1
|
Iqbal M, Kaneti YV, Kim J, Yuliarto B, Kang YM, Bando Y, Sugahara Y, Yamauchi Y. Chemical Design of Palladium-Based Nanoarchitectures for Catalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804378. [PMID: 30633438 DOI: 10.1002/smll.201804378] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Palladium (Pd) plays an important role in numerous catalytic reactions, such as methanol and ethanol oxidation, oxygen reduction, hydrogenation, coupling reactions, and carbon monoxide oxidation. Creating Pd-based nanoarchitectures with increased active surface sites, higher density of low-coordinated atoms, and maximized surface coverage for the reactants is important. To address the limitations of pure Pd, various Pd-based nanoarchitectures, including alloys, intermetallics, and supported Pd nanomaterials, have been fabricated by combining Pd with other elements with similar or higher catalytic activity for many catalytic reactions. Herein, recent advances in the preparation of Pd-based nanoarchitectures through solution-phase chemical reduction and electrochemical deposition methods are summarized. Finally, the trend and future outlook in the development of Pd nanocatalysts toward practical catalytic applications are discussed.
Collapse
Affiliation(s)
- Muhammad Iqbal
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuf Valentino Kaneti
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jeonghun Kim
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Brian Yuliarto
- Department of Engineering Physics and Research Center for Nanoscience and Nanotechnology, Institute of Technology Bandung, Ganesha 10, Bandung, 40132, Indonesia
| | - Yong-Mook Kang
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Yoshio Bando
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Institute of Molecular Plus, Tianjin University, Nankai District, Tianjin, 300072, P. R. China
- Australian Institute of Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Yoshiyuki Sugahara
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Yusuke Yamauchi
- Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheunggu, Yongin-si, Gyeonggi-do, 446-701, South Korea
| |
Collapse
|
2
|
Galvanic Replacement of Electrochemically Restructured Copper Electrodes with Gold and Its Electrocatalytic Activity for Nitrate Ion Reduction. NANOMATERIALS 2018; 8:nano8100756. [PMID: 30257501 PMCID: PMC6215138 DOI: 10.3390/nano8100756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/30/2022]
Abstract
The electrochemical formation of nanostructured materials is a cost effective route to creating substrates that can be employed in a variety of applications. In this work the surface of a copper electrode was electrochemically restructured in an alkaline solution containing ethanol as an additive to modify the surface morphology, and generate a Cu/Cu₂O surface, which is known to be active for the electrocatalytic reduction of environmentally harmful nitrate ions. To increase the activity of the nanostructured surface it was decorated with gold prisms through a facile galvanic replacement approach to create an active Cu/Cu₂O/Au layer. The surface was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, as well as electrochemical techniques. It was found that the presence of recalcitrant oxides, and Au was beneficial for the increased activity compared to unmodified copper and undecorated restructured copper and was consistent with the incipient hydrous oxide adatom mediator model of electrocatalysis. This approach to generating nanostructured metal/metal oxide surfaces that can be galvanically replaced to create these types of composites may have other applications in the area of electrocatalysis.
Collapse
|
3
|
O'Mullane AP. From single crystal surfaces to single atoms: investigating active sites in electrocatalysis. NANOSCALE 2014; 6:4012-4026. [PMID: 24599277 DOI: 10.1039/c4nr00419a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electrocatalytic processes will undoubtedly be at the heart of energising future transportation and technology with the added importance of being able to create the necessary fuels required to do so in an environmentally friendly and cost effective manner. For this to be successful two almost mutually exclusive surface properties need to be reconciled, namely producing highly active/reactive surface sites that exhibit long term stability. This article reviews the various approaches which have been undertaken to study the elusive nature of these active sites on metal surfaces which are considered as adatoms or clusters of adatoms with low coordination number. This includes the pioneering studies at extended well defined stepped single crystal surfaces using cyclic voltammetry up to the highly sophisticated in situ electrochemical imaging techniques used to study chemically synthesised nanomaterials. By combining the information attained from single crystal surfaces, individual nanoparticles of defined size and shape, density functional theory calculations and new concepts such as mesoporous multimetallic thin films and single atom electrocatalysts new insights into the design and fabrication of materials with highly active but stable active sites can be achieved. The area of electrocatalysis is therefore not only a fascinating and exciting field in terms of realistic technological and economical benefits but also from the fundamental understanding that can be acquired by studying such an array of interesting materials.
Collapse
Affiliation(s)
- Anthony P O'Mullane
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|