1
|
Jiang C, Shi Y, Shi X, Yan J, Xuan L, Zhuang L, Li J, Xu G, Zheng J. ELOVL5 and VLDLR synergistically affect n-3 PUFA deposition in eggs of different chicken breeds. Poult Sci 2024; 103:104016. [PMID: 39018654 PMCID: PMC11287006 DOI: 10.1016/j.psj.2024.104016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024] Open
Abstract
There was no significant difference in the composition and content of fatty acids in eggs among different breeds initially, but following the supplementation of flaxseed oil, Dwarf Layer were observed to deposit more n-3 polyunsaturated fatty acid (PUFA) in eggs. Currently, there is limited research on the mechanisms underlying the differences in egg composition among different breeds. Therefore, in this study, 150 twenty-four-wk-old hens of each breed, including the Dwarf Layer and White Leghorn, were fed either a basal diet or a diet supplemented with 2.5% flaxseed oil. After 28 d, eggs and liver samples were collected to determine fatty acid composition, and serum, liver, intestine, and follicles were collected for subsequent biochemical, intestinal morphology, and lipid metabolism-related genes expression analysis. Duodenal contents were collected for microbial analysis. The results showed that there was no significant difference in the content and deposition efficiency of total n-3 PUFA in the liver of the 2 breeds, but the content and deposition efficiency of total n-3 PUFA in the egg of Dwarf Layer were significantly higher than those of White Leghorn after feeding flaxseed oil. Flaxseed oil and breeds did not have significant effects on cholesterol (CHO), free fatty acids (NEFA), low-density lipoprotein (LDL), and estrogen (E2) levels. After feeding with flaxseed oil, the villus height and the villus-to-crypt ratio in both breeds were increased and duodenal crypt depth was decreased. The villus-to-crypt ratio (4.78 vs. 3.60) in the duodenum of Dwarf Layer was significantly higher than that in White Leghorn after feeding with flaxseed oil. Flaxseed oil can impact the gut microbiota in the duodenum and reduce the microbiota associated with fatty acid breakdown, such as Romboutsia, Subdolibranulum, Lachnochlostridium, and Clostridium. This may mean that less ALA can be decomposed and more ALA can be absorbed into the body. Additionally, after feeding flaxseed oil, the mRNA levels of elongation enzymes 5 (ELOVL5), fatty acid desaturase 1 (FADS1), and fatty acid transporter 1 (FATP1) in the liver of Dwarf Layer were significantly higher than those in White Leghorn, while the mRNA levels of peroxisome proliferator-activated receptor alpha (PPAR), carnitine palmitoyl transferase 1 (CPT1), Acyl CoA oxidase 1 (ACOX1), and Acyl-CoA synthetase (ACSL) were significantly lower than those in White Leghorn. The mRNA level of FABP1 in the duodenum of Dwarf Layer was significantly higher than that of White Leghorn, while the mRNA level of FATP1 was significantly lower than that of White Leghorn. The protein levels of ELOVL5 in the liver of Dwarf Layer and very low-density lipoprotein receptor (VLDLR) in the follicles were significantly higher than those of White Leghorn. In summary, after feeding flaxseed oil, the higher ratio of villus height to crypt depth in Dwarf Layer allows more α-linolenic acid (ALA) to be absorbed into the body. The higher mRNA expression of FADS1, ELOVL5, and FATP1, as well as the higher protein expression of ELOVL5 in the liver of Dwarf Layer enhance the conversion of ALA into DHA. The higher protein expression of VLDLR in follicles of Dwarf Layer allows more n-3 PUFA to deposit in the follicles. These combined factors contribute to the Dwarf Layer's ability to deposit higher levels of n-3 PUFA in eggs, as well as improving the deposition efficiency of n-3 PUFA.
Collapse
Affiliation(s)
- Caiyun Jiang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuanhang Shi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Shi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jin Yan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Xuan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Longyu Zhuang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Abdoon ASS, Hegazy AM, Abdel-Azeem AS, Al-Atrash AM, Mohammed DM. The protective effects of some herbs on mitigating HFD-induced obesity via enhancing biochemical indicators and fertility in female rats. Heliyon 2024; 10:e30249. [PMID: 38726161 PMCID: PMC11078881 DOI: 10.1016/j.heliyon.2024.e30249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
The potential of plant-based diets and drugs to prevent and control obesity has been attributed to the presence of several biologically active phytochemicals. The study aimed to assess herb consumption's impact on alleviating the risks and hazards associated with obesity induced by a high-fat diet (HFD) and the promotion of fertility. Eighty rats were allocated into four distinct groups. Group 1 (G1) was provided with a basal diet and acted as the control group. Group 2 (G2) was provided with an HFD. Group 3 (G3) was provided with HFD supplemented with chia seeds and Hibiscus sabdariffa L. The fourth group of subjects was provided with HFD supplemented with Foeniculum vulgare (fennel) and Coriandrum sativum L. (coriander). The feeding session was sustained for 10 weeks, and the biochemical parameters were evaluated. The administration of Foeniculum vulgare (fennel) and Coriandrum sativum L. (coriander) (G4) resulted in a more significant reduction in all biochemical parameters compared to G3, which received a diet consisting of chia seeds and Hibiscus sabdariffa L. Additionally, the average number of embryonic lobes and the average number of offspring after birth were found to be considerably more significant in the normal control group (G1) and group (G4) compared to the HFD group (G2) and group (G3) (P < 0.01). Group 4 (G4) was administered a diet enriched with Foeniculum vulgare (fennel) and Coriandrum sativum L. (coriander), which demonstrated superior outcomes in many biochemical indicators and the promotion of fertility in obese female rats.
Collapse
Affiliation(s)
- Ahmed Sabry S. Abdoon
- Animal Reproduction, Veterinary Research division, National Research Centre, Dokki, Giza, Egypt
| | - Amany M. Hegazy
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, Egypt
| | - Amal S. Abdel-Azeem
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed M. Al-Atrash
- Medical Administration, Nuclear Materials Authority, Kattmya, Cairo, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
3
|
Kumari S, Singh PA, Hazra S, Sindhwani R, Singh S. Ocimum sanctum: The Journey from Sacred Herb to Functional Food. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:83-102. [PMID: 38351693 DOI: 10.2174/012772574x290140240130101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 07/19/2024]
Abstract
In recent years, the growing demand for herbal-based formulations, including functional foods, has acquired significant attention. This study highlights historical, botanical, ecological, and phytochemical descriptions and different extraction mechanisms of Ocimum sanctum utilized in its processing. Besides this, it explores the utilization of Ocimum sanctum as a functional food ingredient in various food products such as bakery products (biscuits, bread), dairy products (herbal milk, cheese), and beverages (tea, juice, wine) while focusing on their evaluation parameters, preparation techniques, and pharmacological activities. In terms of other pharmacological properties, Ocimum sanctum-infused functional foods exhibited cognitiveenhancing properties, adaptogenic qualities, anti-obesity effects, gastroprotective, antiinflammatory, hypoglycemic, and immuno-modulatory effects. Thus, the diverse properties of Ocimum sanctum offer exciting opportunities for the development of functional foods that can promote specific health issues, so future research should focus on developing and analyzing novel Ocimum sanctum-based functional foods to meet the growing demand of the functional food industry.
Collapse
Affiliation(s)
- Sneha Kumari
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| | - Subhajit Hazra
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| | - Ritika Sindhwani
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali-140413, Punjab, India
| | - Sukhvinder Singh
- University Centre for Research & Development (UCRD), Chandigarh University, Mohali-140413, Punjab, India
| |
Collapse
|
4
|
Morales-Ferra DL, Zavala-Sánchez MÁ, Jiménez-Ferrer E, Trejo-Moreno C, González-Cortazar M, Gamboa-Gómez CI, Guerrero-Romero F, Zamilpa A. Chemical Characterization, Antilipidemic Effect and Anti-Obesity Activity of Ludwigia octovalvis in a Murine Model of Metabolic Syndrome. PLANTS (BASEL, SWITZERLAND) 2023; 12:2578. [PMID: 37447139 DOI: 10.3390/plants12132578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Ludwigia octovalvis (Jacq.) P.H. Raven is widely used in traditional medicine for different illnesses, including diabetes and hypertension. However, its impact on lipotoxicity and metabolic syndrome in vivo has not been addressed. Therefore, the aim of this study was to evaluate the effects of this plant on the metabolic syndrome parameters in a C57BL6J mouse hypercaloric diet model. L. octovalvis hydroalcoholic extract and its ethyl acetate fraction (25 mg/kg/day) were used for sub-chronic assessment (10 weeks). Additionally, four subfractions (25 mg/kg) were evaluated in the postprandial triglyceridemia test in healthy C57BL6J mice. The hydroalcoholic extract and ethyl acetate fraction significantly decreased body weight gain (-6.9 g and -1.5 g), fasting glycemia (-46.1 and -31.2 mg/dL), systolic (-26.0 and -22.5 mmHg) and diastolic (-8.1 and 16.2 mmHg) blood pressure, free fatty acid concentration (-13.8 and -8.0 μg/mL) and insulin-resistance (measured by TyG index, -0.207 and -0.18), compared to the negative control. A postprandial triglyceridemia test showed that the effects in the sub-chronic model are due, at least in part, to improvement in this parameter. L. octovalvis treatments, particularly the hydroalcoholic extract, improve MS alterations and decrease free fatty acid concentration. These effects are possibly due to high contents of corilagin and ellagic acid.
Collapse
Affiliation(s)
- Dulce Lourdes Morales-Ferra
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Mexico
- Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Miguel Ángel Zavala-Sánchez
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Mexico
| | - Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca 62350, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Mexico
| | - Claudia I Gamboa-Gómez
- Unidad de Investigación Biomédica, Instituto Mexicano del Seguro Social, Canoas 100, Durango 34067, Mexico
| | - Fernando Guerrero-Romero
- Unidad de Investigación Biomédica, Instituto Mexicano del Seguro Social, Canoas 100, Durango 34067, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec 62790, Mexico
| |
Collapse
|
5
|
The Potential of Lamiaceae Herbs for Mitigation of Overweight, Obesity, and Fatty Liver: Studies and Perspectives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155043. [PMID: 35956991 PMCID: PMC9370348 DOI: 10.3390/molecules27155043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Numerous plants, plant extracts, and plant-derived compounds are being explored for their beneficial effects against overweight and liver diseases. Obesity is associated with the increased prevalence of non-alcoholic fatty liver disease (NAFLD), becoming the most common liver disease in Western countries. Obesity and NAFLD are closely associated with many other metabolic alternations such as insulin resistance, diabetes mellitus, and cardiovascular diseases. Many herbs of the Lamiaceae family are widely employed as food and spices in the Mediterranean area, but also in folk medicine, and their use for the management of metabolic disorders is well documented. Hereby, we summarized the scientific results of the medicinal and nutraceutical potential of plants from the Lamiaceae family for prevention and mitigation of overweight and fatty liver. The evidence indicates that Lamiaceae plants may be a cost-effective source of nutraceuticals and/or phytochemicals to be used in the management of metabolic-related conditions such as obesity and NAFLD. PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets.
Collapse
|
6
|
Krga I, Corral-Jara KF, Barber-Chamoux N, Dubray C, Morand C, Milenkovic D. Grapefruit Juice Flavanones Modulate the Expression of Genes Regulating Inflammation, Cell Interactions and Vascular Function in Peripheral Blood Mononuclear Cells of Postmenopausal Women. Front Nutr 2022; 9:907595. [PMID: 35694160 PMCID: PMC9178201 DOI: 10.3389/fnut.2022.907595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Grapefruit is a rich source of flavanones, phytochemicals suggested excreting vasculoprotective effects. We previously showed that flavanones in grapefruit juice (GFJ) reduced postmenopausal women’s pulse-wave velocity (PWV), a measure of arterial stiffness. However, mechanisms of flavanone action in humans are largely unknown. This study aimed to decipher molecular mechanisms of flavanones by multi-omics analysis in PBMCs of volunteers consuming GFJ and flavanone-free control drink for 6 months. Modulated genes and microRNAs (miRNAs) were identified using microarrays. Bioinformatics analyses assessed their functions, interactions and correlations with previously observed changes in PWV. GFJ modified gene and miRNA expressions. Integrated analysis of modulated genes and miRNA-target genes suggests regulation of inflammation, immune response, cell interaction and mobility. Bioinformatics identified putative mediators of the observed nutrigenomic effect (STAT3, NF-κB) and molecular docking demonstrated potential binding of flavanone metabolites to transcription factors and cell-signaling proteins. We also observed 34 significant correlations between changes in gene expression and PWV. Moreover, global gene expression was negatively correlated with gene expression profiles in arterial stiffness and hypertension. This study revealed molecular mechanisms underlying vasculoprotective effects of flavanones, including interactions with transcription factors and gene and miRNA expression changes that inversely correlate with gene expression profiles associated with cardiovascular risk factors.
Collapse
Affiliation(s)
- Irena Krga
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | | | - Claude Dubray
- Institut National de la Santé et de la Recherche Médicale (INSERM), CIC 501, UMR 766, Clermont-Ferrand, France
| | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
- Department of Nutrition, College of Agricultural and Environmental Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Dragan Milenkovic,
| |
Collapse
|
7
|
Ameliorative Effect of Ocimum forskolei Benth on Diabetic, Apoptotic, and Adipogenic Biomarkers of Diabetic Rats and 3T3-L1 Fibroblasts Assisted by In Silico Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092800. [PMID: 35566151 PMCID: PMC9101318 DOI: 10.3390/molecules27092800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a complicated condition that is accompanied by a plethora of metabolic symptoms, including disturbed serum glucose and lipid profiles. Several herbs are reputed as traditional medicine to improve DM. The current study was designed to explore the chemical composition and possible ameliorative effects of Ocimum forskolei on blood glucose and lipid profile in high-fat diet/streptozotocin-induced diabetic rats and in 3T3-L1 cell lines as a first report of its bioactivity. Histopathological study of pancreatic and adipose tissues was performed in control and treatment groups, along with quantification of glucose and lipid profiles and the assessment of NF-κB, cleaved caspase-3, BAX, and BCL2 markers in rat pancreatic tissue. Glucose uptake, adipogenic markers, DGAT1, CEBP/α, and PPARγ levels were evaluated in the 3T3-L1 cell line. Hesperidin was isolated from total methanol extract (TME). TME and hesperidin significantly controlled the glucose and lipid profile in DM rats. Glibenclamide was used as a positive control. Histopathological assessment showed that TME and hesperidin averted necrosis and infiltration in pancreatic tissues, and led to a substantial improvement in the cellular structure of adipose tissue. TME and hesperidin distinctly diminished the mRNA and protein expression of NF-κB, cleaved caspase-3, and BAX, and increased BCL2 expression (reflecting its protective and antiapoptotic actions). Interestingly, TME and hesperidin reduced glucose uptake and oxidative lipid accumulation in the 3T3-L1 cell line. TME and hesperidin reduced DGAT1, CEBP/α, and PPARγ mRNA and protein expression in 3T3-L1 cells. Moreover, docking studies supported the results via deep interaction of hesperidin with the tested biomarkers. Taken together, the current study demonstrates Ocimum forskolei and hesperidin as possible candidates for treating diabetes mellitus.
Collapse
|
8
|
Othman MS, Khaled AM, Al-Bagawi AH, Fareid MA, Ghany RA, Habotta OA, Abdel Moneim AE. Hepatorenal protective efficacy of flavonoids from Ocimum basilicum extract in diabetic albino rats: A focus on hypoglycemic, antioxidant, anti-inflammatory and anti-apoptotic activities. Biomed Pharmacother 2021; 144:112287. [PMID: 34649220 DOI: 10.1016/j.biopha.2021.112287] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 02/09/2023] Open
Abstract
Plant derived phytochemical therapy is a bright candidate for treatment of diabetes and its associated complications. Ocimum baslicum is used as an anti-diabetic traditional medicine. Hence, the present study investigated the effect of Hail Ocimum extract (HOE) and its total flavonoids (HOETF) against hepatorenal damage in experimental diabetes induced by high-fat diet (HFD) and injection of streptozotocin (STZ) in rats. Diabetic animals were co-treated daily with HOE, HOETF or metformin (MET) as a standard anti-diabetic drug for four weeks. Compared to controls, HFD/STZ-treatment lead to significant increases in fasting blood glucose, insulin and HOMA-IR levels. Furthermore, diabetic rats had elevated hepatic (ALT and ALP) and kidney functions (urea and creatinine) biomarkers together with disturbed lipid profile and decreased PPAR-γ gene expression. Higher levels of hepatic and renal LPO and NO paralleled with lower levels of GSH and activities of antioxidant enzymes (SOD, CAT, GPx and GR) after HFD/STZ treatment. Additionally, noteworthy inflammatory and apoptotic responses were evident in both organs of diabetic rats as witnessed by augmented levels of TNF-α, IL-1b and Bax levels with declined levels of Bcl-2. Moreover, histological examination of hepatic, renal and pancreatic tissues validated the biochemical findings. On contrary, co-treatment of diabetic animals with HOE or HOETF could decrease glucose and insulin levels together with improvement of lipid markers and alleviation of hepatorenal dysfunction, oxidative injury, inflammatory and apoptotic events. Conclusively, HOE or HOETF could be a promising complementary therapeutic option for the management of diabetic hepatorenal complication owing to their antioxidant, anti-inflammatory; anti-apoptotic properties.
Collapse
Affiliation(s)
- Mohamed S Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt.
| | - Azza M Khaled
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Amal H Al-Bagawi
- Chemistry Department, Faculty of Science, University of Ha'il, Hail, Saudi Arabia
| | - Mohamed A Fareid
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Reda A Ghany
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha'il, Hail, Saudi Arabia; Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
9
|
Shahid MS, Raza T, Wu Y, Hussain Mangi M, Nie W, Yuan J. Comparative Effects of Flaxseed Sources on the Egg ALA Deposition and Hepatic Gene Expression in Hy-Line Brown Hens. Foods 2020; 9:foods9111663. [PMID: 33202556 PMCID: PMC7696904 DOI: 10.3390/foods9111663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Healthy diets are necessary for both humans and animals, including poultry. These diets contain various nutrients for maintenance and production in laying hens. Therefore, research was undertaken to explore the efficiency of various dietary flaxseed sources on the n-3 deposition in the egg yolk and gene expression in laying hens. Five dietary groups were analyzed, i.e., (i) a corn-based diet with no flaxseed (FS) as a negative control (NC), (ii) a wheat-based diet supplemented with 10% whole FS without multi-carbohydrase enzymes (MCE) as a positive control (PC), (iii) ground FS supplemented with MCE (FS), (iv) extruded flaxseed meal was supplemented with MCE (EFM), (v) flaxseed oil supplemented with MCE (FSO). Results indicated that egg weight was highest in the NC, FS, EFM, and FSO groups as compared to PC in the 12th week. Egg mass was higher in enzyme supplemented groups as compared to the PC group, but lower than NC. In the 12th week, the HDEP (hen day egg production) was highest in the FS and EFM groups as compared to FSO, PC, and NC. The FCR (feed conversion ratio) was better in enzyme supplemented groups as compared to the PC group. Enzyme addition enhanced the egg quality as compared to PC in the 12th week. The HDL-C (high-density lipoprotein cholesterol) was increased, while LDL-C (low-density lipoprotein cholesterol), VLDL-C (very-low-density lipoprotein cholesterol), TC (total cholesterol), and TG (total triglycerides) were reduced in the enzyme supplemented groups as compared to PC and NC. The FSO deposit more n-3 PUFA and docosahexaenoic acid (DHA) in the egg yolk as compared to FS and EFM groups. The expression of ACOX1, LCPT1, FADS1, FADS2, and ELOV2 genes were upregulated, while PPAR-α was downregulated in the FSO group. The LPL mRNA expression was upregulated in the FS, EFM, and FSO groups as compared to the PC and NC groups. It was inferred that FSO with enzymes at 2.5% is cost-effective, improves the hen performances, upregulated the fatty acid metabolism and β-oxidation genes expression, and efficiently deposits optimal n-3 PUFA in the egg as per consumer’s demand.
Collapse
Affiliation(s)
- Muhammad Suhaib Shahid
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.S.S.); (T.R.); (Y.W.); (W.N.)
| | - Tausif Raza
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.S.S.); (T.R.); (Y.W.); (W.N.)
| | - Yuqin Wu
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.S.S.); (T.R.); (Y.W.); (W.N.)
| | - Mazhar Hussain Mangi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Wei Nie
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.S.S.); (T.R.); (Y.W.); (W.N.)
| | - Jianmin Yuan
- State key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.S.S.); (T.R.); (Y.W.); (W.N.)
- Correspondence:
| |
Collapse
|
10
|
Khalil MNA, Farghal HH, Farag MA. Outgoing and potential trends of composition, health benefits, juice production and waste management of the multi-faceted Grapefruit Citrus Χ paradisi: A comprehensive review for maximizing its value. Crit Rev Food Sci Nutr 2020; 62:935-956. [PMID: 33054326 DOI: 10.1080/10408398.2020.1830364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Grapefruit (GF) Citrus Χ paradisi Macfad (F. Rutaceae) is one of the major citrus fruits that encompass a myriad of bioactive chemicals and most unique among citrus fruits. Nevertheless, no study has yet to assess comprehensively its multitudinous constituents, health benefits, and valuable waste products. Hereto, the present review provides an updated comprehensive review on the different aspects of GF, its juice production, waste valorization, enhancement of its byproducts quality, and compared to other citrus fruits. Grapefruit uniqueness among other citrus fruits stands from its unique taste, flavor, and underlying complex chemical composition. Despite limonene abundance in peel oil and grapefruit juice (GFJ) aroma, nootkatone and sulfur compounds are the key determinants of its flavor, whereas flavanones contribute to its bitter taste and in conjunction with limonoids. Different postharvest treatments and juice processing are reviewed and in context to its influence on final product quality and or biological effects. Flavanones, furanocoumarins, and limonoids appear as the most prominent in GF drug interactions affecting its metabolism and or excretion. Valorization of GF peel is overviewed for its utilization as biosrobent, its oil in aromatherapy, limonene as antimicrobial or in cosmetics, fruit pectin for bioethanol production, or as biosorbent, and peel phenolics biotransformation. The present review capitalizes on all of the aforementioned aspects in GF and further explore novel aspects of its juice quality presenting the full potential of this valued multi-faceted citrus fruit.
Collapse
Affiliation(s)
- Mohammed N A Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Hebatullah H Farghal
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
11
|
Wang X, Li D, Liu F, Cui Y, Li X. Dietary citrus and/or its extracts intake contributed to weight control: Evidence from a systematic review and meta-analysis of 13 randomized clinical trials. Phytother Res 2020; 34:2006-2022. [PMID: 32182635 DOI: 10.1002/ptr.6673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/06/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022]
Abstract
Randomized controlled trials, being published in English and investigating the associations of at least 4 weeks intervention of citrus and/or its extracts on weight loss among adults, were searched from PubMed, Web of Science, Scopus, and Cochrane by June 2019 to conduct a meta-analysis. Thirteen articles, including 921 participants, were selected and evaluated by modified Jadad scale. Pooled results by the random-effects model showed that citrus and/or its extracts administration significantly reduced 1.280 kg body weight (95% CI: -1.818 to -0.741, p = 0.000, I2 = 81.4%), 0.322 kg/m2 BMI (95% CI: -0.599 to -0.046, p = 0.022, I2 = 87.0%), 2.185 cm WC (95% CI: -3.804 to -0.566, p = 0.008, I2 = 98.3%), and 2.137 cm HC (95% CI: -3.775 to -0.500, p = 0.011, I2 = 96.2%), respectively, but no significantly decreased effects on WHR and body fat were observed. Subgroup analysis deduced the different effects of study location, intervention duration on body weight associated indices. No publication bias was observed. Our meta-analysis supported the beneficial effects of citrus and/or its extracts supplement on body weight control, and future well-designed studies are required to firmly establish the clinical efficacy of citrus and/or its extracts intervention on body weight.
Collapse
Affiliation(s)
- Xinjing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Deming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Fang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yuan Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xinli Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii). PLoS One 2017; 12:e0176216. [PMID: 28430821 PMCID: PMC5400258 DOI: 10.1371/journal.pone.0176216] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/21/2017] [Indexed: 11/21/2022] Open
Abstract
An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics.
Collapse
|
13
|
Flores-Silva PC, Tovar J, Reynoso-Camacho R, Bello-Pérez LA. Impact of Chickpea- and Raw Plantain-Based Gluten-Free Snacks on Weight Gain, Serum Lipid Profile, and Insulin Resistance of Rats Fed with a High-Fructose Diet. Cereal Chem 2017. [DOI: 10.1094/cchem-03-16-0065-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Juscelino Tovar
- Food for Health Science Centre, Lund University, Lund, Sweden
| | - Rosalia Reynoso-Camacho
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Mexico
| | | |
Collapse
|
14
|
Satapathy S, Das N, Bandyopadhyay D, Mahapatra SC, Sahu DS, Meda M. Effect of Tulsi ( Ocimum sanctum Linn.) Supplementation on Metabolic Parameters and Liver Enzymes in Young Overweight and Obese Subjects. Indian J Clin Biochem 2016; 32:357-363. [PMID: 28811698 DOI: 10.1007/s12291-016-0615-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/08/2016] [Indexed: 11/25/2022]
Abstract
Ocimum sanctum Linn. (also known as Tulsi) is a sacred Indian plant, the beneficial role of which, in obesity and diabetes is described traditionally. This is a randomized, parallel group, open label pilot study to investigate the effect of O. sanctum on metabolic and biochemical parameters in thirty overweight/obese subjects, divided into two groups A and B. Group A (n = 16) received one 250 mg capsule of Tulsi (O. sanctum) extract twice daily in empty stomach for 8 weeks and group B (n = 14) received no intervention. Statistically significant improvements in the values of serum triglycerides (p = 0.019); low density lipoprotein (p = 0.001); high density lipoprotein (p = 0.001); very low density lipoprotein (p = 0.019); Body Mass Index, BMI (p = 0.005); plasma insulin (p = 0.021) and insulin resistance (p = 0.049) were observed after 8 weeks in the O. sanctum intervention group. The improvement in HDL-C in the intervention group when compared to the control group was also statistically significant (p = 0.037). There was no significant alteration of the liver enzymes SGOT and SGPT in both the intervention (p = 0.141; p = 0.074) and control arms (p = 0.102; p = 0.055) respectively. These observations clearly indicate the beneficial effects of O. sanctum on various biochemical parameters in young overweight/obese subjects.
Collapse
Affiliation(s)
| | - Namrata Das
- All India Institute of Medical Sciences, Bhubaneswar, 751019 India
| | - Debapriya Bandyopadhyay
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, 751019 India
| | | | - Dip Sundar Sahu
- National Research Institute of Ayurved Drug Development, Bharatpur, Bhubaneswar, 751003 India
| | - Mruthyumjayarao Meda
- National Research Institute of Ayurved Drug Development, Bharatpur, Bhubaneswar, 751003 India
| |
Collapse
|
15
|
Abstract
Atherosclerosis is a chronic inflammatory disease with deposition of excessive cholesterol in the arterial intima. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor. Activation of PPARα plays an important role in the metabolism of multiple lipids, including high-density lipoprotein, cholesterol, low-density lipoprotein, triglyceride, phospholipid, bile acids, and fatty acids. Increased PPARα activity also mitigates atherosclerosis by blocking macrophage foam cell formation, vascular inflammation, vascular smooth muscle cell proliferation and migration, plaque instability, and thrombogenicity. Clinical use of synthetic PPARα agonist fibrate improved dyslipidemia and attenuated atherosclerosis-related disease risk. This review summarizes PPARα in lipid and lipoprotein metabolism and atherosclerosis, and also highlights its potential therapeutic benefits.
Collapse
|
16
|
Li C, Nie SP, Zhu KX, Ding Q, Li C, Xiong T, Xie MY. Lactobacillus plantarum NCU116 improves liver function, oxidative stress and lipid metabolism in rats with high fat diet induced non-alcoholic fatty liver disease. Food Funct 2015; 5:3216-23. [PMID: 25317840 DOI: 10.1039/c4fo00549j] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of Lactobacillus plantarum NCU116 on liver function, oxidative stress and lipid metabolism in rats with high fat diet induced non-alcoholic fatty liver disease (NAFLD) was studied. The rats were divided into four groups: the normal diet (ND) group; the high fat diet (HFD) group; and HFD plus L. plantarum NCU116 as two doses (NCU116-L, 10(8) CFU mL(-1); NCU116-H, 10(9) CFU mL(-1)) groups. Treatment of L. plantarum NCU116 for 5 weeks was found to restore liver function and oxidative stress in rats with NAFLD, and decrease the levels of fat accumulation in the liver. In addition, the bacterium significantly reduced endotoxin and proinflammatory cytokines, and regulated bacterial flora in the colon and the expression of lipid metabolism in the liver. These results suggest that possible underlying mechanisms for the beneficial effect of L. plantarum NCU116 on NAFLD may include two pathways of downregulating lipogenesis and upregulating lipolysis and fatty acid oxidation related gene expression.
Collapse
Affiliation(s)
- Chuan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Gamboa-Gómez CI, Rocha-Guzmán NE, Gallegos-Infante JA, Moreno-Jiménez MR, Vázquez-Cabral BD, González-Laredo RF. Plants with potential use on obesity and its complications. EXCLI JOURNAL 2015; 14:809-31. [PMID: 26869866 PMCID: PMC4746997 DOI: 10.17179/excli2015-186] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023]
Abstract
Obesity is the most prevalent nutritional disease and a growing public health problem worldwide. This disease is a causal component of the metabolic syndrome related with abnormalities, including hyperglycemia, dyslipidemia, hypertension, inflammation, among others. There are anti-obesity drugs, affecting the fundamental processes of the weight regulation; however they have shown serious side effects, which outweigh their beneficial effects. Most recent studies on the treatment of obesity and its complications have focused on the potential role of different plants preparation that can exert a positive effect on the mechanisms involved in this pathology. For instance, anti-obesity effects of green tea and its isolated active principles have been reported in both in vitro (cell cultures) and in vivo (animal models) that possess healthy effects, decreasing adipose tissue through reduction of adipocytes differentiation and proliferation. A positive effect in lipid profile, and lipid and carbohydrates metabolisms were demonstrated as well. In addition, anti-inflammatory and antioxidant activities were studied. However, the consumption of green tea and its products is not that common in Western countries, where other plants with similar bioactivity predominate; nevertheless, the effect extension has not been analyzed in depth, despite of their potential as alternative treatment for obesity. In this review the anti-obesity potential and reported mechanisms of action of diverse plants such as: Camellia sinensis, Hibiscus sabdariffa, Hypericum perforatum, Persea americana, Phaseolus vulgaris, Capsicum annuum, Rosmarinus officinalis, Ilex paraguariensis, Citrus paradisi, Citrus limon, Punica granatum, Aloe vera, Taraxacum officinale and Arachis hypogaea is summarized. We consider the potential of these plants as natural alternative treatments of some metabolic alterations associated with obesity.
Collapse
Affiliation(s)
| | - Nuria E. Rocha-Guzmán
- Instituto Tecnológico de Durango, Felipe Pescador 1830 Ote., 34080 Durango, Dgo., México
| | | | | | | | | |
Collapse
|