| | - Xin Chen
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zhi-Gang Zou
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
18
|
Ligand-Tuneable, Red-Emitting Iridium(III) Complexes for Efficient Triplet-Triplet Annihilation Upconversion Performance. Chemistry 2018; 24:8577-8588. [DOI: 10.1002/chem.201801007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 11/07/2022]
|
19
|
Shakirova JR, Tomashenko OA, Galenko EE, Khlebnikov AF, Hirva P, Starova GL, Su SH, Chou PT, Tunik SP. Metalated Ir(III) Complexes Based on the Luminescent Diimine Ligands: Synthesis and Photophysical Study. Inorg Chem 2018; 57:6853-6864. [DOI: 10.1021/acs.inorgchem.8b00390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Julia R. Shakirova
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Olesya A. Tomashenko
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Ekaterina E. Galenko
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Alexander F. Khlebnikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Pipsa Hirva
- Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Galina L. Starova
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Shih-Hao Su
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan, R.O.C
| | - Sergey P. Tunik
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| |
Collapse
|
20
|
Sreedharan S, Sinopoli A, Jarman PJ, Robinson D, Clemmet C, Scattergood PA, Rice CR, Smythe CGW, Thomas JA, Elliott PIP. Mitochondria-localising DNA-binding biscyclometalated phenyltriazole iridium(iii) dipyridophenazene complexes: syntheses and cellular imaging properties. Dalton Trans 2018; 47:4931-4940. [DOI: 10.1039/c8dt00046h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New DNA-binding iridium(iii) complexes are presented.
Collapse
Affiliation(s)
| | - Alessandro Sinopoli
- Department of Chemistry
- University of Huddersfield
- Huddersfield
- UK
- Qatar Environmental & Energy Research Institute
| | - Paul. J. Jarman
- Department of Biomedical Science
- University of Sheffield
- Sheffield
- UK
| | - Darren Robinson
- Department of Biomedical Science
- University of Sheffield
- Sheffield
- UK
| | | | | | - Craig R. Rice
- Department of Chemistry
- University of Huddersfield
- Huddersfield
- UK
| | | | | | | |
Collapse
|
21
|
Liang H, Hao T, Yin C, Yang X, Fu H, Zheng X, Li R, Xiao D, Chen H. Cyclometalated Rhodium(III) Complexes Based on Substituted 2-Phenylpyridine Ligands: Synthesis, Structures, Photophysics, Electrochemistry, and DNA-Binding Properties. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700700] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haoran Liang
- College of Chemical Engineering; Sichuan University; No. 29 Wangjiang Road Chengdu P. R. China
| | - Taotao Hao
- College of Chemistry; Sichuan University; No. 29 Wangjiang Road Chengdu P. R. China
| | - Changzhen Yin
- College of Chemistry; Sichuan University; No. 29 Wangjiang Road Chengdu P. R. China
| | - Xi Yang
- Guizhou Central Laboratory of Geology and Mineral Resources; Guiyang P. R. China
| | - Haiyan Fu
- College of Chemistry; Sichuan University; No. 29 Wangjiang Road Chengdu P. R. China
| | - Xueli Zheng
- College of Chemistry; Sichuan University; No. 29 Wangjiang Road Chengdu P. R. China
| | - Ruixiang Li
- College of Chemistry; Sichuan University; No. 29 Wangjiang Road Chengdu P. R. China
| | - Dan Xiao
- College of Chemical Engineering; Sichuan University; No. 29 Wangjiang Road Chengdu P. R. China
| | - Hua Chen
- College of Chemistry; Sichuan University; No. 29 Wangjiang Road Chengdu P. R. China
| |
Collapse
|
22
|
Liu HW, Law WHT, Lee LCC, Lau JCW, Lo KKW. Cyclometalated Iridium(III) Bipyridine-Phenylboronic Acid Complexes as Bioimaging Reagents and Luminescent Probes for Sialic Acids. Chem Asian J 2017; 12:1545-1556. [DOI: 10.1002/asia.201700359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/13/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Hua-Wei Liu
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| | - Wendell Ho-Tin Law
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| | - Lawrence Cho-Cheung Lee
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| | - Jonathan Chun-Wai Lau
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
- State Key Laboratory of Millimeter Waves; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P.R. China
| |
Collapse
|
23
|
Yang Z, Zhao Y, Wang C, Song Q, Pang Q. A water-soluble and highly phosphorescent cyclometallated iridium complex with versatile sensing capability. Talanta 2017; 166:169-175. [DOI: 10.1016/j.talanta.2017.01.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 12/26/2022]
|
24
|
Scarpelli F, Ionescu A, Ricciardi L, Plastina P, Aiello I, La Deda M, Crispini A, Ghedini M, Godbert N. A novel route towards water-soluble luminescent iridium(iii) complexes via a hydroxy-bridged dinuclear precursor. Dalton Trans 2016; 45:17264-17273. [PMID: 27722340 DOI: 10.1039/c6dt02976k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis and photophysical characterization of a new family of luminescent water-soluble ionic iridium(iii) complexes of the general formula [(ppy)2Ir(bpy)]X are reported. The Ir(iii) complexes incorporate a cyclometalated 2-phenylpyridine (ppy), the ancillary ligand 2,2'-bipyridyl (bpy) and different counterions (X- = EtO-, OH-, EtOCH2CO2-, MeOCH2CO2-). These complexes were obtained starting from the cyclometalated Ir(iii) chloro-bridged dimer [(ppy)2Ir(μ-Cl)]2, for the first time synthesized through a new microwave assisted synthetic procedure, and subsequently converted into the corresponding hydroxy-bridged dimer [(ppy)2Ir(μ-OH)]2. The latter was eventually used as a sole reagent for the synthesis of all the reported complexes by simply varying the nature of the reaction solvent from water to alcohols and glycol ethers. This study demonstrates the versatility of the [(ppy)2Ir(μ-OH)]2 complex as a precursor to water soluble ionic Ir(iii) complexes. Indeed, [(ppy)2Ir(μ-OH)]2 has shown its peculiar chemical reactivity due to both a strong base character and an unexpected oxidative ability towards the alcoholic function of glycol ethers. All the synthesized complexes exhibit, in water solution, an orange emission centred at 606 nm. Moreover, all complexes display the ability to give rise to gel phases in water upon increasing their concentration, and the photophysical study evidenced the various interactions governing the gelification process. The water-solubility of these new luminescent Ir(iii) complexes makes them potentially useful in bio-related systems.
Collapse
Affiliation(s)
- Francesca Scarpelli
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy.
| | - Andreea Ionescu
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy.
| | - Loredana Ricciardi
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| | - Pierluigi Plastina
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy.
| | - Iolinda Aiello
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| | - Massimo La Deda
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| | - Alessandra Crispini
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| | - Mauro Ghedini
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| | - Nicolas Godbert
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), LASCAMM CR-INSTM, Unità INSTM della Calabria, Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, CS, Italy. and Consiglio Nazionale delle Ricerche, Istituto di Nanotecnologia - Nanotec, UOS di Cosenza, Ponte Pietro Bucci Cubo 31/C, 87036 Rende, CS, Italy
| |
Collapse
|
25
|
Electrogenerated chemiluminescence of cyclometalated iridium(III) complexes with derived β-acetylacetone as ancillary ligand. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Lowe JA, Stacey OJ, Horton PN, Coles SJ, Pope SJ. Alkyl chain functionalised, cyclometalated platinum(II) complexes: Syntheses, luminescence properties and X-ray crystal structure. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Liu C, Yu H, Xing Y, Gao Z, Jin Z. Photostable ester-substituted bis-cyclometalated cationic iridium(iii) complexes for continuous monitoring of oxygen. Dalton Trans 2016; 45:734-41. [DOI: 10.1039/c5dt02804c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis-cyclometalated cationic iridium(iii) complexes bearing an ester group possess long luminescence lifetimes, good oxygen-sensitivity and excellent photostability.
Collapse
Affiliation(s)
- Chun Liu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Hongcui Yu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yang Xing
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Zhanming Gao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Zilin Jin
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
28
|
McGoorty MM, Khnayzer RS, Castellano FN. Enhanced photophysics from self-assembled cyclometalated Ir(iii) complexes in water. Chem Commun (Camb) 2016; 52:7846-9. [DOI: 10.1039/c6cc03932d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two water-soluble anionic cyclometalated Ir(iii) complexes, Ir(ppy)2BPS [1] and Ir(F-mppy)2BPS [2] have been synthesized and display clear evidence of self-assembly in water.
Collapse
Affiliation(s)
| | - Rony S. Khnayzer
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
| | | |
Collapse
|
29
|
Tuning the Emission of Cationic Iridium (III) Complexes Towards the Red Through Methoxy Substitution of the Cyclometalating Ligand. Sci Rep 2015; 5:12325. [PMID: 26179641 PMCID: PMC4648437 DOI: 10.1038/srep12325] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/16/2015] [Indexed: 01/04/2023] Open
Abstract
The synthesis, characterization and evaluation in solid-state devices of a series of 8 cationic iridium complexes bearing different numbers of methoxy groups on the cyclometallating ligands are reported. The optoelectronic characterization showed a dramatic red shift in the absorption and the emission and a reduction of the electrochemical gap of the complexes when a methoxy group was introduced para to the Ir-C bond. The addition of a second or third methoxy group did not lead to a significant further red shift in these spectra. Emission maxima over the series ranged from 595 to 730 nm. All complexes possessing a motif with a methoxy group at the 3-position of the cyclometalating ligands showed very short emission lifetimes and poor photoluminescence quantum yields whereas complexes having a methoxy group at the 4-position were slightly blue shifted compared to the unsubstituted parent complexes, resulting from the inductively electron withdrawing nature of this directing group on the Ir-C bond. Light-emitting electrochemical cells were fabricated and evaluated. These deep red emitters generally showed poor performance with electroluminescence mirroring photoluminescence. DFT calculations accurately modelled the observed photophysical and electrochemical behavior of the complexes and point to an emission from a mixed charge transfer state.
Collapse
|
30
|
Stacey OJ, Platts JA, Coles SJ, Horton PN, Pope SJA. Phosphorescent, Cyclometalated Cinchophen-Derived Platinum Complexes: Syntheses, Structures, and Electronic Properties. Inorg Chem 2015; 54:6528-36. [DOI: 10.1021/acs.inorgchem.5b00817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oliver J. Stacey
- School
of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - James A. Platts
- School
of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Simon J. Coles
- National
Crystallographic Service, Chemistry, Faculty of Natural and Environmental
Sciences, University of Southampton, Highfield, Southampton, SO17 1 BJ, United Kingdom
| | - Peter N. Horton
- National
Crystallographic Service, Chemistry, Faculty of Natural and Environmental
Sciences, University of Southampton, Highfield, Southampton, SO17 1 BJ, United Kingdom
| | - Simon J. A. Pope
- School
of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| |
Collapse
|
31
|
Substitution effects on the properties of 10,13-disubstituted dipyrido[3,2-a:2′,3′-c]phenazine donor–acceptor compounds and their ruthenium(II) complexes. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Stokes EC, Langdon-Jones EE, Groves LM, Platts JA, Horton PN, Fallis IA, Coles SJ, Pope SJA. Cationic, luminescent cyclometalated iridium(iii) complexes based on substituted 2-phenylthiazole ligands. Dalton Trans 2015; 44:8488-96. [DOI: 10.1039/c4dt03054k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ten cationic heteroleptic iridium(iii) complexes involving substituted phenylthiazole ligands reveal phosphorescence emission in solution.
Collapse
Affiliation(s)
- Emily C. Stokes
- School of Chemistry
- Main Building
- Cardiff University
- Cardiff CF10 3AT
- UK
| | | | - Lara M. Groves
- School of Chemistry
- Main Building
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - James A. Platts
- School of Chemistry
- Main Building
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Peter N. Horton
- UK National Crystallographic Service
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- England
| | - Ian A. Fallis
- School of Chemistry
- Main Building
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Simon J. Coles
- UK National Crystallographic Service
- Chemistry
- Faculty of Natural and Environmental Sciences
- University of Southampton
- England
| | - Simon J. A. Pope
- School of Chemistry
- Main Building
- Cardiff University
- Cardiff CF10 3AT
- UK
| |
Collapse
|
33
|
Law WHT, Leung KK, Lee LCC, Poon CS, Liu HW, Lo KKW. Cyclometalated Iridium(III) Bipyridyl-Phenylenediamine Complexes with Multicolor Phosphorescence: Synthesis, Electrochemistry, Photophysics, and Intracellular Nitric Oxide Sensing. ChemMedChem 2014; 9:1316-29. [DOI: 10.1002/cmdc.201400040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 11/08/2022]
|
34
|
Hasan K, Donato L, Shen Y, D. Slinker J, Zysman-Colman E. Cationic iridium(iii) complexes bearing ancillary 2,5-dipyridyl(pyrazine) (2,5-dpp) and 2,2′:5′,2′′-terpyridine (2,5-tpy) ligands: synthesis, optoelectronic characterization and light-emitting electrochemical cells. Dalton Trans 2014; 43:13672-82. [DOI: 10.1039/c4dt02100b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Four green to deep red emitting cationic iridium(iii) complexes are reported as emitters for LEECs.
Collapse
Affiliation(s)
- Kamrul Hasan
- Département de Chimie
- Université de Sherbrooke
- Sherbrooke, Canada
| | - Loïc Donato
- Département de Chimie
- Université de Sherbrooke
- Sherbrooke, Canada
| | - Yulong Shen
- Department of Physics
- The University of Texas at Dallas
- Richardson, USA
| | - Jason D. Slinker
- Department of Physics
- The University of Texas at Dallas
- Richardson, USA
| | | |
Collapse
|